Simple, Fast and Safe Manual Memory Management Piyus Kedia Manuel Costa Matthew Aaron Blankstein ∗ Microsoft Research, India Parkinson Kapil Vaswani Princeton University, USA
[email protected] Dimitrios Vytiniotis
[email protected] Microsoft Research, UK manuelc,mattpark,kapilv,
[email protected] Abstract cause the latter are more efficient. As a consequence, many Safe programming languages are readily available, but many applications continue to have exploitable memory safety applications continue to be written in unsafe languages be- bugs. One of the main reasons behind the higher efficiency cause of efficiency. As a consequence, many applications of unsafe languages is that they typically use manual mem- continue to have exploitable memory safety bugs. Since ory management, which has been shown to be more efficient garbage collection is a major source of inefficiency in the than garbage collection [19, 21, 24, 33, 34, 45]. Thus, replac- implementation of safe languages, replacing it with safe ing garbage collection with manual memory management in manual memory management would be an important step safe languages would be an important step towards solv- towards solving this problem. ing this problem. The challenge is how to implement man- Previous approaches to safe manual memory manage- ual memory management efficiently, without compromising ment use programming models based on regions, unique safety. pointers, borrowing of references, and ownership types. We Previous approaches to safe manual memory manage- propose a much simpler programming model that does not ment use programming models based on regions [20, 40], require any of these concepts. Starting from the design of an unique pointers [22, 38], borrowing of references [11, 12, imperative type safe language (like Java or C#), we just add 42], and ownership types [10, 12, 13].