Narrow Environmental Niches Predict Land-Use Responses And
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A New Approach to an Old Conundrumdna Barcoding Sheds
Molecular Ecology Resources (2010) doi: 10.1111/j.1755-0998.2010.02937.x DNA BARCODING A new approach to an old conundrum—DNA barcoding sheds new light on phenotypic plasticity and morphological stasis in microsnails (Gastropoda, Pulmonata, Carychiidae) ALEXANDER M. WEIGAND,* ADRIENNE JOCHUM,* MARKUS PFENNINGER,† DIRK STEINKE‡ and ANNETTE KLUSSMANN-KOLB*,† *Institute for Ecology, Evolution and Diversity, Siesmayerstrasse 70, Goethe-University, 60323 Frankfurt am Main, Germany, †Research Centre Biodiversity and Climate, Siesmayerstrasse 70, 60323 Frankfurt am Main, Germany, ‡Biodiversity Institute of Ontario, University of Guelph, 50 Stone Road West, Guelph, ON N1G 2V7, Canada Abstract The identification of microsnail taxa based on morphological characters is often a time-consuming and inconclusive process. Aspects such as morphological stasis and phenotypic plasticity further complicate their taxonomic designation. In this study, we demonstrate that the application of DNA barcoding can alleviate these problems within the Carychiidae (Gastro- poda, Pulmonata). These microsnails are a taxon of the pulmonate lineage and most likely migrated onto land indepen- dently of the Stylommatophora clade. Their taxonomical classification is currently based on conchological and anatomical characters only. Despite much confusion about historic species assignments, the Carychiidae can be unambiguously subdi- vided into two taxa: (i) Zospeum species, which are restricted to karst caves, and (ii) Carychium species, which occur in a broad range of environmental conditions. The implementation of discrete molecular data (COI marker) enabled us to cor- rectly designate 90% of the carychiid microsnails. The remaining cases were probably cryptic Zospeum and Carychium taxa and incipient species, which require further investigation into their species status. Because conventional reliance upon mostly continuous (i.e. -
ED45E Rare and Scarce Species Hierarchy.Pdf
104 Species 55 Mollusc 8 Mollusc 334 Species 181 Mollusc 28 Mollusc 44 Species 23 Vascular Plant 14 Flowering Plant 45 Species 23 Vascular Plant 14 Flowering Plant 269 Species 149 Vascular Plant 84 Flowering Plant 13 Species 7 Mollusc 1 Mollusc 42 Species 21 Mollusc 2 Mollusc 43 Species 22 Mollusc 3 Mollusc 59 Species 30 Mollusc 4 Mollusc 59 Species 31 Mollusc 5 Mollusc 68 Species 36 Mollusc 6 Mollusc 81 Species 43 Mollusc 7 Mollusc 105 Species 56 Mollusc 9 Mollusc 117 Species 63 Mollusc 10 Mollusc 118 Species 64 Mollusc 11 Mollusc 119 Species 65 Mollusc 12 Mollusc 124 Species 68 Mollusc 13 Mollusc 125 Species 69 Mollusc 14 Mollusc 145 Species 81 Mollusc 15 Mollusc 150 Species 84 Mollusc 16 Mollusc 151 Species 85 Mollusc 17 Mollusc 152 Species 86 Mollusc 18 Mollusc 158 Species 90 Mollusc 19 Mollusc 184 Species 105 Mollusc 20 Mollusc 185 Species 106 Mollusc 21 Mollusc 186 Species 107 Mollusc 22 Mollusc 191 Species 110 Mollusc 23 Mollusc 245 Species 136 Mollusc 24 Mollusc 267 Species 148 Mollusc 25 Mollusc 270 Species 150 Mollusc 26 Mollusc 333 Species 180 Mollusc 27 Mollusc 347 Species 189 Mollusc 29 Mollusc 349 Species 191 Mollusc 30 Mollusc 365 Species 196 Mollusc 31 Mollusc 376 Species 203 Mollusc 32 Mollusc 377 Species 204 Mollusc 33 Mollusc 378 Species 205 Mollusc 34 Mollusc 379 Species 206 Mollusc 35 Mollusc 404 Species 221 Mollusc 36 Mollusc 414 Species 228 Mollusc 37 Mollusc 415 Species 229 Mollusc 38 Mollusc 416 Species 230 Mollusc 39 Mollusc 417 Species 231 Mollusc 40 Mollusc 418 Species 232 Mollusc 41 Mollusc 419 Species 233 -
The Molluscs and Crustaceans of Glasgow Botanic Gardens, Scotland
The Glasgow Naturalist (online 2020) Volume 27, Part 3, 93-95 https://doi.org/10.37208/tgn27317 *Melanoides tuberculata (O.F. Müller, 1774). Red-rimmed melania. In a tropical pond in the Lily The molluscs and crustaceans of House (TW). There were thin and truncated Melanoides specimens found in the same pond and in the pond in the Glasgow Botanic Gardens, Scotland Orchid House (TW), but it is safe to assume that they too are M. tuberculata as it is a very variable species R.B. Weddle (BR) Arionidae 89 Novar Drive, Glasgow G12 9SS Arion owenii Davies, 1979. Tawny soil slug (AS). Arion rufus (Linnaeus, 1758). Large red slug (AS). E-mail: [email protected] Arion subfuscus (Draparnaud, 1805). Dusky slug. Main Gardens and North Kelvin area (AS; J. Dempster, 2018). Carychiinae This note focuses on mollusc and crustacean species that Carychium minimum O.F. Müller, 1774. Short- are additional to those listed as present in Glasgow toothed herald snail. Kibble Palace (TW). Botanic Gardens by Hancock (1999). Helicidae Cepaea hortensis (O.F. Müller, 1774). White-lipped MOLLUSCA snail. Arboretum (AS); Main Gardens (A. Malcolm, Since Hancock’s original On the Wildside account 2015). (Hancock, 1999) there have been several visits to the Cepaea nemoralis (Linnaeus, 1758). Brown-lipped Gardens, particularly to the glasshouses, by specialist snail. North Kelvin area (R.B. Weddle, 2011); Main conchologists, and several bioblitzes. This note Gardens summarises the recent findings and reviews one of the (A. Malcolm, 2018) historical records mentioned by Hancock. The absence of both Cepaea species from Hancock’s list is puzzling since there are records in Glasgow generally Nineteen species have been added to Hancock’s list, since the late 19th century (Glasgow Museums BRC). -
Revision of the Systematic Position of Lindbergia Garganoensis
Revision of the systematic position of Lindbergia garganoensis Gittenberger & Eikenboom, 2006, with reassignment to Vitrea Fitzinger, 1833 (Gastropoda, Eupulmonata, Pristilomatidae) Gianbattista Nardi Via Boschette 8A, 25064 Gussago (Brescia), Italy; [email protected] [corresponding author] Antonio Braccia Via Ischia 19, 25100 Brescia, Italy; [email protected] Simone Cianfanelli Museum System of University of Florence, Zoological Section “La Specola”, Via Romana 17, 50125 Firenze, Italy; [email protected] & Marco Bodon c/o Museum System of University of Florence, Zoological Section “La Specola”, Via Romana 17, 50125 Firenze, Italy; [email protected] Nardi, G., Braccia, A., Cianfanelli, S. & Bo- INTRODUCTION don, M., 2019. Revision of the systematic position of Lindbergia garganoensis Gittenberger & Eiken- Lindbergia garganoensis Gittenberger & Eikenboom, 2006 boom, 2006, with reassignment to Vitrea Fitzinger, is the first species of the genus, Lindbergia Riedel, 1959 to 1833 (Gastropoda, Eupulmonata, Pristilomatidae). be discovered in Italy. The genus Lindbergia encompasses – Basteria 83 (1-3): 19-28. Leiden. Published 6 April 2019 about ten different species, endemic to the Greek mainland, Crete, the Cycladic islands, Dodecanese islands, northern Aegean islands, and southern Turkey (Riedel, 1992, 1995, 2000; Welter-Schultes, 2012; Bank & Neubert, 2017). Due to Lindbergia garganoensis Gittenberger & Eikenboom, 2006, lack of anatomical data, some of these species remain ge- a taxon with mainly a south-Balkan distribution, is the only nerically questionable. Up to now, L. garganoensis was only Italian species assigned to the genus Lindbergia Riedel, 1959. known by the presence of very fine spiral striae on the tel- The assignment to this genus, as documented by the pecu- eoconch and by the general shape of its shell. -
Predatory Poiretia (Stylommatophora, Oleacinidae) Snails: Histology and Observations
Vita Malacologica 13: 35-48 20 December 2015 Predatory Poiretia (Stylommatophora, Oleacinidae) snails: histology and observations Renate A. HELWERDA Naturalis Biodiversity Center, Darwinweg 2, 2333 CR Leiden, The Netherlands email: [email protected] Key words: Predation, predatory snails, drilling holes, radula, pedal gland, sole gland, acidic mucus ABSTRACT The Mediterranean species occur in rather dry, often rocky habitats, which are openly to sparsely vegetated. The predatory behaviour of Poiretia snails is studied. One However, they also occur in anthropogenically affected areas aspect of this behaviour is the ability to make holes in the such as gardens and parks (Kittel, 1997). The snails are main - shells of prey snails. The radula and the histology of the ly active at night and are hidden away under rocks and leaf mucous glands support the assumption that Poiretia secretes litter during the day, although they can also be found crawling acidic mucus to produce these holes. Observation of a around during daytime if the weather is rainy or cloudy and Poiretia compressa (Mousson, 1859) specimen yielded the moist (Wagner, 1952; Maassen, 1977; Kittel, 1997). During insight that its activities relied on the availability of moisture the hot summer months, Poiretia snails aestivate by burying and not on light conditions. It preyed on a wide range of snail themselves in soil or under rocks and sealing their apertures species, but only produced holes in shells when the aperture with an epiphragm (Kittel, 1997). was blocked. It usually stabbed its prey with a quick motion Poiretia snails prey on a wide variety of pulmonate snails. -
Molluscs of the Dürrenstein Wilderness Area
Molluscs of the Dürrenstein Wilderness Area S a b i n e F ISCHER & M i c h a e l D UDA Abstract: Research in the Dürrenstein Wilderness Area (DWA) in the southwest of Lower Austria is mainly concerned with the inventory of flora, fauna and habitats, interdisciplinary monitoring and studies on ecological disturbances and process dynamics. During a four-year qualitative study of non-marine molluscs, 96 sites within the DWA and nearby nature reserves were sampled in cooperation with the “Alpine Land Snails Working Group” located at the Natural History Museum of Vienna. Altogether, 84 taxa were recorded (72 land snails, 12 water snails and mussels) including four endemics and seven species listed in the Austrian Red List of Molluscs. A reference collection (empty shells) of molluscs, which is stored at the DWA administration, was created. This project was the first systematic survey of mollusc fauna in the DWA. Further sampling might provide additional information in the future, particularly for Hydrobiidae in springs and caves, where detailed analyses (e.g. anatomical and genetic) are needed. Key words: Wilderness Dürrenstein, Primeval forest, Benign neglect, Non-intervention management, Mollusca, Snails, Alpine endemics. Introduction manifold species living in the wilderness area – many of them “refugees”, whose natural habitats have almost In concordance with the IUCN guidelines, research is disappeared in today’s over-cultivated landscape. mandatory for category I wilderness areas. However, it may not disturb the natural habitats and communities of the nature reserve. Research in the Dürrenstein The Dürrenstein Wilderness Area Wilderness Area (DWA) focuses on providing invento- (DWA) ries of flora and fauna, on interdisciplinary monitoring The Dürrenstein Wilderness Area (DWA) was as well as on ecological disturbances and process dynamics. -
Molluscs, by Michael J
Cambourne New Settlement Iron Age and Romano-British settlement on the clay uplands of west Cambridgeshire Volume 2: Specialist Appendices Web Report 15 Molluscs, by Michael J. Allen Cambourne New Settlement Iron Age and Romano-British Settlement on the Clay Uplands of West Cambridgeshire By James Wright, Matt Leivers, Rachael Seager Smith and Chris J. Stevens with contributions from Michael J. Allen, Phil Andrews, Catherine Barnett, Kayt Brown, Rowena Gale, Sheila Hamilton-Dyer, Kevin Hayward, Grace Perpetua Jones, Jacqueline I. McKinley, Robert Scaife, Nicholas A. Wells and Sarah F. Wyles Illustrations by S.E. James Volume 2: Specialist Appendices Part 1. Artefacts Part 2. Ecofacts Wessex Archaeology Report No. 23 Wessex Archaeology 2009 Published 2009 by Wessex Archaeology Ltd Portway House, Old Sarum Park, Salisbury, SP4 6EB http://www.wessexarch.co.uk Copyright © 2009 Wessex Archaeology Ltd All rights reserved ISBN 978-1-874350-49-1 Project website http://www.wessexarch.co.uk/projects/cambridgeshire/cambourne WA reports web pages http://www.wessexarch.co.uk/projects/cambridgeshire/cambourne/reports ii Contents Web pdf 1 Contents and Concordance of sites and summary details of archive ................................ iii Part 1. Artefacts 2 Prehistoric pottery, by Matt Leivers.....................................................................................1 2 Late Iron Age pottery, by Grace Perpetua Jones................................................................11 2 Romano-British pottery, by Rachael Seager Smith ...........................................................14 -
Conservation Status of a Recently Described Endemic Land Snail, Candidula Coudensis, from the Iberian Peninsula
RESEARCH ARTICLE Conservation Status of a Recently Described Endemic Land Snail, Candidula coudensis, from the Iberian Peninsula Francisco Moreira1,2,3☯*, Gonçalo Calado1☯, Susana Dias1,3☯ 1 Department of Life Sciences, Lusófona University, Campo Grande, Lisbon, Portugal, 2 REN Biodiversity Chair, CIBIO/InBIO Associate Laboratory, Uxniversidade do Porto, Campus Agrário de Vairão, Vairão, Portugal, 3 Centro de Ecologia Aplicada Prof. Baeta Neves/InBIO Associate Laboratory, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, Lisbon, Portugal ☯ These authors contributed equally to this work. * [email protected] Abstract We assessed the distribution, population size and conservation status of Candidula cou- densis, a recently described endemic land snail from Portugal. From March 2013 to April 2014, surveys were carried out in the region where the species was described. We found an extent of occurrence larger than originally described, but still quite small (13.5 km2). The species was found mainly in olive groves, although it occurred in a variety of other habitats OPEN ACCESS with limestone soils, including grasslands, scrublands and stone walls. Minimum population – Citation: Moreira F, Calado G, Dias S (2015) estimate ranged from 110,000 311,000 individuals. The main identified potential threats to Conservation Status of a Recently Described the species include wildfires, pesticides and quarrying. Following the application of IUCN Endemic Land Snail, Candidula coudensis, from the criteria, we advise a conservation status of either “Least Concern” or “Near-threatened” Iberian Peninsula. PLoS ONE 10(9): e0138464. under criterion D (restricted population). doi:10.1371/journal.pone.0138464 Editor: Donald James Colgan, Australian Museum, AUSTRALIA Received: May 13, 2015 Accepted: August 31, 2015 Introduction Published: September 17, 2015 Land snails of the Iberian Peninsula are quite diverse, with some clades reaching high levels of Copyright: © 2015 Moreira et al. -
Fauna of New Zealand Ko Te Aitanga Pepeke O Aotearoa
aua o ew eaa Ko te Aiaga eeke o Aoeaoa IEEAE SYSEMAICS AISOY GOU EESEAIES O ACAE ESEAC ema acae eseac ico Agicuue & Sciece Cee P O o 9 ico ew eaa K Cosy a M-C aiièe acae eseac Mou Ae eseac Cee iae ag 917 Aucka ew eaa EESEAIE O UIESIIES M Emeso eame o Eomoogy & Aima Ecoogy PO o ico Uiesiy ew eaa EESEAIE O MUSEUMS M ama aua Eiome eame Museum o ew eaa e aa ogaewa O o 7 Weigo ew eaa EESEAIE O OESEAS ISIUIOS awece CSIO iisio o Eomoogy GO o 17 Caea Ciy AC 1 Ausaia SEIES EIO AUA O EW EAA M C ua (ecease ue 199 acae eseac Mou Ae eseac Cee iae ag 917 Aucka ew eaa Fauna of New Zealand Ko te Aitanga Pepeke o Aotearoa Number / Nama 38 Naturalised terrestrial Stylommatophora (Mousca Gasooa Gay M ake acae eseac iae ag 317 amio ew eaa 4 Maaaki Whenua Ρ Ε S S ico Caeuy ew eaa 1999 Coyig © acae eseac ew eaa 1999 o a o is wok coee y coyig may e eouce o coie i ay om o y ay meas (gaic eecoic o mecaica icuig oocoyig ecoig aig iomaio eiea sysems o oewise wiou e wie emissio o e uise Caaoguig i uicaio AKE G Μ (Gay Micae 195— auase eesia Syommaooa (Mousca Gasooa / G Μ ake — ico Caeuy Maaaki Weua ess 1999 (aua o ew eaa ISS 111-533 ; o 3 IS -7-93-5 I ie 11 Seies UC 593(931 eae o uIicaio y e seies eio (a comee y eo Cosy usig comue-ase e ocessig ayou scaig a iig a acae eseac M Ae eseac Cee iae ag 917 Aucka ew eaa Māoi summay e y aco uaau Cosuas Weigo uise y Maaaki Weua ess acae eseac O o ico Caeuy Wesie //wwwmwessco/ ie y G i Weigo o coe eoceas eicuaum (ue a eigo oaa (owe (IIusao G M ake oucio o e coou Iaes was ue y e ew eaIa oey oa ue oeies eseac -
Draft Carpathian Red List of Forest Habitats
CARPATHIAN RED LIST OF FOREST HABITATS AND SPECIES CARPATHIAN LIST OF INVASIVE ALIEN SPECIES (DRAFT) PUBLISHED BY THE STATE NATURE CONSERVANCY OF THE SLOVAK REPUBLIC 2014 zzbornik_cervenebornik_cervene zzoznamy.inddoznamy.indd 1 227.8.20147.8.2014 222:36:052:36:05 © Štátna ochrana prírody Slovenskej republiky, 2014 Editor: Ján Kadlečík Available from: Štátna ochrana prírody SR Tajovského 28B 974 01 Banská Bystrica Slovakia ISBN 978-80-89310-81-4 Program švajčiarsko-slovenskej spolupráce Swiss-Slovak Cooperation Programme Slovenská republika This publication was elaborated within BioREGIO Carpathians project supported by South East Europe Programme and was fi nanced by a Swiss-Slovak project supported by the Swiss Contribution to the enlarged European Union and Carpathian Wetlands Initiative. zzbornik_cervenebornik_cervene zzoznamy.inddoznamy.indd 2 115.9.20145.9.2014 223:10:123:10:12 Table of contents Draft Red Lists of Threatened Carpathian Habitats and Species and Carpathian List of Invasive Alien Species . 5 Draft Carpathian Red List of Forest Habitats . 20 Red List of Vascular Plants of the Carpathians . 44 Draft Carpathian Red List of Molluscs (Mollusca) . 106 Red List of Spiders (Araneae) of the Carpathian Mts. 118 Draft Red List of Dragonfl ies (Odonata) of the Carpathians . 172 Red List of Grasshoppers, Bush-crickets and Crickets (Orthoptera) of the Carpathian Mountains . 186 Draft Red List of Butterfl ies (Lepidoptera: Papilionoidea) of the Carpathian Mts. 200 Draft Carpathian Red List of Fish and Lamprey Species . 203 Draft Carpathian Red List of Threatened Amphibians (Lissamphibia) . 209 Draft Carpathian Red List of Threatened Reptiles (Reptilia) . 214 Draft Carpathian Red List of Birds (Aves). 217 Draft Carpathian Red List of Threatened Mammals (Mammalia) . -
Organismu Latviskie Nosaukumi (2)
Biosistēmu Terminoloģijas Centra Biļetens 1(1) (2017): 21–51 ISSN 2501-0336 (online) http://www.rpd-science.org/BTCB/V001/BTCB_1_4.pdf © “RPD Science” Citēšanai: BTCB, 2017. Organismu latviskie nosaukumi (2). Biosistēmu Terminoloģijas Centra Biļetens 1(1): 21–51 Organismu latviskie nosaukumi (2) Latvian names of organisms (2) Zinātniskais nosaukums Atbilstība Pēdējā Scientific name Equivalence pārbaude Last verification A Abies gmelinii Rupr. (1845) = Larix gmelinii (Rupr.) Rupr. var. gmelinii 17.12.2016. Abies ledebourii Rupr. (1845) = Larix gmelinii (Rupr.) Rupr. var. gmelinii 17.12.2016. Abies menziesii Mirb. (1825) = Pseudotsuga menziesii (Mirb.) Franco var. menziesii 17.12.2016. Acaciaceae = Fabaceae 27.12.2016. Acalitus brevitarsus (Fockeu, 1890) melnalkšņa maurērce 16.12.2016. Acalitus calycophthirus (Nalepa, 1891) bērzu pumpurērce 16.12.2016. Acalitus essigi (Hassan, 1928) aveņu pangērce 16.12.2016. Acalitus longisetosus (Nalepa, 1892) bērzu sārtā maurērce 16.12.2016. Acalitus phloeocoptes (Nalepa, 1890) plūmju stumbra pangērce 16.12.2016. Acalitus phyllereus (Nalepa, 1919) baltalkšņa maurērce 16.12.2016. Acalitus plicans (Nalepa, 1917) dižskābaržu maurērce 16.12.2016. Acalitus rudis (Canestrini, 1890) bērzu baltā maurērce 16.12.2016. Acalitus stenaspis (Nalepa, 1891) dižskābaržu lapmalērce 16.12.2016. Acalitus vaccinii (Keifer, 1939) melleņu pumpurērce 16.12.2016. Acanthinula aculeata (O. F. Müller, 1774) mazais dzeloņgliemezis 16.12.2016. Acanthinula spinifera Mousson, 1872 Spānijas dzeloņgliemezis 16.12.2016. Acanthocardia echinata (Linnaeus, 1758) dzelkņainā sirsniņgliemene 16.12.2016. Acanthochitona crinita (Pennant, 1777) zaļais bruņgliemis 16.12.2016. Aceria brevipunctatus (Nalepa, 1889) = Aceria campestricola (Frauenfeld, 1865) 16.12.2016. Aceria brevirostris (Nalepa, 1892) ziepenīšu pangērce 16.12.2016. Aceria brevitarsus (Fockeu, 1890) = Acalitus brevitarsus (Fockeu, 1890) 16.12.2016. -
Using the Jolly-Seber Model to Characterise Xerolenta Obvia (Gastropoda: Geomitridae) Population ISSN 2255-9582
Environmental and Experimental Biology (2020) 18: 83–94 Original Paper http://doi.org/10.22364/eeb.18.08 Using the Jolly-Seber model to characterise Xerolenta obvia (Gastropoda: Geomitridae) population ISSN 2255-9582 Beāte Cehanoviča1, Arturs Stalažs2* 1Dobele State Gymnasium, Dzirnavu 2, Dobele LV–3701, Latvia 2Institute of Horticulture, Graudu 1, Ceriņi, Krimūnu pagasts, Dobeles novads LV–3701, Latvia *Corresponding author, E-mail: [email protected] Abstract The terrestrial snail species Xerolenta obvia (Menke) has colonized dry, steppe-like habitats that have been created as a result of human activities in many countries outside the natural range of this species. In Latvia, this species was first recorded in 1989 in Liepāja. Observations in recent years in Liepāja have shown that snails from their initial introduction sites on the railway have also spread to the sand dune habitats within the city limits. Given that there are no snails in dune habitats that are biologically equivalent to X. obvia, this species is considered to be potentially invasive. As the distribution trends of this species in Liepāja indicate a possible threat to dry habitats in natural areas, detailed study of the species was conducted for the population of this species located in Dobele. Monitoring was performed from May 26 to August 5, 2019, carrying out 11 surveys with one week interval using the capture and re-capture method. The maximum recorded distance travelled by of one snail was 29.7 m; the calculated minimum estimated population density was 170 individuals and the maximum was 2004 individuals. Key words: alien species, Dobele population, eastern heath snail, Helicella candicans, Helicella obvia, potentially invasive species.