Formulae for Energy and Momentum of Relativistic Particle Regular at Zero-Mass State

Total Page:16

File Type:pdf, Size:1020Kb

Formulae for Energy and Momentum of Relativistic Particle Regular at Zero-Mass State Journal of Modern Physics, 2011, 2, 849-856 doi:10.4236/jmp.2011.28101 Published Online August 2011 (http://www.SciRP.org/journal/jmp) Formulae for Energy and Momentum of Relativistic Particle Regular at Zero-Mass State Robert M. Yamaleev1,2 1Joint Institute for Nuclear Research, LIT, Dubna, Russia 2Departamento de Fsica, Facultad de Estudios Superiores, Universidad Nacional Autonoma de Mexico Cuautitlán Izcalli, Campo 1, México E-mail: [email protected] Received October 22, 2010; revised March 2, 2011; accepted April 13, 2011 Abstract In this paper we substantiate a necessity of introduction of a concept the counterpart of rapidity into the framework of relativistic physics. It is shown, formulae for energy and momentum defined via counterpart of rapidity are regular near the zero-mass and speed of light states. The representation for the energy-mo- mentum is realized as a mapping from the massless-state onto the massive one which looks like as a “q”-deformation. Quantization of the energy, momentum and the velocity near the light-speed is presaged. An analogue between the relativistic dynamics and the statistical thermodynamics of a micro-canonical ensemble is brought to light. Keywords: Relativistic Dynamics, Complex Algebra, Rapidity, Energy-Momentum, Background Energy, Statistical Thermodynamics 1. Introduction of the relativistic massive particle are singular near the velocity equal to speed of light, whereas they are well de- The developments of the basic theories in the fields of fined for the rest state. In general, it is supposed that near solid state and elementary particles exhibit a crucial im- the speed of light the dynamics of a massive elementary portance of the behavior of the physical systems near the particle more does not obey the classical mechanics of a critical points. The experimental results and their theo- single particle and one must work in the scope of the retical treatments have discovered the new physical phe- quantum field theory. In fact, acceleration of the charged nomena named as spontaneously broken symmetries near particle induces radiation of electromagnetic fields and the ground state. That a ground state of a quantal system leads to cumulative process of creation of a cascade of need not possess the Hamiltonian’s symmetries, and elementary particles. Noteworthy a crucial gap between therefore degenerate, was first appreciated and realized in massive and massless states: the particle with extremely non-relativistic many body systems and in many con- small value of mass can stay in the rest state, meanwhile densed matter situations. Also that had been realized, the its neighbour, the particle with m =0, has to move with state of superconductivity possesses with lower entropy the speed of light. (hence, with higher order) then a normal state. Following The irregular behavior of the conventional representa- this understanding Heisenberg [1] and Nambu [2] made tions for energy-momentum near the zero-mass point is a the seminal suggestion that this may also be true for the well-known problem of the relativistic mechanics. In fact, vacuum state of a relativistic quantum field theory. the celebrated formulae for the energy-momentum pp0 , For the relativistic mechanics the state with m =0, defined via velocity v , vc= , i.e., the state with proper mass equal to zero and mv mc2 pcp=, = (1.1) the velocity equal to speed of light, is a singular point of 0 vv22 the theory. The massive particles, according to laws of 11 cc22 the relativistic mechanics, cannot attain the velocity equal to speed of light. The formulae of the Lorentz could not be used to obtain any reasonable limit at the transformations and formulae for the energy-momentum points vc= , m =0, because the indeterminacy of type Copyright © 2011 SciRes. JMP 850 R. M. YAMALEEV 0 An important feature of the counterpart of rapidity is , meanwhile, the energy and momentum of the particle 0 that the hyperbolic angle is proportional to the proper with vcm=, =0 are given by a certain finite value. In mass of a particle. The part of the hyperbolic angle in- fact, in order to prove this assertion we may use the dependent of the mass can be interpreted via the concept expression of the energy via momentum of background energy. The relativistic energy-momentum within the framework of the new representation formally Ecpmc= 222 (1.2) coincides with formulae of statistical thermodynamics of an single oscillator which allows one to give an inter- For small values of the mass, mc p , we can use pretation of the background energy by introducing the the following approximation quantities of the state like temperature and entropy. mc22 mc 23 The paper besides of the Introduction and Conclusions Epc=1 = pc (1.3) p2 2 p is presented by the following sections. Section 2 presents elements of the relativistic dynamics Hence, when m 0 , pp0 the velocity tends to of charged particle. In Section 3, an evolution generated speed of light, vc/= p / p0 1. The energy and mo- by mass-shell equation is explored. Transmission between mentum at this limit numerically are equal to each other translation and hyperbolic rotation is established. In Sec- and equal some finite value. tion 4, the representation for the momenta is modified by The following question gives arise: what kind of the introducing a fundamental constant of mass. The modified law of relativistic dynamics can help us to solve this formula is interpreted as a mapping from massless state indeterminacy? Or, in the other words, how we must mo- onto the state with nontrivial mass. A hypothesis on quan- dify, or generalize, the conventional frames of the theory tization of the velocity near light velocity is suggested. In in order to elaborate some pathway from the state with Section 5, an analogue between formulae of relativistic non-vanishing proper mass to the state with zero-mass? mechanics and formulae of statistical thermodynamics is In order to answer these questions we have to deepen demonstrated. the concept of rapidity. The rapidity is well-known quan- tity of the relativistic kinematics, this is an hyperbolic 2. Elements of Relativistic Dynamics of angle used as a parameter of the Lorentz-boost in the Charged Particle Lorentz group of transformations. Most physicists main- tained that the rapidity is a merely formal quantity be- In this section we will remind only selected elements of cause the rapidity did not receive any physical interpre- the relativistic dynamics of charged particle necessary in tation in the framework of the relativistic kinematics [3]. subsequent sections. Nevertheless, it had been noted that the rapidity plays an Consider a motion of the relativistic particle with important role in establishing some link between the charge e in the external electromagnetic fields E and hyperbolic geometry and relativistic kinematics. This link B . The relativistic equations of motion with respect to firstly had been discovered by V. Varicak [4], H. Hergoltz the proper time are given by the Lorentz-force [5] and A. A. Rob [6]. Contemporary model of relativistic equations [8]: kinematics based on non-associative algebras and on the dp eedp e concept of gruppoids had been constructed by A. Ungar =EpBEp p ), 0 = (2.1) ddmc0 m mc [7]. According to our point of view, the rapidity is one of ddrpct p =, =0 (2.2) principal notions of the relativistic dynamics. An ess- ddmm ential role plays a quantity dual to the rapidity, we de- These equations imply the first integral of motion nominate as the counterpart of rapidity. Introduction of 22 22 the counterpart of rapidity is related with discovery of a ppMc0 = (2.3) new features of dynamical variables of the relativistic The constant of motion has obtained its interpretation mechanics. The counterpart of rapidity is a rapidity re- as a square of proper mass of the relativistic particle, so lated with the systems of references coming from the that, M 22= m . In the case of stationary potential field, light-speed state toward to the rest state. Therefore the ex- i.e. when eVrE =(), the equations imply the other pressions for energy, momentum and velocity expressed constant of motion, the energy of the relativistic particle via the counterpart of rapidity are regular at the state with mvc= 0, = . The new representation for energy EcpVr=()0 (2.4) and momentum can be considered as a mapping from the In order to give a main idea we shall restrict ourselves massless state onto the state with mass. by considering only lengths of the momenta. For that Copyright © 2011 SciRes. JMP R. M. YAMALEEV 851 purpose let us consider the projection of Equation (2.1) 22222 Yppmc==.0 onto direction of motion. In this way we come to the following set of equations Observation 2.1 The mass-shell equation remains invariant under ddpedp0 additive changes (simultaneous translations) of the pair = pp0 , = , = E (2.5) dddmc of quantities qq12, , where qq11=(0), qq 2=(0). 2 (2.13) p These translations result an additive change of the E =,nE n= (2.6) p kinetic part of the energy pp=(0) (2.14) Equation (2.5) can be integrated with respect to para- 00 meter . We find In the same spirit as a solution of the quadratic equation x2 =1 , the imaginary i , generates algebra pA0 =cosh B sinh, (2.7) of complex numbers, the solution of quadratic Equation pA= sinh B cosh (2.12) generates an algebra of general complex numbers [12,13]. In references [14,15], some geometrical and Let = 0 for the rest state where p =0. Then (2.7) algebraical properties of the evolution governed by by is redefined as follows quadratic Equation (2.12) had been explored.
Recommended publications
  • On the Reality of Quantum Collapse and the Emergence of Space-Time
    Article On the Reality of Quantum Collapse and the Emergence of Space-Time Andreas Schlatter Burghaldeweg 2F, 5024 Küttigen, Switzerland; [email protected]; Tel.: +41-(0)-79-870-77-75 Received: 22 February 2019; Accepted: 22 March 2019; Published: 25 March 2019 Abstract: We present a model, in which quantum-collapse is supposed to be real as a result of breaking unitary symmetry, and in which we can define a notion of “becoming”. We show how empirical space-time can emerge in this model, if duration is measured by light-clocks. The model opens a possible bridge between Quantum Physics and Relativity Theory and offers a new perspective on some long-standing open questions, both within and between the two theories. Keywords: quantum measurement; quantum collapse; thermal time; Minkowski space; Einstein equations 1. Introduction For a hundred years or more, the two main theories in physics, Relativity Theory and Quantum Mechanics, have had tremendous success. Yet there are tensions within the respective theories and in their relationship to each other, which have escaped a satisfactory explanation until today. These tensions have also prevented a unified view of the two theories by a more fundamental theory. There are, of course, candidate-theories, but none has found universal acceptance so far [1]. There is a much older debate, which concerns the question of the true nature of time. Is reality a place, where time, as we experience it, is a mere fiction and where past, present and future all coexist? Is this the reason why so many laws of nature are symmetric in time? Or is there really some kind of “becoming”, where the present is real, the past irrevocably gone and the future not yet here? Admittedly, the latter view only finds a minority of adherents among today’s physicists, whereas philosophers are more balanced.
    [Show full text]
  • Advances in Quantum Field Theory
    ADVANCES IN QUANTUM FIELD THEORY Edited by Sergey Ketov Advances in Quantum Field Theory Edited by Sergey Ketov Published by InTech Janeza Trdine 9, 51000 Rijeka, Croatia Copyright © 2012 InTech All chapters are Open Access distributed under the Creative Commons Attribution 3.0 license, which allows users to download, copy and build upon published articles even for commercial purposes, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. After this work has been published by InTech, authors have the right to republish it, in whole or part, in any publication of which they are the author, and to make other personal use of the work. Any republication, referencing or personal use of the work must explicitly identify the original source. As for readers, this license allows users to download, copy and build upon published chapters even for commercial purposes, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. Notice Statements and opinions expressed in the chapters are these of the individual contributors and not necessarily those of the editors or publisher. No responsibility is accepted for the accuracy of information contained in the published chapters. The publisher assumes no responsibility for any damage or injury to persons or property arising out of the use of any materials, instructions, methods or ideas contained in the book. Publishing Process Manager Romana Vukelic Technical Editor Teodora Smiljanic Cover Designer InTech Design Team First published February, 2012 Printed in Croatia A free online edition of this book is available at www.intechopen.com Additional hard copies can be obtained from [email protected] Advances in Quantum Field Theory, Edited by Sergey Ketov p.
    [Show full text]
  • Relativistic Quantum Mechanics 1
    Relativistic Quantum Mechanics 1 The aim of this chapter is to introduce a relativistic formalism which can be used to describe particles and their interactions. The emphasis 1.1 SpecialRelativity 1 is given to those elements of the formalism which can be carried on 1.2 One-particle states 7 to Relativistic Quantum Fields (RQF), which underpins the theoretical 1.3 The Klein–Gordon equation 9 framework of high energy particle physics. We begin with a brief summary of special relativity, concentrating on 1.4 The Diracequation 14 4-vectors and spinors. One-particle states and their Lorentz transforma- 1.5 Gaugesymmetry 30 tions follow, leading to the Klein–Gordon and the Dirac equations for Chaptersummary 36 probability amplitudes; i.e. Relativistic Quantum Mechanics (RQM). Readers who want to get to RQM quickly, without studying its foun- dation in special relativity can skip the first sections and start reading from the section 1.3. Intrinsic problems of RQM are discussed and a region of applicability of RQM is defined. Free particle wave functions are constructed and particle interactions are described using their probability currents. A gauge symmetry is introduced to derive a particle interaction with a classical gauge field. 1.1 Special Relativity Einstein’s special relativity is a necessary and fundamental part of any Albert Einstein 1879 - 1955 formalism of particle physics. We begin with its brief summary. For a full account, refer to specialized books, for example (1) or (2). The- ory oriented students with good mathematical background might want to consult books on groups and their representations, for example (3), followed by introductory books on RQM/RQF, for example (4).
    [Show full text]
  • New Varying Speed of Light Theories
    New varying speed of light theories Jo˜ao Magueijo The Blackett Laboratory,Imperial College of Science, Technology and Medicine South Kensington, London SW7 2BZ, UK ABSTRACT We review recent work on the possibility of a varying speed of light (VSL). We start by discussing the physical meaning of a varying c, dispelling the myth that the constancy of c is a matter of logical consistency. We then summarize the main VSL mechanisms proposed so far: hard breaking of Lorentz invariance; bimetric theories (where the speeds of gravity and light are not the same); locally Lorentz invariant VSL theories; theories exhibiting a color dependent speed of light; varying c induced by extra dimensions (e.g. in the brane-world scenario); and field theories where VSL results from vacuum polarization or CPT violation. We show how VSL scenarios may solve the cosmological problems usually tackled by inflation, and also how they may produce a scale-invariant spectrum of Gaussian fluctuations, capable of explaining the WMAP data. We then review the connection between VSL and theories of quantum gravity, showing how “doubly special” relativity has emerged as a VSL effective model of quantum space-time, with observational implications for ultra high energy cosmic rays and gamma ray bursts. Some recent work on the physics of “black” holes and other compact objects in VSL theories is also described, highlighting phenomena associated with spatial (as opposed to temporal) variations in c. Finally we describe the observational status of the theory. The evidence is slim – redshift dependence in alpha, ultra high energy cosmic rays, and (to a much lesser extent) the acceleration of the universe and the WMAP data.
    [Show full text]
  • MITOCW | L0.8 Introduction to Nuclear and Particle Physics: Relativistic Kinematics
    MITOCW | L0.8 Introduction to Nuclear and Particle Physics: Relativistic Kinematics MARKUS Now back to 8.701. So in this section, we'll talk about relativistic kinematics. Let me start by saying that one of KLUTE: my favorite classes here at MIT is a class called 8.20, special relativity, where we teach students about special relativity, of course, but Einstein and paradoxes. And it's one of my favorite classes. And in their class, there's a component on particle physics, which has to do with just using relativistic kinematics in order to understand how to create antimatter, how to collide beams, how we can analyze decays. And in this introductory section, we're going to do a very similar thing. I trust that you all had some sort of class introduction of special relativity, some of you maybe general relativity. What we want to do here is review this content very briefly, but then more use it in a number of examples. So in particle physics, nuclear physics, we often deal particles who will travel close to the speed of light. The photon travels at the speed of light. We typically define the velocity as v/c in natural units. Beta is the velocity, gamma is defined by 1 over square root 1 minus the velocity squared. Beta is always smaller or equal to 1, smaller for massive particle. And gamma is always equal or greater than 1. The total energy of a particle with 0 mass-- sorry, with non-zero mass, is then given by gamma times m c squared.
    [Show full text]
  • Fully Symmetric Relativistic Quantum Mechanics and Its Physical Implications
    mathematics Article Fully Symmetric Relativistic Quantum Mechanics and Its Physical Implications Bao D. Tran and Zdzislaw E. Musielak * Departmemt of Physics, University of Texas at Arlington, Arlington, TX 76019, USA; [email protected] * Correspondence: [email protected] Abstract: A new formulation of relativistic quantum mechanics is presented and applied to a free, massive, and spin-zero elementary particle in the Minkowski spacetime. The reformulation requires that time and space, as well as the timelike and spacelike intervals, are treated equally, which makes the new theory fully symmetric and consistent with the special theory of relativity. The theory correctly reproduces the classical action of a relativistic particle in the path integral formalism, and allows for the introduction of a new quantity called vector-mass, whose physical implications for nonlocality, the uncertainty principle, and quantum vacuum are described and discussed. Keywords: relativistic quantum mechanics; generalized Klein–Gordon equation; path integral formulation; nonlocality; quantum measurement; uncertainty principle; quantum vacuum 1. Introduction Relativistic quantum mechanics (RQM) primarily concerns free relativistic fields [1,2] Citation: Tranl, B.D.; Musielak, Z.E. described by the Klein–Gordon [3,4], Dirac [5], Proca [6], and Rarita–Schwinger [7] wave Fully Symmetric Relativistic equations, whereas the fundamental interactions and their unification are considered by Quantum Mechanics and Its Physical the gauge invariant quantum field theory (QFT) [8,9]. The above equations of RQM are Implications. Mathematics 2021, 9, P = SO( ) ⊗ 1213. https://doi.org/10.3390/ invariant with respect to all transformations that form the Poincaré group 3, 1 s ( + ) ( ) math9111213 T 3 1 , where SO 3, 1 is a non-invariant Lorentz group of rotations and boosts and T(3 + 1) an invariant subgroup of spacetime translations, and this structure includes Academic Editor: Rami Ahmad reversal of parity and time [10].
    [Show full text]
  • General Relativity and Spatial Flows: I
    1 GENERAL RELATIVITY AND SPATIAL FLOWS: I. ABSOLUTE RELATIVISTIC DYNAMICS* Tom Martin Gravity Research Institute Boulder, Colorado 80306-1258 [email protected] Abstract Two complementary and equally important approaches to relativistic physics are explained. One is the standard approach, and the other is based on a study of the flows of an underlying physical substratum. Previous results concerning the substratum flow approach are reviewed, expanded, and more closely related to the formalism of General Relativity. An absolute relativistic dynamics is derived in which energy and momentum take on absolute significance with respect to the substratum. Possible new effects on satellites are described. 1. Introduction There are two fundamentally different ways to approach relativistic physics. The first approach, which was Einstein's way [1], and which is the standard way it has been practiced in modern times, recognizes the measurement reality of the impossibility of detecting the absolute translational motion of physical systems through the underlying physical substratum and the measurement reality of the limitations imposed by the finite speed of light with respect to clock synchronization procedures. The second approach, which was Lorentz's way [2] (at least for Special Relativity), recognizes the conceptual superiority of retaining the physical substratum as an important element of the physical theory and of using conceptually useful frames of reference for the understanding of underlying physical principles. Whether one does relativistic physics the Einsteinian way or the Lorentzian way really depends on one's motives. The Einsteinian approach is primarily concerned with * http://xxx.lanl.gov/ftp/gr-qc/papers/0006/0006029.pdf 2 being able to carry out practical space-time experiments and to relate the results of these experiments among variously moving observers in as efficient and uncomplicated manner as possible.
    [Show full text]
  • Relativistic Thermodynamics
    C. MØLLER RELATIVISTIC THERMODYNAMICS A Strange Incident in the History of Physics Det Kongelige Danske Videnskabernes Selskab Matematisk-fysiske Meddelelser 36, 1 Kommissionær: Munksgaard København 1967 Synopsis In view of the confusion which has arisen in the later years regarding the correct formulation of relativistic thermodynamics, the case of arbitrary reversible and irreversible thermodynamic processes in a fluid is reconsidered from the point of view of observers in different systems of inertia. Although the total momentum and energy of the fluid do not transform as the components of a 4-vector in this case, it is shown that the momentum and energy of the heat supplied in any process form a 4-vector. For reversible processes this four-momentum of supplied heat is shown to be proportional to the four-velocity of the matter, which leads to Otts transformation formula for the temperature in contrast to the old for- mula of Planck. PRINTED IN DENMARK BIANCO LUNOS BOGTRYKKERI A-S Introduction n the years following Einsteins fundamental paper from 1905, in which I he founded the theory of relativity, physicists were engaged in reformu- lating the classical laws of physics in order to bring them in accordance with the (special) principle of relativity. According to this principle the fundamental laws of physics must have the same form in all Lorentz systems of coordinates or, more precisely, they must be expressed by equations which are form-invariant under Lorentz transformations. In some cases, like in the case of Maxwells equations, these laws had already the appropriate form, in other cases, they had to be slightly changed in order to make them covariant under Lorentz transformations.
    [Show full text]
  • Theoretical Investigation of Subluminal Particles Endowed with Imaginary Mass
    Article Theoretical Investigation of Subluminal Particles Endowed with Imaginary Mass Luca Nanni Faculty of Natural Science, University of Ferrara, 44122 Ferrara, Italy; [email protected] Abstract: In this article, the general solution of the tachyonic Klein–Gordon equation is obtained as a Fourier integral performed on a suitable path in the complex w-plane. In particular, it is proved that this solution does not contain any superluminal components under the given boundary conditions. On the basis of this result, we infer that all possible spacelike wave equations describe the dynamics of subluminal particles endowed with imaginary mass. This result is validated for the Chodos equation, used to describe the hypothetical superluminal behaviour of the neutrino. In this specific framework, it is proved that the wave packet propagates in spacetime with subluminal group velocities and that it behaves as a localized wave for sufficiently small energies. Keywords: tachyons; Klein–Gordon equation; tachyon-like Dirac equation; relativistic wave packet PACS: 03.65.Pm; 03.65.Ge; 03.65.Db 1. Introduction The physics of tachyons is an intriguing and fascinating subject that has attracted the attention of physicists in both the pre-relativistic [1–3] and post-relativistic epochs [4–10]. Citation: Nanni, L. Theoretical However, the majority of the scientific community still considers it a speculative theory, and Investigation of Subluminal Particles Endowed with Imaginary Mass. there are only a few efforts aimed at finding the experimental evidence that could make it a Particles 2021, 4, 325–332. https:// candidate for extending the current Standard Model [11]. A comprehensive overview of the doi.org/10.3390/particles4020027 most relevant experiments dealing with the superluminal behaviour of waves and particles is detailed in [9,12–15].
    [Show full text]
  • What Might the Matter Wave Be Telling Us of the Nature of Matter?
    What might the matter wave be telling us of the nature of matter? Daniel Shanahan PO Box 301, Cleveland, Queensland, 4163, Australia August 21, 2019 Abstract Various attempts at a thoroughly wave-theoretic explanation of mat- ter have taken as their fundamental ingredient the de Broglie or matter wave. But that wave is superluminal whereas it is implicit in the Lorentz transformation that influences propagate ultimately at the velocity c of light. It is shown that if the de Broglie wave is understood, not as a wave in its own right, but as the relativistically induced modulation of an underlying standing wave comprising counter-propagating influences of velocity c, the energy, momentum, mass and inertia of a massive particle can be explained from the manner in which the modulated wave struc- ture must adapt to a change of inertial frame. With those properties of the particle explained entirely from wave structure, nothing remains to be apportioned to anything discrete or “solid”within the wave. Considera- tion may thus be given to the possibility of wave-theoretic explanations of particle trajectories, and to a deeper understanding of the Klein-Gordon, Schrödinger and Dirac equations, all of which were conceived as equations for the de Broglie wave. Keywords de Broglie wave Planck-Einstein relation wave-particle duality inertia pilot wave theory· Dirac bispinor Lorentz· transforma- tion · · · · 1 Introduction It might be thought that the de Broglie wave can say very little regarding the nature of solid matter. As this “matter wave”is usually understood, it seems to make no sense at all.
    [Show full text]
  • Relativistic Mechanics
    Relativistic mechanics Further information: Mass in special relativity and relativistic center of mass for details. Conservation of energy The equations become more complicated in the more fa- miliar three-dimensional vector calculus formalism, due In physics, relativistic mechanics refers to mechanics to the nonlinearity in the Lorentz factor, which accu- compatible with special relativity (SR) and general rel- rately accounts for relativistic velocity dependence and ativity (GR). It provides a non-quantum mechanical de- the speed limit of all particles and fields. However, scription of a system of particles, or of a fluid, in cases they have a simpler and elegant form in four-dimensional where the velocities of moving objects are comparable spacetime, which includes flat Minkowski space (SR) and to the speed of light c. As a result, classical mechanics curved spacetime (GR), because three-dimensional vec- is extended correctly to particles traveling at high veloc- tors derived from space and scalars derived from time ities and energies, and provides a consistent inclusion of can be collected into four vectors, or four-dimensional electromagnetism with the mechanics of particles. This tensors. However, the six component angular momentum was not possible in Galilean relativity, where it would be tensor is sometimes called a bivector because in the 3D permitted for particles and light to travel at any speed, in- viewpoint it is two vectors (one of these, the conventional cluding faster than light. The foundations of relativistic angular momentum, being an axial vector). mechanics are the postulates of special relativity and gen- eral relativity. The unification of SR with quantum me- chanics is relativistic quantum mechanics, while attempts 1 Relativistic kinematics for that of GR is quantum gravity, an unsolved problem in physics.
    [Show full text]
  • Like Thermodynamics Before Boltzmann. on the Emergence of Einstein’S Distinction Between Constructive and Principle Theories
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Philsci-Archive Like Thermodynamics before Boltzmann. On the Emergence of Einstein’s Distinction between Constructive and Principle Theories Marco Giovanelli Forum Scientiarum — Universität Tübingen, Doblerstrasse 33 72074 Tübingen, Germany [email protected] How must the laws of nature be constructed in order to rule out the possibility of bringing about perpetual motion? Einstein to Solovine, undated In a 1919 article for the Times of London, Einstein declared the relativity theory to be a ‘principle theory,’ like thermodynamics, rather than a ‘constructive theory,’ like the kinetic theory of gases. The present paper attempts to trace back the prehistory of this famous distinction through a systematic overview of Einstein’s repeated use of the relativity theory/thermodynamics analysis after 1905. Einstein initially used the comparison to address a specic objection. In his 1905 relativity paper he had determined the velocity-dependence of the electron’s mass by adapting Newton’s particle dynamics to the relativity principle. However, according to many, this result was not admissible without making some assumption about the structure of the electron. Einstein replied that the relativity theory is similar to thermodynamics. Unlike the usual physical theories, it does not directly try to construct models of specic physical systems; it provides empirically motivated and mathematically formulated criteria for the acceptability of such theories. New theories can be obtained by modifying existing theories valid in limiting case so that they comply with such criteria. Einstein progressively transformed this line of the defense into a positive heuristics.
    [Show full text]