Toll-Like Receptors

Total Page:16

File Type:pdf, Size:1020Kb

Toll-Like Receptors Toll-like Receptors TLR2/TLR6 TLR1/TLR2 TLR5 TLR4 TLR10 CD14 CD14 CD36 CD14 TIRAP TIRAP MD-2 MyD88 TIRAP MyD88 MyD88 TRAM MyD88 MyD88 TRIF Endosome TLR7 RIP1 IRAK4 IRAK1/2 TLR8 TLR9 TLR3 TRAF-6 TAB1/2 TAK1 TRAF-6 MyD88 MyD88 TRIF MyD88 TRAF-3 TRAF-3 TANK IKK IRF7 MKK RIP1 TBK1 Proteasome IKKε TAB1/2 IRF7 Homodimer TAK1 TRAF-6 TRAF-3 IκB Proteasome TANK IKK IκB IRF3 NFκB JNK IκB MKK p38 TBK1 IKKε IκB NFκB p38 JNK IRF7 IRF3 Homodimer IRF3 IRF7 Homodimer IRF3 Homodimer Toll-like Receptors Toll-like receptors are a family of type I transmembrane pattern recognition receptors (PRRs) that sense invading pathogens or endogenous damage signals and initiate the innate and adaptive immune response. There are ten functional TLRs in human (TLR1–10) and twelve in mice (TLR1−9, 11−13). Various combinations of TLRs are expressed by different subsets of immune and non-immune cell types such as monocytes, macrophages, dendritic cells, neutrophils, B cells, T cells, fibroblasts, endothelial cells, and epithelial cells. Of the human TLRs, TLR1, 2, 4, 5, 6, and 10 are expressed on the cell surface and primarily recognize microbial membrane and/or cell wall components, while TLR3, 7, 8, and 9 are expressed in the membranes of endolysosomal compartments and recognize nucleic acids. TLRs have a variable number of ligand- sensing, leucine-rich repeats (LRR) at their N-terminal ends and a cytoplasmic Toll/IL-1 R (TIR) domain. The TIR domain mediates interactions between TLRs and adaptor proteins involved in regulating TLR signaling including MyD88, TRIF, TRAM, and TIRAP/MAL. Signaling pathways activated downstream of these adaptor molecules promote the expression of pro-inflammatory cytokines, chemokines, and type I and type III interferons. Although TLRs provide protection against a wide variety of pathogens, inappropriate or unregulated activation of TLR signaling can lead to chronic inflammatory and autoimmune disorders. TLR2/TLR6 TLR1/TLR2 TLR5 TLR4 TLR10 Toll-like Receptors (TLRs) CD14 CD14 CD36 TLRs Agonist(s) Source CD14 TIRAP TIRAP MD-2 MyD88 TLR1/ TIRAP MyD88 MyD88 Triacyl lipopeptides Bacteria TRAM TLR2 MyD88 MyD88 TRIF Multiple Lipoproteins Pathogens Peptidoglycan (PGN) Bacteria Endosome TLR7 Porins Bacteria RIP1 IRAK4 IRAK1/2 TLR8 TLR9 TLR3 TLR2 Zymosan Fungi b-Glycan Fungi TRAF-6 TAB1/2 GPI-mucin Protozoa TAK1 TRIF TRAF-6 MyD88 MyD88 Envelope MyD88 Viruses glycoproteins TRAF-3 TRAF-3 TANK TLR2/ Diacyl lipopeptides Bacteria IKK TLR6 IRF7 Lipoteichoic acid (LTA) Bacteria MKK RIP1 Double-stranded RNA Viruses TBK1 Proteasome IKKε TAB1/2 TLR3 Synthetic analog IRF7 Homodimer TAK1 TRAF-6 Poly (I:C) of double- TRAF-3 stranded RNA IκB Proteasome TANK Lipopolysaccharide Bacteria IKK (LPS) IκB IRF3 NFκB Glycoinositol- JNK IκB Protozoa MKK phospholipids p38 TBK1 IKKε TLR4 IκB Envelope NFκB Viruses glycoproteins p38 Host-derived HMGB1 JNK IRF7 Endogenous and HSPs IRF3 Homodimer IRF3 TLR5 Flagellin Bacteria IRF7 Homodimer IRF3 Homodimer TLR7 Single-stranded RNA Viruses TLR8 Single-stranded RNA Viruses Bacteria Unmethylated CpG Protozoa Domain Key TLR9 DNA Leucine-Rich Repeat Viruses Domain (LRR) IRF3 NFκB AP-1 IRF7 NFκB AP-1 IRF3 or IRF7 Mitochondrial DNA Endogenous Toll/IL-1 Receptor Domain (TIR) Pro-inflammatory Cytokines: TLR10 Unknown Unknown Death Domain (DD) IL-1β, TNF-α, IL-6, IL-8, IL-18 Kinase Domain Type I or Type III IFN & IFN-inducible genes © 2012 R&D Systems, Inc. For more information, please visit | rndsystems.com/TLR Recombinant TLR Proteins from R&D Systems R&D Systems offers the widest selection of recombinant human and mouse TLR proteins for investigating the ligand-binding and biochemical properties of different toll-like receptors. Stringent production and purification standards ensure that R&D Systems® proteins will provide researchers with industry-leading bioactivity and lot-to-lot consistency. TLR3 (µg/mL) 1.5 0.001 0.01 0.1 1 10 100 1.5 ) 1 1 (Mean O.D. IL-8 Secretion ) ) 1.3 450/540 450/540 0. 0. 1 450/540 Poly (I:C) 1 0.6 TLR 0.6 0. 0. 0. 0. Secretion (O.D. Secretion α 450/540 0. 0. (O.D. IL-8 Secretion 0. TNF- ackground IL-8 Secretion (Mean O.D. Secretion IL-8 ackground 0 0 ) 0 0. 0.001 0.01 0.1 1 10 100 0.001 0.01 0.1 1 10 100 0.01 0.1 1 10 100 1000 TLR4/MD2 (µg/mL) Poly (I:C) (µg/mL) TLR-5 (ng/mL) Recombinant Human TLR4/MD-2 Complex Blocks Recombinant Human TLR3 Inhibits Poly (I:C)- Recombinant Mouse TLR5 Blocks Flagellin- LPS-Induced TNF-α Secretion by PMA- Induced IL-8 Secretion by TLR3-transfected Induced IL-8 Secretion by HT-29 Cells. The HT-29 Differentiated U937 Cells. The U937 human HEK293 Cells. The HEK293 human embryonic human colon adenocarcinoma cell line was treated histiocytic lymphoma cell line was differentiated kidney cell line was transfected with TLR3 and with Flagellin and the indicated concentrations of with PMA and treated with 10 ng/mL treated with increasing concentrations of Poly (I:C) Recombinant Mouse TLR5 Fc Chimera lipopolysaccharide (LPS) that had been pre- (Tocris, Catalog # 4287). CXCL8/IL-8 secretion was (R&D Systems, Catalog # 7915-TR). CXCL8/IL-8 incubated for 1 hour with the indicated measured using the Human CXCL8/IL-8 Quantikine® secretion was measured using the Human CXCL8/ concentrations of Recombinant Human TLR4/MD-2 ELISA Kit (R&D Systems, Catalog # D8000C; orange IL-8 Quantikine® ELISA Kit (R&D Systems, Catalog # Complex (R&D Systems, Catalog # 3146-TM). line). The stimulatory effect induced by 10 µg/mL of D8000C). The ED50 for this effect is typically Following 20 hours of incubation with the LPS- poly (I:C) was inhibited by treating the cells with 4−24 ng/mL. TLR4/MD-2 complex, TNF-a secretion was increasing concentrations of Recombinant Human ® measured using the Human TNF-α Quantikine TLR3 (R&D Systems, Catalog # 1487-TR; blue line). ELISA Kit (R&D Systems, Catalog # DTA00C). The ED50 for this effect is typically 5-10 µg/mL. Recombinant TLR Proteins Molecule Species Source Catalog # Human NS0 1484-TR TLR1 Mouse NS0 1476-TR Human NS0 2616-TR TLR2 Mouse Sf21 (baculovirus) 1530-TR Human NS0 1487-TR TLR3 Mouse NS0 3005-TR TLR4 Human NS0 1478-TR TLR4/MD-2 Human NS0 3146-TM TLR5 Mouse CHO 7915-TR Human CHO 7755-TR TLR6 Mouse Sf21 (stably transfected) 1533-TR TLR9 Mouse CHO 7960-TR TLR10 Human CHO 6619-TR TLR11 Mouse CHO 7640-TR TLR12 Mouse CHO 8086-TR For more information, please visit | rndsystems.com/proteins Tocris® Small Molecules for TLR Research Tocris is the leading supplier of novel and exclusive tools for life science research. Their portfolio includes a collection of TLR agonists and inhibitors that can be used to characterize the signaling pathways downstream of specific toll-like receptors and determine the effects of TLR signaling on the immune response. Tocris Small Molecules for TLR Research Small Molecule Description Catalog # CU-T12-9 Potent TLR1/2 agonist 5414 Pam3CSK4 TLR1/2 agonist 4633 Pam3CSK4 Biotin Biotinylated Pam3CSK4 4636 CU CPT 22 Selective TLR1/2 inhibitor 4884 Pam2CSK4 TLR2/6 agonist 4637 Pam2CSK4 Biotin Biotinylated Pam2CSK4 4638 Poly(I:C) TLR3 agonist 4287 CU CPT 4a Selective TLR3 inhibitor 4883 C34 TLR4 inhibitor 5373 DSR 6434 Potent TLR7 agonist 4809 Imiquimod TLR7 agonist 3700 Resiquimod TLR7 agonist 4536 RWJ 21757 TLR7 agonist 2719 Hydroxychloroquine sulfate TLR9 inhibitor 5648 For more information, please visit | tocris.com Immunology Literature from Tocris: Immunology Product Listing A collection of over 190 products for immunology research, including research tools for studying chemokine and cytokine signaling, chemotaxis, the complement system, immune cell signaling and inflammation. Multiple Sclerosis Poster Multiple sclerosis (MS) is an autoimmune disease characterized by focal demyelination and axon degeneration. Created by Alastair Wilkins and Richard Ibitoye of University of Bristol, Multiple Sclerosis: from Neurobiology to Therapy Dr R. Ibitoye, Dr A. Wilkins Institute of Clinical Neurosciences, University of Bristol, Learning and Research Building, BS10 5NB, UK. www.tocris.com Multiple sclerosis (MS) is an autoimmune, acquired T cell mediated neuro-inflammatory disorder characterized by focal demyelination in the central nervous system (CNS) and axonal degeneration. Prevalence varies by region, but in the UK prevalence is between 100 and 300 per 100,000 people. The disease usually presents between the second and sixth decades of life and has a female to male ratio of 2:1. In most there is an episodic (relapsing-remitting) course, with focal neurological symptoms and signs developing over hours to days and improving across weeks to months. With time, the frequency of relapses decreases and there is a tendency to accrue progressive disability. In about 1 in 10 patients the disease is progressive with gradual accrual of disability from onset. Diagnosis is based on a clinical assessment, brain and spinal cord magnetic resonance imaging (MRI) and can be supported by cerebrospinal fluid analysis. There are a broad range of immunomodulatory treatments that reduce relapse rates (Table below), but developing treatments effective in preventing long-term disability remains a challenge. Neurobiology of Demyelination and Axon Degeneration Products available from Tocris α4β1 Integrins this poster summarizes the neurobiology and current BIO 1211, BIO 5192, LDV FITC α4β1 Integrin α4 integrin receptor is involved in ASIC1 translocation through the blood brain Complement Amiloride, Psalmotoxin 1 barrier and is the target of natalizumab Cytokines ASK1 Glutamate T cell MSC 2032964A, TC ASK 10 Proteases Ca2+-Activated Potassium Channels Autoreactive T cells migrate to the TNF-α Apamin, CyPPA, 1-EBIO, NS 309, TRAM 34, CNS, activate B cells and induce a UCL 1684 ROS (Figure 2) Loss of synaptic local inflammation through microglia transmission Cannabinoid Receptors Redistribution of ion channels ACEA, Arvanil, GP 1a, JWH 133, (R)-(+)- along demyelinated neurons Methanandamide, WIN 55,212-2 CNS inflammation, demyelination and axonal results in an ionic imbalance, Chemokine Receptors degeneration are the pathological hallmarks of MS.
Recommended publications
  • TLR3-Dependent Activation of TLR2 Endogenous Ligands Via the Myd88 Signaling Pathway Augments the Innate Immune Response
    cells Article TLR3-Dependent Activation of TLR2 Endogenous Ligands via the MyD88 Signaling Pathway Augments the Innate Immune Response 1 2, 1 3 Hellen S. Teixeira , Jiawei Zhao y, Ethan Kazmierski , Denis F. Kinane and Manjunatha R. Benakanakere 2,* 1 Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19004, USA; [email protected] (H.S.T.); [email protected] (E.K.) 2 Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19004, USA; [email protected] 3 Periodontology Department, Bern Dental School, University of Bern, 3012 Bern, Switzerland; [email protected] * Correspondence: [email protected] Present address: Department of Pathology, Wayne State University School of Medicine, y 541 East Canfield Ave., Scott Hall 9215, Detroit, MI 48201, USA. Received: 30 June 2020; Accepted: 12 August 2020; Published: 17 August 2020 Abstract: The role of the adaptor molecule MyD88 is thought to be independent of Toll-like receptor 3 (TLR3) signaling. In this report, we demonstrate a previously unknown role of MyD88 in TLR3 signaling in inducing endogenous ligands of TLR2 to elicit innate immune responses. Of the various TLR ligands examined, the TLR3-specific ligand polyinosinic:polycytidylic acid (poly I:C), significantly induced TNF production and the upregulation of other TLR transcripts, in particular, TLR2. Accordingly, TLR3 stimulation also led to a significant upregulation of endogenous TLR2 ligands mainly, HMGB1 and Hsp60. By contrast, the silencing of TLR3 significantly downregulated MyD88 and TLR2 gene expression and pro-inflammatory IL1β, TNF, and IL8 secretion. The silencing of MyD88 similarly led to the downregulation of TLR2, IL1β, TNF and IL8, thus suggesting MyD88 / to somehow act downstream of TLR3.
    [Show full text]
  • Role of Nlrs in the Regulation of Type I Interferon Signaling, Host Defense and Tolerance to Inflammation
    International Journal of Molecular Sciences Review Role of NLRs in the Regulation of Type I Interferon Signaling, Host Defense and Tolerance to Inflammation Ioannis Kienes 1, Tanja Weidl 1, Nora Mirza 1, Mathias Chamaillard 2 and Thomas A. Kufer 1,* 1 Department of Immunology, Institute for Nutritional Medicine, University of Hohenheim, 70599 Stuttgart, Germany; [email protected] (I.K.); [email protected] (T.W.); [email protected] (N.M.) 2 University of Lille, Inserm, U1003, F-59000 Lille, France; [email protected] * Correspondence: [email protected] Abstract: Type I interferon signaling contributes to the development of innate and adaptive immune responses to either viruses, fungi, or bacteria. However, amplitude and timing of the interferon response is of utmost importance for preventing an underwhelming outcome, or tissue damage. While several pathogens evolved strategies for disturbing the quality of interferon signaling, there is growing evidence that this pathway can be regulated by several members of the Nod-like receptor (NLR) family, although the precise mechanism for most of these remains elusive. NLRs consist of a family of about 20 proteins in mammals, which are capable of sensing microbial products as well as endogenous signals related to tissue injury. Here we provide an overview of our current understanding of the function of those NLRs in type I interferon responses with a focus on viral infections. We discuss how NLR-mediated type I interferon regulation can influence the development of auto-immunity and the immune response to infection. Citation: Kienes, I.; Weidl, T.; Mirza, Keywords: NOD-like receptors; Interferons; innate immunity; immune regulation; type I interferon; N.; Chamaillard, M.; Kufer, T.A.
    [Show full text]
  • Nonredundant Roles of TIRAP and Myd88 in Airway Response to Endotoxin, Independent of TRIF, IL-1 and IL-18 Pathways
    Laboratory Investigation (2006) 86, 1126–1135 & 2006 USCAP, Inc All rights reserved 0023-6837/06 $30.00 www.laboratoryinvestigation.org Nonredundant roles of TIRAP and MyD88 in airway response to endotoxin, independent of TRIF, IL-1 and IL-18 pathways Dieudonne´e Togbe1, Gorse Aurore1, Nicolas Noulin1,2, Vale´rie FJ Quesniaux1, Silvia Schnyder-Candrian1, Bruno Schnyder1, Virginie Vasseur1, Shizuo Akira3, Kasper Hoebe4, Bruce Beutler4, Bernhard Ryffel1,* and Isabelle Couillin1,* 1Molecular Immunology and Embryology, CNRS UMR6218, Transgenose Institute, Orleans, France; 2R&D Department, Key-Obs, Orleans, France; 3Department of Host Defense, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan and 4Department of Immunology, Scripps Research Institute, La Jolla, CA, USA Inhaled endotoxins induce an acute inflammatory response in the airways mediated through Toll-like receptor 4 (TLR4) and myeloid differentiation factor 88 (MyD88). However, the relative roles of the TLR4 adaptor proteins TIRAP and TRIF and of the MyD88-dependent IL-1 and IL-18 receptor pathways in this response are unclear. Here, we demonstrate that endotoxin-induced acute bronchoconstriction, vascular damage resulting in protein leak, Th1 cytokine and chemokine secretion and neutrophil recruitment in the airways are abrogated in mice deficient for either TIRAP or MyD88, but not in TRIF deficient mice. The contribution of other TLR-independent, MyD88-dependent signaling pathways was investigated in IL-1R1, IL-18R and caspase-1 (ICE)-deficient mice, which displayed normal airway responses to endotoxin. In conclusion, the TLR4-mediated, bronchoconstric- tion and acute inflammatory lung pathology to inhaled endotoxin critically depend on the expression of both adaptor proteins, TIRAP and MyD88, suggesting cooperative roles, while TRIF, IL-1R1, IL-18R signaling pathways are dispensable.
    [Show full text]
  • Signaling Molecules§ Erin E
    Veterinary Immunology and Immunopathology 112 (2006) 302–308 www.elsevier.com/locate/vetimm Short communication Cloning and radiation hybrid mapping of bovine toll-like receptor-4 (TLR-4) signaling molecules§ Erin E. Connor a, Elizabeth A. Cates a,b, John L. Williams c, Douglas D. Bannerman a,* a Bovine Functional Genomics Laboratory, U.S. Department of Agriculture, Agricultural Research Service, Beltsville, MD 20705, USA b University of Maryland, College Park, MD 20742, USA c Roslin Institute (Edinburgh), Roslin, Midlothian, Scotland, UK Received 17 January 2006; accepted 7 March 2006 Abstract Toll-like receptor (TLR)-4 is a transmembrane receptor for lipopolysaccharide, a highly pro-inflammatory component of the outer membrane of Gram-negative bacteria. To date, molecules of the TLR-4 signaling pathway have not been well characterized in cattle. The goal of this study was to clone and sequence the full-length coding regions of bovine genes involved in TLR-4 signaling including CASP8, IRAK1, LY96 (MD-2), TICAM2, TIRAP, TOLLIP and TRAF 6 and to position these genes, as well as MyD88 and TICAM1, on the bovine genome using radiation hybrid mapping. Results of this work indicate differences with a previously published bovine sequence for LY96 and a predicted sequence in the GenBank database for TIRAP based on the most recent assembly of the bovine genome. In addition, discrepancies between actual and predicted chromosomal map positions based on the Btau_2.0 genome assembly release were identified, although map positions were consistent with predicted locations based on the current bovine-human comparative map. Alignment of the bovine amino acid sequences with human and murine sequences showed a broad range in conservation, from 52 to 93%.
    [Show full text]
  • Galectin-4 Interaction with CD14 Triggers the Differentiation of Monocytes Into Macrophage-Like Cells Via the MAPK Signaling Pathway
    Immune Netw. 2019 Jun;19(3):e17 https://doi.org/10.4110/in.2019.19.e17 pISSN 1598-2629·eISSN 2092-6685 Original Article Galectin-4 Interaction with CD14 Triggers the Differentiation of Monocytes into Macrophage-like Cells via the MAPK Signaling Pathway So-Hee Hong 1,2,3,4,5, Jun-Seop Shin 1,2,3,5, Hyunwoo Chung 1,2,4,5, Chung-Gyu Park 1,2,3,4,5,* 1Xenotransplantation Research Center, Seoul National University College of Medicine, Seoul 03080, Korea 2Institute of Endemic Diseases, Seoul National University College of Medicine, Seoul 03080, Korea 3Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Korea 4Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Korea 5Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul 03080, Korea Received: Jan 28, 2019 ABSTRACT Revised: May 13, 2019 Accepted: May 19, 2019 Galectin-4 (Gal-4) is a β-galactoside-binding protein mostly expressed in the gastrointestinal *Correspondence to tract of animals. Although intensive functional studies have been done for other galectin Chung-Gyu Park isoforms, the immunoregulatory function of Gal-4 still remains ambiguous. Here, we Department of Microbiology and Immunology, Seoul National University College of Medicine, demonstrated that Gal-4 could bind to CD14 on monocytes and induce their differentiation 103 Daehak-ro, Jongno-gu, Seoul 03080, into macrophage-like cells through the MAPK signaling pathway. Gal-4 induced the phenotypic Korea. changes on monocytes by altering the expression of various surface molecules, and induced E-mail: [email protected] functional changes such as increased cytokine production and matrix metalloproteinase expression and reduced phagocytic capacity.
    [Show full text]
  • CD56+ T-Cells in Relation to Cytomegalovirus in Healthy Subjects and Kidney Transplant Patients
    CD56+ T-cells in Relation to Cytomegalovirus in Healthy Subjects and Kidney Transplant Patients Institute of Infection and Global Health Department of Clinical Infection, Microbiology and Immunology Thesis submitted in accordance with the requirements of the University of Liverpool for the degree of Doctor in Philosophy by Mazen Mohammed Almehmadi December 2014 - 1 - Abstract Human T cells expressing CD56 are capable of tumour cell lysis following activation with interleukin-2 but their role in viral immunity has been less well studied. The work described in this thesis aimed to investigate CD56+ T-cells in relation to cytomegalovirus infection in healthy subjects and kidney transplant patients (KTPs). Proportions of CD56+ T cells were found to be highly significantly increased in healthy cytomegalovirus-seropositive (CMV+) compared to cytomegalovirus-seronegative (CMV-) subjects (8.38% ± 0.33 versus 3.29%± 0.33; P < 0.0001). In donor CMV-/recipient CMV- (D-/R-)- KTPs levels of CD56+ T cells were 1.9% ±0.35 versus 5.42% ±1.01 in D+/R- patients and 5.11% ±0.69 in R+ patients (P 0.0247 and < 0.0001 respectively). CD56+ T cells in both healthy CMV+ subjects and KTPs expressed markers of effector memory- RA T-cells (TEMRA) while in healthy CMV- subjects and D-/R- KTPs the phenotype was predominantly that of naïve T-cells. Other surface markers, CD8, CD4, CD58, CD57, CD94 and NKG2C were expressed by a significantly higher proportion of CD56+ T-cells in healthy CMV+ than CMV- subjects. Functional studies showed levels of pro-inflammatory cytokines IFN-γ and TNF-α, as well as granzyme B and CD107a were significantly higher in CD56+ T-cells from CMV+ than CMV- subjects following stimulation with CMV antigens.
    [Show full text]
  • Role of NLRP3 Inflammasome Activation in Obesity-Mediated
    International Journal of Environmental Research and Public Health Review Role of NLRP3 Inflammasome Activation in Obesity-Mediated Metabolic Disorders Kaiser Wani , Hind AlHarthi, Amani Alghamdi , Shaun Sabico and Nasser M. Al-Daghri * Biochemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; [email protected] (K.W.); [email protected] (H.A.); [email protected] (A.A.); [email protected] (S.S.) * Correspondence: [email protected]; Tel.: +966-14675939 Abstract: NLRP3 inflammasome is one of the multimeric protein complexes of the nucleotide-binding domain, leucine-rich repeat (NLR)-containing pyrin and HIN domain family (PYHIN). When ac- tivated, NLRP3 inflammasome triggers the release of pro-inflammatory interleukins (IL)-1β and IL-18, an essential step in innate immune response; however, defective checkpoints in inflamma- some activation may lead to autoimmune, autoinflammatory, and metabolic disorders. Among the consequences of NLRP3 inflammasome activation is systemic chronic low-grade inflammation, a cardinal feature of obesity and insulin resistance. Understanding the mechanisms involved in the regulation of NLRP3 inflammasome in adipose tissue may help in the development of specific inhibitors for the treatment and prevention of obesity-mediated metabolic diseases. In this narrative review, the current understanding of NLRP3 inflammasome activation and regulation is highlighted, including its putative roles in adipose tissue dysfunction and insulin resistance. Specific inhibitors of NLRP3 inflammasome activation which can potentially be used to treat metabolic disorders are also discussed. Keywords: NLRP3 inflammasome; metabolic stress; insulin resistance; diabetes; obesity Citation: Wani, K.; AlHarthi, H.; Alghamdi, A.; Sabico, S.; Al-Daghri, N.M. Role of NLRP3 Inflammasome 1.
    [Show full text]
  • Review Article New Insights Into Nod-Like Receptors (Nlrs) in Liver Diseases
    Int J Physiol Pathophysiol Pharmacol 2018;10(1):1-16 www.ijppp.org /ISSN:1944-8171/IJPPP0073857 Review Article New insights into Nod-like receptors (NLRs) in liver diseases Tao Xu1,2*, Yan Du1,2*, Xiu-Bin Fang3, Hao Chen1,2, Dan-Dan Zhou1,2, Yang Wang1,2, Lei Zhang1,2 1School of Pharmacy, Anhui Medical University, Hefei 230032, China; 2Institute for Liver Disease of Anhui Medi- cal University, Anhui Medical University, Hefei 230032, China; 3The Second Affiliated Hospital of Anhui Medical University, Fu Rong Road, Hefei 230601, Anhui Province, China. *Equal contributors. Received February 1, 2018; Accepted February 19, 2018; Epub March 10, 2018; Published March 20, 2018 Abstract: Activation of inflammatory signaling pathways is of central importance in the pathogenesis of alcoholic liver disease (ALD) and nonalcoholic steatohepatitis (NASH). Nod-like receptors (NLRs) are intracellular innate im- mune sensors of microbes and danger signals that control multiple aspects of inflammatory responses. Recent studies demonstrated that NLRs are expressed and activated in innate immune cells as well as in parenchymal cells in the liver. For example, NLRP3 signaling is involved in liver ischemia-reperfusion (I/R) injury and silencing of NLRP3 can protect the liver from I/R injury. In this article, we review the evidence that highlights the critical impor- tance of NLRs in the prevalent liver diseases. The significance of NLR-induced intracellular signaling pathways and cytokine production is also evaluated. Keywords: Nod-like receptors (NLRs), liver diseases, NLRP3 Introduction nonalcoholic steatohepatitis (NASH) [13], Non- alcoholic fatty liver disease (NAFLD) [14], Ace- The liver is the first organ exposed to orally taminophen (N-acetyl-para-aminophenol) he- administered xenobiotics after absorption from patotoxicity [15], viral hepatitis, primary biliary the intestine, and it is a major site of biotrans- cirrhosis, sclerosing cholangitis, paracetamol- formation and metabolism [1, 2].
    [Show full text]
  • NOD-Like Receptors in the Eye: Uncovering Its Role in Diabetic Retinopathy
    International Journal of Molecular Sciences Review NOD-like Receptors in the Eye: Uncovering Its Role in Diabetic Retinopathy Rayne R. Lim 1,2,3, Margaret E. Wieser 1, Rama R. Ganga 4, Veluchamy A. Barathi 5, Rajamani Lakshminarayanan 5 , Rajiv R. Mohan 1,2,3,6, Dean P. Hainsworth 6 and Shyam S. Chaurasia 1,2,3,* 1 Ocular Immunology and Angiogenesis Lab, University of Missouri, Columbia, MO 652011, USA; [email protected] (R.R.L.); [email protected] (M.E.W.); [email protected] (R.R.M.) 2 Department of Biomedical Sciences, University of Missouri, Columbia, MO 652011, USA 3 Ophthalmology, Harry S. Truman Memorial Veterans’ Hospital, Columbia, MO 652011, USA 4 Surgery, University of Missouri, Columbia, MO 652011, USA; [email protected] 5 Singapore Eye Research Institute, Singapore 169856, Singapore; [email protected] (V.A.B.); [email protected] (R.L.) 6 Mason Eye Institute, School of Medicine, University of Missouri, Columbia, MO 652011, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-573-882-3207 Received: 9 December 2019; Accepted: 27 January 2020; Published: 30 January 2020 Abstract: Diabetic retinopathy (DR) is an ocular complication of diabetes mellitus (DM). International Diabetic Federations (IDF) estimates up to 629 million people with DM by the year 2045 worldwide. Nearly 50% of DM patients will show evidence of diabetic-related eye problems. Therapeutic interventions for DR are limited and mostly involve surgical intervention at the late-stages of the disease. The lack of early-stage diagnostic tools and therapies, especially in DR, demands a better understanding of the biological processes involved in the etiology of disease progression.
    [Show full text]
  • Identification and Expression of the Laboratory of Genetics and Physiology 2 Gene in Common Carp Cyprinus Carpio
    Journal of Fish Biology (2014) doi:10.1111/jfb.12541, available online at wileyonlinelibrary.com Identification and expression of the laboratory of genetics and physiology 2 gene in common carp Cyprinus carpio X. L. Cao*†, J. J. Chen†,Y.Cao†,G.X.Nie†,Q.Y.Wan*,L.F.Wang† and J. G. Su*‡ *College of Animal Science and Technology, Northwest A&F University, Yangling 712100, People’s Republic of China and †College of Fisheries, Henan Normal University, Xinxiang 453007, People’s Republic of China (Received 29 April 2014, Accepted 9 September 2014) In this study, a laboratory of genetics and physiology 2 gene (lgp2) from common carp Cyprinus car- pio was isolated and characterized. The full-length complementary (c)DNA of lgp2 was 3061 bp and encoded a polypeptide of 680 amino acids, with an estimated molecular mass of 77 341⋅2Daanda predicted isoelectric point of 6⋅53. The predicted protein included four main overlapping structural domains: a conserved restriction domain of bacterial type III restriction enzyme, a DEAD–DEAH box helicase domain, a helicase super family C-terminal domain and a regulatory domain. Real-time quantitative polymerase chain reaction (PCR) showed widespread expression of lgp2, mitochondrial antiviral signalling protein (mavs) and interferon transcription factor 3 (irf3) in tissues of nine organs. lgp2, mavs and irf3 expression levels were significantly induced in all examined organs by infec- tion with koi herpesvirus (KHV). lgp2, mavs and irf3 messenger (m)RNA levels were significantly up-regulated in vivo after KHV infection, and lgp2 transcripts were also significantly enhanced in vitro after stimulation with synthetic, double-stranded RNA polyinosinic polycytidylic [poly(I:C)].
    [Show full text]
  • Pattern Recognition Receptors in Health and Diseases
    Signal Transduction and Targeted Therapy www.nature.com/sigtrans REVIEW ARTICLE OPEN Pattern recognition receptors in health and diseases Danyang Li1,2 and Minghua Wu1,2 Pattern recognition receptors (PRRs) are a class of receptors that can directly recognize the specific molecular structures on the surface of pathogens, apoptotic host cells, and damaged senescent cells. PRRs bridge nonspecific immunity and specific immunity. Through the recognition and binding of ligands, PRRs can produce nonspecific anti-infection, antitumor, and other immunoprotective effects. Most PRRs in the innate immune system of vertebrates can be classified into the following five types based on protein domain homology: Toll-like receptors (TLRs), nucleotide oligomerization domain (NOD)-like receptors (NLRs), retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs), C-type lectin receptors (CLRs), and absent in melanoma-2 (AIM2)-like receptors (ALRs). PRRs are basically composed of ligand recognition domains, intermediate domains, and effector domains. PRRs recognize and bind their respective ligands and recruit adaptor molecules with the same structure through their effector domains, initiating downstream signaling pathways to exert effects. In recent years, the increased researches on the recognition and binding of PRRs and their ligands have greatly promoted the understanding of different PRRs signaling pathways and provided ideas for the treatment of immune-related diseases and even tumors. This review describes in detail the history, the structural characteristics, ligand recognition mechanism, the signaling pathway, the related disease, new drugs in clinical trials and clinical therapy of different types of PRRs, and discusses the significance of the research on pattern recognition mechanism for the treatment of PRR-related diseases.
    [Show full text]
  • IL21R Expressing CD14+CD16+ Monocytes Expand in Multiple
    Plasma Cell Disorders SUPPLEMENTARY APPENDIX IL21R expressing CD14 +CD16 + monocytes expand in multiple myeloma patients leading to increased osteoclasts Marina Bolzoni, 1 Domenica Ronchetti, 2,3 Paola Storti, 1,4 Gaetano Donofrio, 5 Valentina Marchica, 1,4 Federica Costa, 1 Luca Agnelli, 2,3 Denise Toscani, 1 Rosanna Vescovini, 1 Katia Todoerti, 6 Sabrina Bonomini, 7 Gabriella Sammarelli, 1,7 Andrea Vecchi, 8 Daniela Guasco, 1 Fabrizio Accardi, 1,7 Benedetta Dalla Palma, 1,7 Barbara Gamberi, 9 Carlo Ferrari, 8 Antonino Neri, 2,3 Franco Aversa 1,4,7 and Nicola Giuliani 1,4,7 1Myeloma Unit, Dept. of Medicine and Surgery, University of Parma; 2Dept. of Oncology and Hemato-Oncology, University of Milan; 3Hematology Unit, “Fondazione IRCCS Ca’ Granda”, Ospedale Maggiore Policlinico, Milan; 4CoreLab, University Hospital of Parma; 5Dept. of Medical-Veterinary Science, University of Parma; 6Laboratory of Pre-clinical and Translational Research, IRCCS-CROB, Referral Cancer Center of Basilicata, Rionero in Vulture; 7Hematology and BMT Center, University Hospital of Parma; 8Infectious Disease Unit, University Hospital of Parma and 9“Dip. Oncologico e Tecnologie Avanzate”, IRCCS Arcispedale Santa Maria Nuova, Reggio Emilia, Italy ©2017 Ferrata Storti Foundation. This is an open-access paper. doi:10.3324/haematol. 2016.153841 Received: August 5, 2016. Accepted: December 23, 2016. Pre-published: January 5, 2017. Correspondence: [email protected] SUPPLEMENTAL METHODS Immunophenotype of BM CD14+ in patients with monoclonal gammopathies. Briefly, 100 μl of total BM aspirate was incubated in the dark with anti-human HLA-DR-PE (clone L243; BD), anti-human CD14-PerCP-Cy 5.5, anti-human CD16-PE-Cy7 (clone B73.1; BD) and anti-human CD45-APC-H 7 (clone 2D1; BD) for 20 min.
    [Show full text]