Pp.L 06Ff., for a Cursory and Popular Account of the Fellowship-Program in Physics

Total Page:16

File Type:pdf, Size:1020Kb

Pp.L 06Ff., for a Cursory and Popular Account of the Fellowship-Program in Physics Notes 1 Aaserud (1990). Cf. also Eckert (1993), pp.l 06ff., for a cursory and popular account of the fellowship-program in physics. 2 The mathematics institute was primarily funded by the Danish CARLSBERG FOUNDATION. It was founded in 1934, inspired by the institutes in Giittingen, Paris, and Princeton and located in a new building next to Niels Bohr's famous physics institute. Cf. Sch0tt (1980), p.263. There is a recent dissertation in Danish on Harald Bohr by Kurt Ramskov (1995, Aarhus), which this author has not seen yet. 3 On the research atmosphere at the IHP in the 1930s cf. Bru (1991) with respect to W.Diiblin and stochastics, and the unpublished dissertation Beaulieu (1989) dealing with the Bourbaki group, which will be discussed below. 4 A pioneering work is Rider (1984). In other sciences see the collection Gemelli (2000). 5 Forman (1973), p.l56. 6 Cf. Hanle (1982). The first (inofficial) one was organized in Innsbruck (Austria) in 1922 fol­ lowed by the first official congress in Delft 1924. 7 Cf. Kuzawa (1970). The Polish deliberately chose new subjects such as topology and set the­ ory to reach the international research level more rapidly. A similar situation seems to have ex­ isted in Denmark. Cf. Sch0tt (1980). 8 Mehrtens (1989) shows this to be the case for the rather slow adaptation of the German Mathe­ maticians' Association to the Nazi spirit. 9 Cf. Malet (1998), pp.28129. 10 This according to CrawfordiShinnlSiirlin (1993), pp.2/3. The picture may change rather soon in the worldwide process of "globalization". 11 Cf. Siegmund-Schultze (1986). 12 Cf. Beaulieu (1989), ppA0/41, with figures and details. 13 Cf. Siegmund-Schultze (1998). The cognitive dimension of emigration in mathematics is dis­ cussed at pp.22Iff. 14 Cf. Crawford/ShinnlSiirlin (eds., 1993). The usefulness of this distinction has not been fully established in the historiographical discussion so far. 15 See however Mehrtens' book (1990) containing many valuable suggestions and case studies in this direction. See also Rowe (1997) for a critical discussion of the literature. 16 Siegmund-Schultze (1993) and (1994). Here certain functions of mathematical axiomatics and mathematical reviewing are shown to be related to each other. 17 Former "Bourbakist" P.Cartier acknowledges that ideological dimension in Bourbaki. Cf. Senechal (1998), pp.26127. He explicitly mentions the manifesto of the surrealists as a parallel event. Cf., for more details from that perspective, Mehrtens (1990). 18 As discussed in Beaulieu (1989), pp.124-133. 19 Karl/Katz (1987), p.9. 20 See e.g. Kuznick (1987) for the dominantly skeptical position of American natural scientists with respect to F.D.Roosevelt's New Deal policy in the 1930s. 21 Cf. Siegmund-Schultze (1993). 222 Notes 22 Coser (1988), p.100. 23 Cf. Porter (1988), and the excursus in chapter V.4. The lAS was not funded with Rockefeller money, but there were close relations to the Foundation not least due to lAS' founder, Abraham Flexner. 24 Cf. Rutkoff/Scott (1986) and Krohn (1987). 25 Cf. Paul Forman (1973), p.156. 26 Cf. Chapter III. 27 Forman (1973), p.153. 28 Cf. Siegmund-Schultze (1997). 29 Cf. Siegmund-Schultze (1982). 30 Cf. Menger (1994), p.143ff. and Szaniawski (ed., 1989). 31 Cf. Blaschke (1933) about his experiences in America and his somewhat condescending atti­ tude towards science abroad. 32 R.G.D.Richardson Papers, Brown University Archives, Box Correspondence 1933 (German- Jewish Situation), f.: H.Bohr, Richardson to Bohr, June 26, 1934. 33 Kohler (1991), p.135. 34 For instance the founding of the University of Chicago in the 1890s by Rockefeller. 35 Kiger (1954), p.24. 36 Karl/Katz (1987), p.6. 37 See e.g. Aaserud (1990), Kohler (1991), Coben (1976). 38 Cf. Dupree (1957). In sciences of a more applied nature than mathematics the federal support came earlier. 39 Cf. Picard (1999) and Gemelli/Picard/Schneider (eds., 1999). 40 Nielsen (1972), p.14, reports that the privileged support by the foundations of the mostly pri­ vate American universities of the so-called "Ivy League" caused criticism from the American public until the 1960s. 41 W.E.Tisdale (New York) to mathematician E.Cartan (Paris) on 6 December 1932, with respect to an applicant from India, Kosambi. (Thullen Papers). Probably D.D.Kosambi (1907-1966). Cf. also Beaulieu (1989), p.119, where an equally unsuccessful initiative of 1931 by A.Weil in favour of Indian scholars is mentioned. 42 Kohler (1991), p.145/46, on the director of the Paris office of the IEB. More on Trowbridge, another key figure in this book, in chapter III. 43 Most visible was the non-participation of the U.S. in the LEAGUE OF NATIONS which had been partly initiated by the Americans, especially President W.Wilson. 44 Kohler (1985), pp.94/95. 45 RAC, IEB 1.2., box 33, f.470, 5pp., pp.3-5. University of Paris. Mathematical and Physical Institute. 46 Cf. Siegmund-Schultze (1997), p.162. 47 RAC, IEB 1.1., box 8, folder 110. Wallace Lund to W.Rose (10 March 1927). 48 Quoted from Erichsen (1994), p.56. The addressee was William Beveridge, name of sender unknown. 49 Kohler (1991), p.2. 50 Kohler (1991), p.147. 51 Cf. in this respect Kevles (1971) on American physicists and astronomers R.A.Millikan and G.E.Hale. 52 Cf. Appendix 7. 53 Cf. Siegmund-Schultze (1997). 54 Cf. Rowe (1986), Schappacher (1987), Tollmien (1987). Notes 223 55 Kevles (1971), p.192. 56 Coben (1976), p.230. 57 Kohler (1985), p. 79. 58 Cf. Tobey (1971). 59 Kohler (1985), p.133. 60 Ibid., p.137. 61 RAC, IEB, Annual Report 1925-1926, p. 11 (printed). 62 RAC, Weaver Diary 3 (1935), p.98. Interview Warren Weaver in Madison, Wisconsin, with M.H.lngraham, July 13, 1935. 63 See Veblen's letter to S.Flexner below in 11.3. 64 Assmus (1993), p.169. See also chapter IV. 65 See below and excursus in chapter IV. 66 Assmus (1993), p.166. Figures for the IEB, which increased the opportunities, and for mathe- matics are missing here. 67 Kohler(1991),p.147. 68 Cf. Siegmund-Schultze (1998), esp. the chapter on early emigration, pp.28ff. 69 RAC, Rose 905, Log of Journey, p.24. 70 RAC, Rose 905, Log of Journey, p.101. 71 ETH, Hermann Weyl Papers, Weyl to W.Rose, 21 February 1925, copy German. 12 Cf. Siegmund-Schultze (1997). 73 Among the "envois" were American mathematicians O.Veblen (Princeton) and F.D.Murnaghan (Baltimore). Cf. Siegmund-Schultze (1998), esp.chapter 3. 74 One has to differentiate between the "Memorandum", which is a concise report that comprises pages 107 to 114 in the Minutes of the IEB, and Rose's much more detailed "Log of Journey" which has 235 typewritten pages (+ appendix) (= RAC, Log Rose 905). 75 RAC, Minutes ofIEB, 26 May 1924, p.l13/14. 76 Kohler (1991), p.158/59. 77 RAC, Minutes IEB, 26 May 1924, p.l13. 78 Ibid. p.107. 79 For a systematic account of Rockefeller philanthropy's relations to Russia viz. the Soviet Un- ion see Kozhevnikov (1993). See also chapter IV.7. 80 RAC, Rose 905, Log of Journey, p.80. 81 Kozhevnikov (1993), p.l01. 82 RAC, Minutes IEB, Rose: Memo on trip to Europe, 26 May, 1926, p.l09. 83 Cf. Butler (1992). 84 RAC, Minutes IEB, Rose: Memo on trip to Europe, 26 May, 1926, p.l09. 85 RAC, IEB 1.1., Box 8, folder 110. 86 Cf. Picard (1999). 87 RAC, IEB 1.1., Box 8, f.ll0. 88 Ibid. 89 Ibid. Birkhoffto Rose, November 19,1923. 90 Weyl was of course highly regarded by Birkhoff but not suggested to Rose, obviously because of his German citizenship. 91 RAC, Rose 905, Log, p.107. 92 RAC, Minutes ofIEB, p.ll O. 224 Notes 93 Zierold (1968), p.103, mentions support by the Rockefeller Foundation particularly in provid­ ing medical literature in Germany through the NOTGEMEINSCHAFT DER DEUTSCHEN WISSENSCHAFT (Emergency Fund) since 1923. 94 RAC, Trowlog I (1925), p.122. Trowbridge on negotiations in Rome on June 6, 1925. 95 On A.T.'s contacts with Volterra cf. Paoloni (2000). 96 RAC, Trowlog I (1925), pp.146~ 151, Copenhagen, September 26th, 1925: "Long talk on gen­ eral scientific matters between A.T. the two Bohrs, Hardy and Norlund: Publications .... All agreed that help to Italian periodicals would be well received by the mathematical confraternity." (p.148). 97 Ibid. Similar requests for literature came from France. Cf. Beaulieu (1989), chap.1. 98 RAC, Trowlog I (1925), p.77. Trowbridge on a discussion with V. Volterra in Madrid, April 24th, 1925. 99 RAC, Trowlog I (1925), p. 123. Rome, June 6th, 1925. 100 RAC, Trowlog 2 (1926), p.37. The support is also mentioned in Birkhoffs report, Appendix 7. 101 Trowlog 2 (1926), p.l79. 102 Ibid. Occasional help for French libraries, which were in a poor state during the 1920s, is mentioned by Beaulieu (1989), pp.53/54. 103 Cf. Siegmund-Schultze (1997), p.l44. 104 RAC, RF, 1.1.,200 D, box 125, f. 1541, Mason to L.Ph. Eisenhart, January 18, 1932. 105 Cf. Siegmund-Schultze (1994). 106 RAC, Weaver Diary I (1932), p.29. Warren Weaver on a discussion with American mathema- ticians on March 26, 1932. 107 Ibid. 108 RAC, Rose Log 905, pp.24/25. 109 Ibid., p.232. 110 RAC, Minutes ofIEB, May 26,1924, p.169. III RAC, IEB 1.1., box 8, f.11 O. Birkhoffto Rose, March 25, 1925. 112 RAC, Minutes IEB, p.500. 113 RAC, Minutes IEB, p.500, alluding to a letter from Birkhoff of May 12, 1925.
Recommended publications
  • Journal Für Die Reine Und Angewandte Mathematik
    BAND 771 · FeBRUAR 2021 Journal für die reine und angewandte Mathematik (Crelles Journal) GEGRÜNDET 1826 VON August Leopold Crelle FORTGEFÜHRT VON Carl Wilhelm Borchardt ∙ Karl Weierstrass ∙ Leopold Kronecker Lazarus Fuchs ∙ Kurt Hensel ∙ Ludwig Schlesinger ∙ Helmut Hasse Hans Rohrbach ∙ Martin Kneser ∙ Peter Roquette GEGENWÄRTIG HERAUSGEGEBEN VON Tobias H. Colding, Cambridge MA ∙ Jun-Muk Hwang, Seoul Daniel Huybrechts, Bonn ∙ Rainer Weissauer, Heidelberg Geordie Williamson, Sydney JOURNAL FÜR DIE REINE UND ANGEWANDTE MATHEMATIK (CRELLES JOURNAL) GEGRÜNDET 1826 VON August Leopold Crelle FORTGEFÜHRT VON August Leopold Crelle (1826–1855) Peter Roquette (1977–1998) Carl Wilhelm Borchardt (1857–1881) Samuel J. Patterson (1982–1994) Karl Weierstrass (1881–1888) Michael Schneider (1984–1995) Leopold Kronecker (1881–1892) Simon Donaldson (1986–2004) Lazarus Fuchs (1892–1902) Karl Rubin (1994–2001) Kurt Hensel (1903–1936) Joachim Cuntz (1994–2017) Ludwig Schlesinger (1929–1933) David Masser (1995–2004) Helmut Hasse (1929–1980) Gerhard Huisken (1995–2008) Hans Rohrbach (1952–1977) Eckart Viehweg (1996–2009) Otto Forster (1977–1984) Wulf-Dieter Geyer (1998–2001) Martin Kneser (1977–1991) Yuri I. Manin (2002–2008) Willi Jäger (1977–1994) Paul Vojta (2004–2011) Horst Leptin (1977–1995) Marc Levine (2009–2012) GEGENWÄRTIG HERAUSGEGEBEN VON Tobias H. Colding Jun-Muk Hwang Daniel Huybrechts Rainer Weissauer Geordie Williamson AUSGABEDATUM DES BANDES 771 Februar 2021 CONTENTS G. Tian, G. Xu, Virtual cycles of gauged Witten equation . 1 G. Faltings, Arakelov geometry on degenerating curves . .. 65 P. Lu, J. Zhou, Ancient solutions for Andrews’ hypersurface flow . 85 S. Huang, Y. Li, B. Wang, On the regular-convexity of Ricci shrinker limit spaces . 99 T. Darvas, E.
    [Show full text]
  • Journal Für Die Reine Und Angewandte Mathematik
    BAND 776 · juLi 2021 Journal für die reine und angewandte Mathematik (Crelles Journal) GEGRÜNDET 1826 VON August Leopold Crelle FORTGEFÜHRT VON Carl Wilhelm Borchardt ∙ Karl Weierstrass ∙ Leopold Kronecker Lazarus Fuchs ∙ Kurt Hensel ∙ Ludwig Schlesinger ∙ Helmut Hasse Hans Rohrbach ∙ Martin Kneser ∙ Peter Roquette GEGENWÄRTIG HERAUSGEGEBEN VON Tobias H. Colding, Cambridge MA ∙ Daniel Huybrechts, Bonn Jun-Muk Hwang, Seoul ∙ Jakob Stix, Frankfurt am Main Rainer Weissauer, Heidelberg ∙ Geordie Williamson, Sydney JOURNAL FÜR DIE REINE UND ANGEWANDTE MATHEMATIK (CRELLES JOURNAL) GEGRÜNDET 1826 VON August Leopold Crelle FORTGEFÜHRT VON August Leopold Crelle (1826–1855) Peter Roquette (1977–1998) Carl Wilhelm Borchardt (1857–1881) Samuel J. Patterson (1982–1994) Karl Weierstrass (1881–1888) Michael Schneider (1984–1995) Leopold Kronecker (1881–1892) Simon Donaldson (1986–2004) Lazarus Fuchs (1892–1902) Karl Rubin (1994–2001) Kurt Hensel (1903–1936) Joachim Cuntz (1994–2017) Ludwig Schlesinger (1929–1933) David Masser (1995–2004) Helmut Hasse (1929–1980) Gerhard Huisken (1995–2008) Hans Rohrbach (1952–1977) Eckart Viehweg (1996–2009) Otto Forster (1977–1984) Wulf-Dieter Geyer (1998–2001) Martin Kneser (1977–1991) Yuri I. Manin (2002–2008) Willi Jäger (1977–1994) Paul Vojta (2004–2011) Horst Leptin (1977–1995) Marc Levine (2009–2012) GEGENWÄRTIG HERAUSGEGEBEN VON Tobias H. Colding Daniel Huybrechts Jun-Muk Hwang Jakob Stix Rainer Weissauer Geordie Williamson AUSGABEDATUM DES BANDES 776 Juli 2021 CONTENTS C. Song, Local existence and uniqueness of skew mean curvature flow . 1 H. Hu, J.-B. Teyssier, Characteristic cycle and wild ramification for nearby cycles of étale sheaves . 27 P. Baki´c , M. Hanzer, Theta correspondence for p-adic dual pairs of type I .
    [Show full text]
  • Remarkable Hungarian Mathematicians at the Cluj University
    Stud. Univ. Babe¸s-Bolyai Math. 59(2014), No. 4, 419{433 Remarkable Hungarian mathematicians at the Cluj University Ferenc Szenkovits Abstract. We provide a brief overview of the life and activity of the most remark- able Hungarian mathematicians who worked at the University of Cluj, from the beginnings to the present day. Mathematics Subject Classification (2010): 01A55, 01A60, 01A73. Keywords: University of Cluj, Hungarian mathematicians. 1. Introduction The first higher education institution in Cluj (Kolozsv´ar,Claudiopolis), a Jesuit colleage with three faculties: Theology, Philosophy and Law, was set up on May 12, 1581 by Stephen B´athory, the prince of Transylvania and king of Poland. Over the centuries astronomy and mathematics had an important role between the subjects taught at this catholic school. The most remarkable professors of astron- omy and mathematics of this school were Mikl´osJ´anosi(1700{1741) and Maximilian Hell (1720{1792). J´anosiand Hell published the first mathematical textbooks in Cluj: Mikl´osJ´anosi: Trigonometria plana et sphaerica cum selectis ex geometria et astronomia problematibus, sinuum canonibus et propositionibus ex Euclide magis nec- essariis. Claudiopoli, 1737. Maximilian Hell: Compendia varia praxesque omnium operationum arithmeti- carum. Claudiopoli, 1755. Elementa mathematicae naturalis philosophiae ancillantia ad praefixam in scho- lis normam concinnata. Pars I., Elementa arithmeticae numericae et litteralis seu algebrae. Claudiopoli, 1755. Exercitationum mathematicarum Partes Tres. Claudiopoli. 1760. A new era begins in the Cluj university education on October 12, 1872, when the emperor Franz Joseph I of Austria approves a decision of the Hungarian Parliament for setting up the University of Cluj. This Hungarian university was between the This paper was presented at the 8th Conference on History of Mathematics & Teaching of Mathe- matics, Cluj-Napoca, May 21-25, 2014.
    [Show full text]
  • Schwermer the Shaping of Arithmetic After CF Gauss's Disquisitiones
    Goldstein · Schappacher · Schwermer The Shaping of Arithmetic after C. F. Gauss’s Disquisitiones Arithmeticae Catherine Goldstein Norbert Schappacher Joachim Schwermer Editors The Shaping of Arithmetic after C. F. Gauss’s Disquisitiones Arithmeticae With 36 Figures 123 Catherine Goldstein Joachim Schwermer Histoire des sciences mathématiques Fakultät für Mathematik Institut de mathématiques de Jussieu Universität Wien 175 rue du Chevaleret Nordbergstraße 15 75013 Paris, France 1090 Wien, Austria E-mail: [email protected] E-mail: [email protected] Norbert Schappacher UFR de mathématique et d’informatique / IRMA 7rueRenéDescartes 67084 Strasbourg Cedex, France E-mail: [email protected] Library of Congress Control Number: 2006932291 ISBN 978-3-540-20441-1 Springer Berlin Heidelberg New York This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable for prosecution under the German Copyright Law. Springer is a part of Springer Science+Business Media springer.com © Springer-Verlag Berlin Heidelberg 2007 The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.
    [Show full text]
  • Product Integration. Its History and Applications
    Product integration. Its history and applications Lebesgue product integration In: Antonín Slavík (author): Product integration. Its history and applications. (English). Praha: Matfyzpress, 2007. pp. 65–98. Persistent URL: http://dml.cz/dmlcz/401134 Terms of use: © Antonín Slavík Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use. This document has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://dml.cz Chapter 3 Lebesgue product integration While it is sufficient to use the Riemann integral in applications, it is rather un- satisfactory from the viewpoint of theoretical mathematics. The generalization of Riemann integral due to Henri Lebesgue is based on the notion of measure. The problem of extending Volterra’s definition of product integral in a similar way has been solved by Ludwig Schlesinger. Volterra’s and Schlesinger’s works differ in yet another way: Volterra did not worry about using infinitesimal quantities, and it is not always easy to translate his ideas into the language of modern mathematics. Schlesinger’s proofs are rather precise and can be read without greater effort except for occasionally strange notation. The foundations of mathematical analysis in 1930’s were firmer than in 1887; moreover, Schlesinger inclined towards theoretical mathematics, as opposed to Volterra, who always kept applications in mind. Ludwig Schlesinger1 Schlesinger’s biographies can be found in [Lex, McT]: Ludwig (Lajos in Hungarian) Schlesinger was born on the 1st November 1864 in a Hungarian town Trnava (Nagys- zombat), which now belongs to Slovakia.
    [Show full text]
  • Goldstein · Schappacher · Schwermer the Shaping of Arithmetic After C. F
    Goldstein · Schappacher · Schwermer The Shaping of Arithmetic after C. F. Gauss’s Disquisitiones Arithmeticae Catherine Goldstein Norbert Schappacher Joachim Schwermer Editors The Shaping of Arithmetic after C. F. Gauss’s Disquisitiones Arithmeticae With 36 Figures 123 Catherine Goldstein Joachim Schwermer Histoire des sciences mathématiques Fakultät für Mathematik Institut de mathématiques de Jussieu Universität Wien 175 rue du Chevaleret Nordbergstraße 15 75013 Paris, France 1090 Wien, Austria E-mail: [email protected] E-mail: [email protected] Norbert Schappacher UFR de mathématique et d’informatique / IRMA 7rueRenéDescartes 67084 Strasbourg Cedex, France E-mail: [email protected] Library of Congress Control Number: 2006932291 ISBN 978-3-540-20441-1 Springer Berlin Heidelberg New York This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable for prosecution under the German Copyright Law. Springer is a part of Springer Science+Business Media springer.com © Springer-Verlag Berlin Heidelberg 2007 The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.
    [Show full text]
  • Journal Für Die Reine Und Angewandte Mathematik
    BAND 777 · AUGUST 2021 Journal für die reine und angewandte Mathematik (Crelles Journal) GEGRÜNDET 1826 VON August Leopold Crelle FORTGEFÜHRT VON Carl Wilhelm Borchardt ∙ Karl Weierstrass ∙ Leopold Kronecker Lazarus Fuchs ∙ Kurt Hensel ∙ Ludwig Schlesinger ∙ Helmut Hasse Hans Rohrbach ∙ Martin Kneser ∙ Peter Roquette GEGENWÄRTIG HERAUSGEGEBEN VON Tobias H. Colding, Cambridge MA ∙ Daniel Huybrechts, Bonn Jun-Muk Hwang, Seoul ∙ Jakob Stix, Frankfurt am Main Rainer Weissauer, Heidelberg ∙ Geordie Williamson, Sydney JOURNAL FÜR DIE REINE UND ANGEWANDTE MATHEMATIK (CRELLES JOURNAL) GEGRÜNDET 1826 VON August Leopold Crelle FORTGEFÜHRT VON August Leopold Crelle (1826–1855) Peter Roquette (1977–1998) Carl Wilhelm Borchardt (1857–1881) Samuel J. Patterson (1982–1994) Karl Weierstrass (1881–1888) Michael Schneider (1984–1995) Leopold Kronecker (1881–1892) Simon Donaldson (1986–2004) Lazarus Fuchs (1892–1902) Karl Rubin (1994–2001) Kurt Hensel (1903–1936) Joachim Cuntz (1994–2017) Ludwig Schlesinger (1929–1933) David Masser (1995–2004) Helmut Hasse (1929–1980) Gerhard Huisken (1995–2008) Hans Rohrbach (1952–1977) Eckart Viehweg (1996–2009) Otto Forster (1977–1984) Wulf-Dieter Geyer (1998–2001) Martin Kneser (1977–1991) Yuri I. Manin (2002–2008) Willi Jäger (1977–1994) Paul Vojta (2004–2011) Horst Leptin (1977–1995) Marc Levine (2009–2012) GEGENWÄRTIG HERAUSGEGEBEN VON Tobias H. Colding Daniel Huybrechts Jun-Muk Hwang Jakob Stix Rainer Weissauer Geordie Williamson AUSGABEDATUM DES BANDES 777 August 2021 CONTENTS V. Apostolov, J. Streets, The nondegenerate generalized Kähler Calabi–Yau problem . 1 S. Leslie, G. Lonergan, Parity sheaves and Smith theory . 49 C. T. McMullen, Modular symbols for Teichmüller curves . 89 J. Schwermer, Eisenstein series and the top degree cohomology of arithmetic subgroups of SLn / .
    [Show full text]
  • Journal Für Die Reine Und Angewandte Mathematik
    BAND 755 · OKTOBER 2019 Journal für die reine und angewandte Mathematik (Crelles Journal) GEGRÜNDET 1826 VON August Leopold Crelle FORTGEFÜHRT VON Carl Wilhelm Borchardt ∙ Karl Weierstrass ∙ Leopold Kronecker Lazarus Fuchs ∙ Kurt Hensel ∙ Ludwig Schlesinger ∙ Helmut Hasse Hans Rohrbach ∙ Martin Kneser ∙ Peter Roquette GEGENWÄRTIG HERAUSGEGEBEN VON Tobias H. Colding, Cambridge MA ∙ Jun-Muk Hwang, Seoul Daniel Huybrechts, Bonn ∙ Rainer Weissauer, Heidelberg Geordie Williamson, Sydney JOURNAL FÜR DIE REINE UND ANGEWANDTE MATHEMATIK (CRELLES JOURNAL) GEGRÜNDET 1826 VON August Leopold Crelle FORTGEFÜHRT VON August Leopold Crelle (1826–1855) Peter Roquette (1977–1998) Carl Wilhelm Borchardt (1857–1881) Samuel J. Patterson (1982–1994) Karl Weierstrass (1881–1888) Michael Schneider (1984–1995) Leopold Kronecker (1881–1892) Simon Donaldson (1986–2004) Lazarus Fuchs (1892–1902) Karl Rubin (1994–2001) Kurt Hensel (1903–1936) Joachim Cuntz (1994–2017) Ludwig Schlesinger (1929–1933) David Masser (1995–2004) Helmut Hasse (1929–1980) Gerhard Huisken (1995–2008) Hans Rohrbach (1952–1977) Eckart Viehweg (1996–2009) Otto Forster (1977–1984) Wulf-Dieter Geyer (1998–2001) Martin Kneser (1977–1991) Yuri I. Manin (2002–2008) Willi Jäger (1977–1994) Paul Vojta (2004–2011) Horst Leptin (1977–1995) Marc Levine (2009–2012) GEGENWÄRTIG HERAUSGEGEBEN VON Tobias H. Colding Jun-Muk Hwang Daniel Huybrechts Rainer Weissauer Geordie Williamson AUSGABEDATUM DES BANDES 755 Oktober 2019 CONTENTS M. Melo, A. Rapagnetta, F. Viviani, – . 1 V. Tosatti, B. Weinkove, Hermitian metrics, (n − 1, n − 1) forms and Monge–Ampère equations . 67 C. Martínez, The number of maximalFourier torsion cosetsMukai in and subvarieties autoduality of torifor compactified . Jacobians.. I. 103 N. Buskin, Every rational Hodge isometry between two K3 surfaces is algebraic .
    [Show full text]