Japan Journal of Industrial and Applied Mathematics (2019) 36:435–459 https://doi.org/10.1007/s13160-019-00348-4 ORIGINAL PAPER Iterative refinement for symmetric eigenvalue decomposition II: clustered eigenvalues Takeshi Ogita1 · Kensuke Aishima2 Received: 22 October 2018 / Revised: 5 February 2019 / Published online: 22 February 2019 © The Author(s) 2019 Abstract We are concerned with accurate eigenvalue decomposition of a real symmetric matrix A. In the previous paper (Ogita and Aishima in Jpn J Ind Appl Math 35(3): 1007–1035, 2018), we proposed an efficient refinement algorithm for improving the accuracy of all eigenvectors, which converges quadratically if a sufficiently accurate initial guess is given. However, since the accuracy of eigenvectors depends on the eigenvalue gap, it is difficult to provide such an initial guess to the algorithm in the case where A has clustered eigenvalues. To overcome this problem, we propose a novel algorithm that can refine approximate eigenvectors corresponding to clustered eigenvalues on the basis of the algorithm proposed in the previous paper. Numerical results are presented showing excellent performance of the proposed algorithm in terms of convergence rate and overall computational cost and illustrating an application to a quantum materials simulation. Keywords Accurate numerical algorithm · Iterative refinement · Symmetric eigenvalue decomposition · Clustered eigenvalues Mathematics Subject Classification 65F15 · 15A18 · 15A23 This study was partially supported by CREST, JST and JSPS KAKENHI Grant numbers 16H03917, 25790096. B Takeshi Ogita
[email protected] Kensuke Aishima
[email protected] 1 Division of Mathematical Sciences, School of Arts and Sciences, Tokyo Woman’s Christian University, 2-6-1 Zempukuji, Suginami-ku, Tokyo 167-8585, Japan 2 Faculty of Computer and Information Sciences, Hosei University, 3-7-2 Kajino-cho, Koganei-shi, Tokyo 184-8584, Japan 123 436 T.