Proceedings August 3-8, 1997 Papers Chair: Turner Whitted Panels Chair: Barbara Mones-Hattal

Total Page:16

File Type:pdf, Size:1020Kb

Proceedings August 3-8, 1997 Papers Chair: Turner Whitted Panels Chair: Barbara Mones-Hattal Annual Conference Series 1997 SIGGRAPH 97 Conference Proceedings August 3-8, 1997 Papers Chair: Turner Whitted Panels Chair: Barbara Mones-Hattal A Publication of ACM SIGGRAPH Sponsored by the ACM's Special Interest Group on Computer Graphics PROCEEDINGS COMPUTER GRAPHICS Proceedings, Annual Conference Series, 1997 Contents Papers Preface 8 Panels Preface 9 Papers Sessions, Wednesday, 6 August 8:15 - 9:45 SIGGRAPH 97 Keynote Address Steven A. Coons Award for Outstanding Creative Contributions to Computer Graphics 10 1997 ACM SIGGRAPH Computer Graphics Achievement Award 11 10:15 - 12:00 Virtual Reality and Applications Chair: Frederick P. Brooks, Jr. Quantifying Immersion in Virtual Reality 13 Randy Pausen, Dennis Proffitt, George Williams Moving Objects in Space: Exploiting Proprioception In Virtual-Environment Interaction 19 Mark R. Mine, Frederick P. Brooks, Jr, Carlo H. Se'quin Virtual Voyage: Interactive Navigation in the Human Colon 27 Lichan Hong, Shigeru Muraki, Arie Kaufman, Dirk Bartz, Taosong He Interactive Simulation of Fire in Virtual Building Environments 35 Richard Bukowski, Carlo H. Sequin 2:00 - 3:45 Illumination Chair: Eugene Fiume Fitting Virtual Lights For Non-Diffuse Walkthroughs 45 Bruce Walter, Gün Alppay, Eric P. F. Lafortune, Sebastian Femandez, Donald P. Greenberg Instant Radiosity 49 Alexander Keller Interactive Update of Global Illumination Using A Line-Space Hierarchy 57 George Drettakis, Francois Sillion Metropolis Light Transport 65 Eric Veach, Leonidas J. Guibas 4:00 - 5:45 Visibility Chair: Thomas Funkhouser Visibility Culling Using Hierarchical Occlusion Maps 77 Hansong Zhang, Dinesh Manocha, Thomas Hudson, Kenneth E. Hoff III The Visibility Skeleton: A Powerful and Efficient Multi-Purpose Global Visibility Tool 89 Fredo Durand, George Drettakis, Claude Puech Rendering Complex Scenes with Memory-Coherent Ray Tracing 101 Matt Pharr, Craig Kolb, Reid Gershbein, Pat Hanrahan Illustrating Surface Shape in Volume Data via Principal Direction-Driven 3D Line Integral Convolution 109 Victoria L. Interrante 3 SIGGRAPH 97, Los Angeles, California, August 3-8, 1997 Papers Sessions, Thursday, 7 August 8:15 - 10:00 Für, Film, and Light Chair: Holly Rushmeier Non-Linear Approximation of Reflectance Functions 117 Eric P F. Lafortune, Sing-Choong Foo, Kenneth E. Torrance, Donald P. Greenberg Fake Für Rendering 127 Dan B. Goldman A Model for Simulating the Photographic Development Process on Digital Images 135 Joe Geigel, F. Kenton Musgrave A Model of Visual Masking for Computer Graphics 143 James A. Ferwerda, Sumanta N. Pattanaik, Peter Shirley, Donald P. Greenberg 10:15 -12:00 Animation Chair: Andy Witkin Adapting Simulated Behaviors For New Characters 153 Jessica K. Hodgins, Nancy S. Pollard Anatomy-Based Modeling of the Human Musculature 163 Ferdi Scheepers, Richard E. Parent, Wayne E. Carlson, Stephen F. May Anatomically Based Modeling 173 Jane Wilhelms, Allen Van Gelder Modeling the Motion of a Hot, Turbulent Gas 181 Nick Foster, Dimitris Metaxas 2:00 - 3:45 Surface Simplification Chair: Greg Turk View-Dependent Refinement of Progressive Meshes 189 Hugues Hoppe View-Dependent Simplification of Arbitrary Polygonal Environments 199 David Luebke, Carl Erikson Surface Simplification Using Quadric Error Metrics 209 Michael Garland, Paul S. Heckbert Progressive Simplicial Complexes 217 Jovan Popovic, Hugues Hoppe 4:00 - 5:45 Image-Based Rendering and Panoramas Chair: Michael Cohen Tour Into the Picture: Using a Spidery Mesh Interface to Make Animation from a Single Image 225 Youichi Horry, Ken-ichi Anjyo, Kiyoshi Arai Rendering with Coherent Layers 233 Jed Lengyel, John Snyder Multiperspective Panoramas for Cel Animation 243 Daniel N. Wood, Adam Finkelstein, John F. Hughes, Craig E. Thayer, David H. Salesin Creating Füll View Panoramic Mosaics and Environment Maps 251 Richard Szeliski, Heung-Yeung Shum COMPUTER GRAPHICS Proceedings, Annual Conference Seriell997 Papers Sessions, Friday, 8 August 8:15 -10:00 Geometry Chair: John M. Snyder Interactive Multiresolution Mesh Editing 259 Denis Zarin, Peter Schröder, Wim Sweldens Interactive Boolean Operations for Conceptual Design of 3-D Solids 269 Ari Rappoport, Steven Spitz Guaranteeing the Topology of an Implicit Surface Polygonization for Interactive Modeling 279 Barton T. Stander, John C. Hart Fast Construction of Accurate Quaternion Splines 287 Ravi Ramamoorthi, Alan H. Barr 10:15 - 12:00 Hardware and Anti-Aliasing Chair: Frank Crow InfiniteReality: A Real-Time Graphics System 293 John S. Montrym, Daniel R. Baum, David L. Dignam, Christopher J. Migdal Efficient Bump Mapping Hardware 303 Mark Peercy, John Airey, Brian Cabral Hardware Accelerated Rendering of Antialiasing Using a Modified A-Buffer Algorithm 307 Bill Rivard, Stephanie Winner, Michael Kelley, Brent Pease, Alex Yen Antialiasing of Curves by Discrete Pre-Filtering 317 A. E. Fabris, A. R. Forrest 1:30-3:15 Devices and Multimodal I/O Chair: Mike Moshell The Two-User Responsive Workbench: Support for Collaboration Through Independent Views of a Shared Space 327 Maneesh Agrawala, Andrew C. Beers, Bernd Fröhlich, Pat Hanrahan, lan McDowall, Mark Bolas SCAAT: Incremental Tracking with Incomplete Information 333 Greg Welch, Gary Bishop The Haptic Display of Complex Graphical Environments 345 Diego C. Ruspini, Krasimir Kolarov, Oussama Khatib Video Rewrite: Driving Visual Speech with Audio 353 Christoph Bregler, Michele Covell, Malcolm Slaney 1:30 - 3:15 Texture, Reflection & Designs Chair: Demetri Terzopoulos Multiresolution Sampling Procedure for Analysis and Synthesis of Texture Images 361 Jeremy S. De Bonet Recovering High Dynamic Range Radiance Maps from Photographs 369 Paul E. Debevec, Jitendra Malik Object Shape and Reflectance Modeling from Observation 379 Yoichi Sato, Mark D. Wheeler, Katsushi Ikeuchi Design Galleries: A General Approach to Setting Parameters for Computer Graphics and Animation 389 J. Marks, B. Andalman, P. A. Beardsley, W. Freeman, S. Gibson, J. Hodgins, T. Kang, B. Mirtich, H. Pfister, W. Ruml, K. Ryall, J. Seims, S. Shieber SIGGRAPH 97, Los Angeles, California, August 3-8, 1997 3:30 - 5:15 Non-Photorealistic Rendering Chair: Julie Dorsey Orientable Textures for Image-Based Pen-and-Ink Illustration 401 Michael P. Salisbury, Michael T. Wong, John F. Hughes, David H. Salesin Processing Images and Video for an Impressionist Effect 407 Peter Litwinowicz Real-Time Nonphotorealistic Rendering 415 Lee Markosian, Michael A. Kowalski, Samuel J. Trychin, Lubomir D. Bourdev, Daniel Goldstein, John F. Hughes Computer-Generated Watercolor 421 Cassidy J. Curtis, Sean E. Anderson, Joshua E. Seims, Kurt W. Fleischer, David H. Salesin Panels Sessions, Wednesday, 6 August 10:15 - 12:00 The Implications of a Theory of Play for the Design of Computer Toys 431 Organizer: Bill Kolomyjec Panelists: Justine Cassell, Yasmine B. Kafai, Mary Williamson Facial Animation: Past, Present, and Future 434 Organizer: Demetri Terzopoulos, Barbara Mones Panelists: Beth Hofer, Frederic Parke, Doug Sweetland, Keith Waters 2:00 - 3:45 Can We Get There From Here?: Current Challenges in Cloth Modeling, Design, and Animation 437 Organizer: David E. Breen Panelists: Jeffrey W. Eischen, Michael Kass, Nadia Magnenat Thalmann, Maurizio Vecchione Narrative Environments: Virtual Reality as a Storytelling Medium 440 Organizer: Celia Pearce Panelists: Brad deGraf, C. Scott Young, Jim Ludtke, Athomas Goldberg 4:00 - 5:45 Motion Capture and CG Character Animation 442 Organizer: Gordon Cameron Panelists: Andre Bustanoby, Ken Cope, Steph Greenberg, Craig Hayes, Olivier Ozoux The Difference Between Here and There: What Graphic Design Brings to E-Space 446 Organizer: Lisa Koonts Panelists: Andrew Blauvelt, Edwin Utermohlen, Laura Kusumoto, Anne Burdick, Louise Sandhaus, Natalie Buda Panels Sessions, Thursday, 7 August 8:15 - 10:00 Interfacing Reality: Exploring Emerging Trends Between Humans and Machines 448 Organizer: Eric Paulos Panelists: John Conny, Eduardo Kac, Ken Goldberg, Mark Pauline, Stelarc 10:15 - 12:00 What 3D API for Java Should I Use and Why? 452 Organizer: Dave Nadeau Panelists: Brad Grantham, Colin McCartney, Mitra, Henry Sowizral Community/Content/Interface: Creative Online Journalism 454 Organizer: Mark Tribe Panelists: Armin Medosch, Kathy Rae Huffman, Lev Manovich, Gary Wolf COMPUTER GRAPHICS Proceedings, Annual Conference Series, 1997 2:00 - 3:45 Educating the Digital Artist for the Entertainment Industry: The Collision of Academia and Business 456 Organizer: Charles S. Swartz Panelists: Edwin E. Catmull, Robin King, Richard Weinberg, Jane Veeder Medical Visualization: Why Do We Use CG and Does It Really Make a Difference in Creating Meaningful Images? 459 Organizers: Virginia McArthur, Carrie L. DiLorenzo Panelists: Jane Hurd, Marsha Jessup, Casey Herbert, Patrick Lynch 4:00 - 5:45 Putting a Human Face on Cyberspace: Designing Avatars and the Virtual Worlds They Live In 462 Organizer: Bruce Damer Panelists: Steve DiPaola, loannis Paniaras, Kirk Parsons, Bernie Roel, Moses Ma Panels Sessions, Friday, 8 August 8:15 - 10:00 Sounding Off on Audio: The Future of Internet Sound 465 Organizer: Paul Godwin Panelists: James Grunke, Eythor Arnolds, William L. Martens, Tim Cole 10:15 - 12:00 Image-Based Rendering: Really New or Dejä Vu? 468 Organizer: Michael Cohen Panelists: Eric Chen, Marc Levoy, Leonard McMillian, Jitendra Malik 1:30 -3:15 The Rhetoric of the Synthetic: Images of the Body in Technology, Business, and Culture 471 Organizer: Lome Falk Panelists: Bill Kroyer, Heidi Gilpin, Val Marmillion, Mark Resch 3:30 - 5:15 Experiences with Virtual Reality Applications 473 Organizer: William R. Sherman Panelists: Nina Adams, Rita Addison, R. Bowen Loftin, Ben Britton, Donna Cox, Robert Patterson Special Session, Thursday, 7 August 12:15 - 1:15 New Realities in Film Production: The Process of Creating Digital Visual Effects Special Session, Friday, 8 August 12:15 - 1:15 A Framework for Realistic Image Synthesis 477 Donald P. Greenberg, Kenneth E. Torrance, Peter Shirley, James Arvo, James A. Ferwerda, Sumanta Pattanaik, Eric P. F. Lafortune, Bruce Walter, Sing-Choong Foo, Ben Trumbore Committees 495 Reviewers 498 Exhibitors 500 ACM SIGGRAPH Professional Chapters 502 Author Index 504 Cover Image Credits 506 7 .
Recommended publications
  • The Lumigraph
    The Lumigraph The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Gortler, Steven J., Radek Grzeszczuk, Richard Szeliski, and Michael F. Cohen. 1996. The Lumigraph. Proceedings of the 23rd annual conference on computer graphics and interactive techniques (SIGGRAPH 1996), August 4-9, 1996, New Orleans, Louisiana, ed. SIGGRAPH, Holly Rushmeier, and Theresa Marie Rhyne, 43-54. Computer graphics annual conference series. New York, N.Y.: Association for Computing Machinery. Published Version http://dx.doi.org/10.1145/237170.237200 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:2634291 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA e umigra !"#$#% &' ()*"+#* ,-.#/ (*0#10203/ ,425-*. !0#+41/4 6425-#+ 7' 8)5#% 642*)1)9" ,#1#-*25 strat 1#*4#1 )9 2-;"3*#. #%$4*)%=#%" =-;1 -++)< - 31#* ") look around - 12#%# 9*)= "K#. ;)4%"1 4% 1;-2#' U%# 2-% -+1) !4; "5*)3>5 .499#*? :541 ;-;#* .412311#1 - %#< =#"5). 9)* 2-;"3*4%> "5# 2)=;+#"# -;? #%" $4#<1 )9 -% )@B#2" ") 2*#-"# "5# 4++314)% )9 - MG =).#+' 85#% -%. ;#-*-%2#)9 @)"5 1A%"5#"42 -%. *#-+ <)*+. )@B#2"1 -%. 12#%#1C *#;*#1? I4++4-=1 QVS -%. I#*%#* #" -+ QMWS 5-$# 4%$#1"4>-"#. 1=))"5 4%"#*? #%"4%> "541 4%9)*=-"4)%C -%. "5#% 314%> "541 *#;*#1#%"-"4)% ") *#%.#* ;)+-"4)% @#"<##% 4=->#1 @A =).#+4%> "5# =)"4)% )9 ;4K#+1 X4'#'C "5# 4=->#1 )9 "5# )@B#2" 9*)= %#< 2-=#*- ;)14"4)%1' D%+4/# "5# 15-;# optical !owY -1 )%# =)$#1 9*)= )%# 2-=#*- ;)14"4)% ") -%)"5#*' E% 2-;"3*# ;*)2#11 "*-.4"4)%-++A 31#.
    [Show full text]
  • Bibliography.Pdf
    Bibliography Thomas Annen, Jan Kautz, Frédo Durand, and Hans-Peter Seidel. Spherical harmonic gradients for mid-range illumination. In Alexander Keller and Henrik Wann Jensen, editors, Eurographics Symposium on Rendering, pages 331–336, Norrköping, Sweden, 2004. Eurographics Association. ISBN 3-905673-12-6. 35,72 Arthur Appel. Some techniques for shading machine renderings of solids. In AFIPS 1968 Spring Joint Computer Conference, volume 32, pages 37–45, 1968. 20 Okan Arikan, David A. Forsyth, and James F. O’Brien. Fast and detailed approximate global illumination by irradiance decomposition. In ACM Transactions on Graphics (Proceedings of SIGGRAPH 2005), pages 1108–1114. ACM Press, July 2005. doi: 10.1145/1073204.1073319. URL http://doi.acm.org/10.1145/1073204.1073319. 47, 48, 52 James Arvo. The irradiance jacobian for partially occluded polyhedral sources. In Computer Graphics (Proceedings of SIGGRAPH 94), pages 343–350. ACM Press, 1994. ISBN 0-89791-667-0. doi: 10.1145/192161.192250. URL http://dx.doi.org/10.1145/192161.192250. 72, 102 Neeta Bhate. Application of rapid hierarchical radiosity to participating media. In Proceedings of ATARV-93: Advanced Techniques in Animation, Rendering, and Visualization, pages 43–53, Ankara, Turkey, July 1993. Bilkent University. 69 Neeta Bhate and A. Tokuta. Photorealistic volume rendering of media with directional scattering. In Alan Chalmers, Derek Paddon, and François Sillion, editors, Rendering Techniques ’92, Eurographics, pages 227–246. Consolidation Express Bristol, 1992. 69 Miguel A. Blanco, M. Florez, and M. Bermejo. Evaluation of the rotation matrices in the basis of real spherical harmonics. Journal Molecular Structure (Theochem), 419:19–27, December 1997.
    [Show full text]
  • Efficient Ray Tracing of Volume Data
    Efficient Ray Tracing of Volume Data TR88-029 June 1988 Marc Levay The University of North Carolina at Chapel Hill Department of Computer Science CB#3175, Sitterson Hall Chapel Hill, NC 27599-3175 UNC is an Equal Opportunity/ Affirmative Action Institution. 1 Efficient Ray Tracing of Volume Data Marc Levoy June, 1988 Computer Science Department University of North Carolina Chapel Hill, NC 27599 Abstract Volume rendering is a technique for visualizing sampled scalar functions of three spatial dimen­ sions without fitting geometric primitives to the data. Images are generated by computing 2-D pro­ jections of a colored semi-transparent volume, where the color and opacity at each point is derived from the data using local operators. Since all voxels participate in the generation of each image, rendering time grows linearly with the size of the dataset. This paper presents a front-to-back image-order volume rendering algorithm and discusses two methods for improving its performance. The first method employs a pyramid of binary volumes to encode coherence present in the data, and the second method uses an opacity threshold to adaptively terminate ray tracing. These methods exhibit a lower complexity than brute-force algorithms, although the actual time saved depends on the data. Examples from two applications are given: medical imaging and molecular graphics. 1. Introduction The increasing availability of powerful graphics workstations in the scientific and computing communities has catalyzed the development of new methods for visualizing discrete multidimen­ sional data. In this paper, we address the problem of visualizing sampled scalar functions of three spatial dimensions, henceforth referred to as volume data.
    [Show full text]
  • F I N a L P R O G R a M 1998
    1998 FINAL PROGRAM October 18 • October 23, 1998 Sheraton Imperial Hotel Research Triangle Park, NC THE INSTITUTE OF ELECTRICAL IEEE IEEE VISUALIZATION 1998 & ELECTRONICS ENGINEERS, INC. COMPUTER IEEE SOCIETY Sponsored by IEEE Computer Society Technical Committee on Computer Graphics In Cooperation with ACM/SIGGRAPH Sessions include Real-time Volume Rendering, Terrain Visualization, Flow Visualization, Surfaces & Level-of-Detail Techniques, Feature Detection & Visualization, Medical Visualization, Multi-Dimensional Visualization, Flow & Streamlines, Isosurface Extraction, Information Visualization, 3D Modeling & Visualization, Multi-Source Data Analysis Challenges, Interactive Visualization/VR/Animation, Terrain & Large Data Visualization, Isosurface & Volume Rendering, Simplification, Marine Data Visualization, Tensor/Flow, Key Problems & Thorny Issues, Image-based Techniques and Volume Analysis, Engineering & Design, Texturing and Rendering, Art & Visualization Get complete, up-to-date listings of program information from URL: http://www.erc.msstate.edu/vis98 http://davinci.informatik.uni-kl.de/Vis98 Volvis URL: http://www.erc.msstate.edu/volvis98 InfoVis URL: http://www.erc.msstate.edu/infovis98 or contact: Theresa-Marie Rhyne, Lockheed Martin/U.S. EPA Sci Vis Center, 919-541-0207, [email protected] Robert Moorhead, Mississippi State University, 601-325-2850, [email protected] Direct Vehicle Loading Access S Dock Salon Salon Sheraton Imperial VII VI Imperial Convention Center HOTEL & CONVENTION CENTER Convention Center Phones
    [Show full text]
  • Volume Rendering on Scalable Shared-Memory MIMD Architectures
    Volume Rendering on Scalable Shared-Memory MIMD Architectures Jason Nieh and Marc Levoy Computer Systems Laboratory Stanford University Abstract time. Examples of these optimizations are hierarchical opacity enumeration, early ray termination, and spatially adaptive image Volume rendering is a useful visualization technique for under- sampling [13, 14, 16, 181. Optimized ray tracing is the fastest standing the large amounts of data generated in a variety of scien- known sequential algorithm for volume rendering. Nevertheless, tific disciplines. Routine use of this technique is currently limited the computational requirements of the fastest sequential algorithm by its computational expense. We have designed a parallel volume still preclude real-time volume rendering on the fastest computers rendering algorithm for MIMD architectures based on ray tracing today. and a novel task queue image partitioning technique. The combi- Parallel machines offer the computational power to achieve real- nation of ray tracing and MIMD architectures allows us to employ time volume rendering on usefully large datasets. This paper con- algorithmic optimizations such as hierarchical opacity enumera- siders how parallel computing can be brought to bear in reducing tion, early ray termination, and adaptive image sampling. The use the computation time of volume rendering. We have designed of task queue image partitioning makes these optimizations effi- and implemented an optimized volume ray tracing algorithm that cient in aparallel framework. We have implemented our algorithm employs a novel task queue image partitioning technique on the on the Stanford DASH Multiprocessor, a scalable shared-memory Stanford DASH Multiprocessor [lo], a scalable shared-memory MIMD machine. Its single address-space and coherent caches pro- MIMD (Multiple Instruction, Multiple Data) machine consisting vide programming ease and good performance for our algorithm.
    [Show full text]
  • Computational Photography
    Computational Photography George Legrady © 2020 Experimental Visualization Lab Media Arts & Technology University of California, Santa Barbara Definition of Computational Photography • An R & D development in the mid 2000s • Computational photography refers to digital image-capture cameras where computers are integrated into the image-capture process within the camera • Examples of computational photography results include in-camera computation of digital panoramas,[6] high-dynamic-range images, light- field cameras, and other unconventional optics • Correlating one’s image with others through the internet (Photosynth) • Sensing in other electromagnetic spectrum • 3 Leading labs: Marc Levoy, Stanford (LightField, FrankenCamera, etc.) Ramesh Raskar, Camera Culture, MIT Media Lab Shree Nayar, CV Lab, Columbia University https://en.wikipedia.org/wiki/Computational_photography Definition of Computational Photography Sensor System Opticcs Software Processing Image From Shree K. Nayar, Columbia University From Shree K. Nayar, Columbia University Shree K. Nayar, Director (lab description video) • Computer Vision Laboratory • Lab focuses on vision sensors; physics based models for vision; algorithms for scene interpretation • Digital imaging, machine vision, robotics, human- machine interfaces, computer graphics and displays [URL] From Shree K. Nayar, Columbia University • Refraction (lens / dioptrics) and reflection (mirror / catoptrics) are combined in an optical system, (Used in search lights, headlamps, optical telescopes, microscopes, and telephoto lenses.) • Catadioptric Camera for 360 degree Imaging • Reflector | Recorded Image | Unwrapped [dance video] • 360 degree cameras [Various projects] Marc Levoy, Computer Science Lab, Stanford George Legrady Director, Experimental Visualization Lab Media Arts & Technology University of California, Santa Barbara http://vislab.ucsb.edu http://georgelegrady.com Marc Levoy, Computer Science Lab, Stanford • Light fields were introduced into computer graphics in 1996 by Marc Levoy and Pat Hanrahan.
    [Show full text]
  • COURSE NOTES 8 CASE STUDY: Scanning Michelangelo's Florentine Pieta`
    SIGGRAPH 99 26th International Conference on Computer Graphics and Interactive Techniques COURSE NOTES 8 CASE STUDY: Scanning Michelangelo's Florentine Pieta` Sunday, August 9, 1999 Two Hour Tutorial ORGANIZER Holly Rushmeier IBM TJ Watson Research Center LECTURERS Fausto Bernardini Joshua Mittleman Holly Rushmeier IBM TJ Watson Research Center 1-1 ABSTRACT We describe a recent project to create a 3D digital model of Michelangelo's Florentine Pieta`. The emphasis is on the practical issues such as equipment selection and modi®cation, the planning of data acquisition, dealing with the constraints of the museum environment, overcoming problems encountered with "real" rather than idealized data, and presenting the model in a form that is suitable for the art historian who is the end user. Art historian Jack Wasserman, working with IBM, initiated a project to create a digital model of Michelangelo's Florentine Pieta` to assist in a scholarly study. In the course of the project, we encountered many practical problems related to the size and topology of the work, and with completing the project within constraints of time, budget and the access allowed by the museum. While we have and will continue to publish papers on the individual new methods we have developed in the in course of solving various problems, a typical technical paper or presentation does not allow for the discussion of many important practical issues. We expect this course to be of interest to practitioners interested in acquiring digital models for computer graphics applications, end users who are interested in understanding what quality can be expected from acquired models, and researchers interested in ®nding research opportunities in the "gaps" in current acquisition methods.
    [Show full text]
  • Computational Photography Research at Stanford
    Computational photography research at Stanford January 2012 Marc Levoy Computer Science Department Stanford University Outline ! Light field photography ! FCam and the Stanford Frankencamera ! User interfaces for computational photography ! Ongoing projects • FrankenSLR • burst-mode photography • languages and architectures for programmable cameras • computational videography and cinematography • multi-bucket pixels 2 ! Marc Levoy Light field photography using a handheld plenoptic camera Ren Ng, Marc Levoy, Mathieu Brédif, Gene Duval, Mark Horowitz and Pat Hanrahan (Proc. SIGGRAPH 2005 and TR 2005-02) Light field photography [Ng SIGGRAPH 2005] ! Marc Levoy Prototype camera Contax medium format camera Kodak 16-megapixel sensor Adaptive Optics microlens array 125µ square-sided microlenses 4000 ! 4000 pixels ÷ 292 ! 292 lenses = 14 ! 14 pixels per lens Digital refocusing ! ! ! 2010 Marc Levoy Example of digital refocusing ! 2010 Marc Levoy Refocusing portraits ! 2010 Marc Levoy Light field photography (Flash demo) ! 2010 Marc Levoy Commercialization • trades off (excess) spatial resolution for ability to refocus and adjust the perspective • sensor pixels should be made even smaller, subject to the diffraction limit, for example: 36mm ! 24mm ÷ 2.5µ pixels = 266 Mpix 20K ! 13K pixels 4000 ! 2666 pixels ! 20 ! 20 rays per pixel or 2000 ! 1500 pixels ! 3 ! 3 rays per pixel = 27 Mpix ! Marc Levoy Camera 2.0 Marc Levoy Computer Science Department Stanford University The Stanford Frankencameras Frankencamera F2 Nokia N900 “F” ! facilitate research in experimental computational photography ! for students in computational photography courses worldwide ! proving ground for plugins and apps for future cameras 14 ! 2010 Marc Levoy CS 448A - Computational Photography 15 ! 2010 Marc Levoy CS 448 projects M. Culbreth, A. Davis!! ! ! A phone-to-phone 4D light field fax machine J.
    [Show full text]
  • IBM Research Report Reverse Engineering Methods for Digital
    RC23991 (W0606-132) June 28, 2006 Computer Science IBM Research Report Reverse Engineering Methods for Digital Restoration Applications Ioana Boier-Martin IBM Research Division Thomas J. Watson Research Center P.O. Box 704 Yorktown Heights, NY 10598 Holly Rushmeier Yale University New Haven, CT Research Division Almaden - Austin - Beijing - Haifa - India - T. J. Watson - Tokyo - Zurich LIMITED DISTRIBUTION NOTICE: This report has been submitted for publication outside of IBM and will probably be copyrighted if accepted for publication. I thas been issued as a Research Report for early dissemination of its contents. In view of the transfer of copyright to the outside publisher, its distribution outside of IBM prior to publication should be limited to peer communications and specific requests. After outside publication, requests should be filled only by reprints or legally obtained copies of the article (e.g ,. payment of royalties). Copies may be requested from IBM T. J. Watson Research Center , P. O. Box 218, Yorktown Heights, NY 10598 USA (email: [email protected]). Some reports are available on the internet at http://domino.watson.ibm.com/library/CyberDig.nsf/home . Reverse Engineering Methods for Digital Restoration Applications Ioana Boier-Martin Holly Rushmeier IBM T. J. Watson Research Center Yale University Hawthorne, New York, USA New Haven, Connecticut, USA [email protected] [email protected] Abstract In this paper we focus on the demands of restoring dig- ital objects for cultural heritage applications. However, the In this paper we discuss the challenges of processing methods we present are relevant to many other areas. and converting 3D scanned data to representations suit- This is a revised and extended version of our previous pa- able for interactive manipulation in the context of virtual per [12].
    [Show full text]
  • The 2019 Visualization Career Award Thomas Ertl
    The 2019 Visualization Career Award Thomas Ertl The 2019 Visualization Career Award goes to Thomas Ertl. Thomas Ertl is a Professor of Computer Science at the University of Stuttgart where he founded the Institute for Visualization and Interactive Systems (VIS) and the Visualization Research Center (VISUS). He received a MSc Thomas Ertl in Computer Science from the University of Colorado at University of Stuttgart Boulder and a PhD in Theoretical Astrophysics from the Award Recipient 2019 University of Tuebingen. After a few years as postdoc and cofounder of a Tuebingen based IT company, he moved to the University of Erlangen as a Professor of Computer Graphics and Visualization. He served the University of Thomas Ertl has had the privilege to collaborate with Stuttgart in various administrative roles including Dean excellent students, doctoral and postdoctoral researchers, of Computer Science and Electrical Engineering and Vice and with many colleagues around the world and he has President for Research and Advanced Graduate Education. always attributed the success of his group to working with Currently, he is the Spokesperson of the Cluster of them. He has advised more than fifty PhD researchers and Excellence Data-Integrated Simulation Science and Director hosted numerous postdoctoral researchers. More than ten of the Stuttgart Center for Simulation Science. of them are now holding professorships, others moved to His research interests include visualization, computer prestigious academic or industrial positions. He also has graphics, and human computer interaction in general with numerous ties to industry and he actively pursues research a focus on volume rendering, flow and particle visualization, on innovative visualization applications for the physical and hierarchical and adaptive algorithms for large datasets, par- life sciences and various engineering domains as well as in allel and hardware accelerated visual computing systems, the digital humanities.
    [Show full text]
  • Yale University Department of Computer Science
    Yale University Department of Computer Science A Psychophysical Study of Dominant Texture Detection Jianye Lu Alexandra Garr-Schultz Julie Dorsey Holly Rushmeier YALEU/DCS/TR-1417 June 2009 Contents 1 Introduction 4 2 Psychophysical Studies and Computer Graphics 5 2.1 Diffusion Distance Manifolds . 5 2.2 PsychophysicalExperiments. 5 2.3 Psychophysics Applications in Graphics . 7 3 Experimental Method 8 4 Subject Response Analysis 12 4.1 AnalysiswithANOVA . 12 4.2 AnalysiswithMDS........................ 12 4.3 AnalysiswithScaling. 17 5 Texture Features 20 6 Conclusion 24 A Collection of Psychophysical Studies in Graphics 25 1 List of Figures 1 Dominant texture and texture synthesis . 4 2 Decision tree for psychophysical experiment selection . ... 7 3 Textures for psychophysical experiment . 9 4 User interface for psychophysical experiment . 10 5 Technique preferences based on ANOVA . 13 6 Technique significance with respect to individual texture . 14 7 Technique significance with respect to individual participant . 15 8 Participants on a 2-D MDS configuration . 16 9 Texture samples on 2-D MDS configuration . 18 10 Pairedcomparisonscaling . 19 11 PC-scalesfortestingtextures . 20 12 Textures on PC-scale-based 2-D MDS configuration . 21 13 Spearman’s correlation between texture descriptors and PC- scales ............................... 23 List of Tables 1 Linear correlation between paired comparison scales . 20 2 Qualitative correlation between texture descriptors and PC- scales ............................... 24 2 A Psychophysical Study of Dominant Texture Detection∗ Jianye Lu, Alexandra Garr-Schultz, Julie Dorsey, and Holly Rushmeier Abstract Images of everyday scenes are frequently used as input for texturing 3D models in computer graphics. Such images include both the texture desired and other extraneous information.
    [Show full text]
  • Tone Reproduction for Interactive Walkthroughs
    EUROGRAPHICS ’2000 / M. Gross and F.R.A. Hopgood Volume 19, (2000), Number 3 (Guest Editors) Tone Reproduction for Interactive Walkthroughs A. Scheel, M. Stamminger, H.-P. Seidel Max-Planck-Institute for Computer Science, Saarbrücken, Germany Abstract When a rendering algorithm has created a pixel array of radiance values the task of producing an image is not yet completed. In fact, to visualize the result the radiance values still have to be mapped to luminances, which can be reproduced by the used display. This step is performed with the help of tone reproduction operators. These tools have mainly been applied to still images, but of course they are just as necessary for walkthrough applications, in which several images are created per second. In this paper we illuminate the physiological aspects of tone reproduction for interactive applications. It is shown how tone reproduction can also be introduced into interactive radiosity viewers, where the tone reproduction continuously adjusts to the current view of the user. The overall performance is decreased only moderately, still allowing walkthroughs of large scenes. 1. Introduction of real world luminances visible by the human eye (about 6 ¤ 8 2 5 ¥ 10 £ 10 cd m ) by far exceeds the dynamic range of Physically based rendering can be split into three phases. ¤ 2 the monitor (about 1 120 cd ¥ m ). First a model of the virtual world has to be created. This includes the geometry of the scene, the surface reflectance To achieve their goal, most tone reproduction operators behavior, and the emission characteristics of light sources. mimic the functioning of the visual system (or at least some Second, a simulation of light exchange is performed within aspects of it).
    [Show full text]