PFEAST: a High Performance Sparse Eigenvalue Solver Using Distributed-Memory Linear Solvers

Total Page:16

File Type:pdf, Size:1020Kb

PFEAST: a High Performance Sparse Eigenvalue Solver Using Distributed-Memory Linear Solvers PFEAST: A High Performance Sparse Eigenvalue Solver Using Distributed-Memory Linear Solvers James Kestyn∗, Vasileios Kalantzisy, Eric Polizzi∗, Yousef Saady ∗Electrical and Computer Engineering Department, University of Massachusetts, Amherst, MA, U.S.A. yComputer Science and Engineering Department, University of Minnesota, Minneapolis, MN, U.S.A. Abstract—The FEAST algorithm and eigensolver for interior computing interior eigenpairs that makes use of a rational eigenvalue problems naturally possesses three distinct levels filter obtained from an approximation of the spectral pro- of parallelism. The solver is then suited to exploit modern jector. FEAST can be applied for solving both standard and computer architectures containing many interconnected proces- sors. This paper highlights a recent development within the generalized forms of Hermitian or non-Hermitian problems, software package that allows the dominant computational task, and belongs to the family of contour integration eigensolvers solving a set of complex linear systems, to be performed with a [32], [33], [3], [14], [15], [4]. Once a given search interval distributed memory solver. The software, written with a reverse- is selected, FEAST’s main computational task consists of communication-interface, can now be interfaced with any generic a numerical quadrature computation that involves solving MPI linear-system solver using a customized data distribution for the eigenvector solutions. This work utilizes two common independent linear systems along a complex contour. The “black-box” distributed memory linear-systems solvers (Cluster- algorithm can exploit natural parallelism at three different MKL-Pardiso and MUMPS), as well as our own application- levels: (i) search intervals can be treated separately (no over- specific domain-decomposition MPI solver, for a collection of 3- lap), (ii) linear systems can be solved independently across dimensional finite-element systems. We discuss and analyze how the quadrature nodes of the complex contour, and (iii) each parallel resources can be placed at all three levels simultaneously in order to achieve good scalability and optimal use of the complex linear system with multiple right-hand-sides can be computing platform. solved in parallel. Within a parallel environment, the algorithm complexity becomes then directly dependent on solving a I. INTRODUCTION single linear system. Eigenvalue problems are widely used across a diverse range The FEAST numerical library offers ‘black-box’ reverse of high performance computing applications. A generalized communication interfaces (RCI) which are both matrix format problem is defined by two n × n matrices A and B, with the and linear system solver independent, and can then be fully set (A, B) known as the matrix pencil. The eigenvalues Λ and customized by the end users to allow maximum flexibility for eigenvectors X are non-trivial solutions to their applications. In addition, FEAST offers the following set AX = BXΛ: (1) of desirable features: (i) high-robustness and a well defined The problem is called ‘standard’ if B reduces to the identity convergence rate, (ii) all multiplicities naturally captured, (iii) matrix or ‘generalized’ otherwise. In spite of the enormous no explicit orthogonalization procedure on eigenvectors, and progress that has been made over the last few decades in (iv) a reusable subspace when solving a series of related algorithms and software packages that compute the solution eigenproblems. Consequently, the software package has been to large sparse eigenvalue problems, the current state-of-the- very well received by application developers, especially in art methods are facing new challenges for achieving ever the electronic structure community. A common technique to higher levels of efficiency, accuracy and performance on calculate the electronic structure and ground-state properties modern parallel architectures. In particular, traditional methods of molecules is Density Functional Theory (DFT) [20], where suffer from the orthogonalization of a very large basis when many eigenvalue problems must be solved within a self many eigenpairs are computed. In this case, a divide-and- consistent loop. The FEAST algorithm is an ideal candidate conquer approach that can compute wanted eigenpairs by to parallelize this step, speeding up the time-to-solution for parts, becomes mandatory since ‘windows’ or ‘slices’ of the these calculations and allowing for the investigation of very spectrum can be computed independently of one another and large molecules containing thousands of atoms. orthogonalization between eigenvectors in different slices is So far, the FEAST software has been limited to the use no longer necessary. In this framework, all the resulting sub- of shared-memory system solvers (at the third level of par- intervals are called interior eigenvalue problems, in the sense allelism). In this paper we extend the software to operate on that they involve large blocks of eigenpairs located anywhere distributed memory platforms and interface the fully parallel inside the spectrum. version of FEAST (PFEAST) with three different MPI linear- The FEAST algorithm [27] and associated software package system solvers: (i) Cluster-MKL-Pardiso [17], (ii) MUMPS [28], [9] is an accelerated subspace iterative technique for [1], and (iii) our own custom domain-decomposition solver for SC16; Salt Lake City, Utah, USA; November 2016 978-1-4673-8815-3/16/$31.00 c 2016 IEEE electronic structure calculations [24]. Three separate levels of Algorithm 1 The FEAST Algorithm ~ communication must be managed within the software kernel 1: input: A, B, Xm0 , f(zj ;!j )g1;:::;ne , and the multilevel parallel capabilities of the eigensolver result 2: while ( jjAX~m − BX~mΛmjj > ) do in a trade-off between memory and performance. Parallel re- 3: Qm0 = 0 sources can be placed at all three levels simultaneously in order 4: for ( j = 0; j < ne; j = j + 1 ) do (j) −1 ~ to achieve good scalability and optimal use of the computing 5: Qm0 (zj B − A) BXm0 (j) platform. This paper aims to highlight the flexibility of the 6: Qm0 Qm0 + !j Qm0 eigensolver and describe how the new PFEAST kernel can 7: end for H H be interfaced with different MPI linear-system solvers using 8: Aq = Q AQ Bq = Q BQ specific data distributions for input matrices and right-hand- 9: Solve AqWq = BqWqΛq ~ ~ side vectors. We then benchmark the eigensolvers performance 10: Xm0 = Qm0 Wq Λ = Λq with the three different solvers, showcase its scalability at each 11: end while level of parallelism, and discuss how to optimally distribute 12: output: X~m, Λ~ m parallel resources. II. THE FEAST ALGORITHM In practice, the spectral projector must be approximated using a quadrature rule using ne integration nodes and weights The FEAST algorithm utilizes spectral projection and f(zj;!j)gj=1;:::;n i.e. subspace iteration to obtain selected interior eigenpairs. A e n Rayleigh-Ritz procedure is used to project matrices A and Xe Q = ! (z B − A)−1BX~ ; (6) B onto a reduced search subspace to form matrices m0 j j m0 j=1 H H Aq = Q AQ and Bq = Q BQ: (2) where we also consider a search subspace of size m0 ≥ m. The computation of Q amounts to solving a set of n ~ ~ m0 e Approximate eigenvalues Λ and eigenvectors X of the orig- complex shifted linear-systems inal system (i.e. Ritz-values and Ritz-vectors) can then be n Xe recovered from the solutions of the much smaller eigenvalue (z B − A)Q(j) = BX~ Q = ! Q(j) : j m0 m0 with m0 j m0 (7) problem j=1 AqWq = BqWqΛq (3) This matrix Qm0 is then used as the Rayleigh-Ritz projec- A B as tion operator to form reduced matrices q and q of (2). If the exact spectral projector was known, solving the reduced eigen- X~ = QWq and Λ~ = Λq: (4) problem in (3) will produce the exact eigenvalues Λ~ = Λq = Λ and eigenvectors X~ = QW = X. However, since it is only Initializing X~ as a set of m random vectors and obtaining q m approximated, the Ritz-values Λ and updated Ritz-vectors X~ Q after QR factorization of X~ , results in a standard q m m are only an approximation to the true eigenpairs. Subspace subspace iteration (i.e. power method) that converges linearly iteration will then, in effect, tilt the subspace spanned by toward the dominant eigenpairs [31]. Many other sophisticated columns of X~ toward the desire eigenspace. At convergence Krylov-based methods have also been developed to improve we will obtain X~ = Q = X and Λ~ = Λ. The general outline the convergence rate for the calculation of selected smallest, can be seen in Algorithm 1 for computing m eigenpairs in a largest or interior eigenpairs [22], [19], [6], [36]. The subspace given search interval. The input X~ can be chosen as a set of iteration technique, in turn, can be efficiently used for solving m random vectors or a previously calculated solution to a the interior eigenvalue problem when it is combined with 0 closely related problem. filtering which aims to improve the convergence by increasing The purpose of this section is not to provide a thorough the gap between wanted eigenvalues and unwanted ones. It is understanding of the FEAST algorithm, but to give a general well known that Ritz-pairs (X~ , Λ~) converge toward the true m idea of the algorithmic steps involved. A detailed numer- eigenpairs (X , Λ) at a rate determined by the filter [31], m ical analysis can be found in [38]. Additional information [26], [38]. In theory, the ideal filter for the Hermitian problem regarding the application of FEAST to non-symmetric and would act as a projection operator X XH B onto the subspace m m non-Hermitian systems is available in [18], [37], [21], [40]. spanned by the eigenvector basis, which can be expressed via In particular, we would like to emphasize that the main the Cauchy integral formula: computational procedure within the algorithm is solving the I set of complex linear-systems in (7).
Recommended publications
  • Arxiv:1911.09220V2 [Cs.MS] 13 Jul 2020
    MFEM: A MODULAR FINITE ELEMENT METHODS LIBRARY ROBERT ANDERSON, JULIAN ANDREJ, ANDREW BARKER, JAMIE BRAMWELL, JEAN- SYLVAIN CAMIER, JAKUB CERVENY, VESELIN DOBREV, YOHANN DUDOUIT, AARON FISHER, TZANIO KOLEV, WILL PAZNER, MARK STOWELL, VLADIMIR TOMOV Lawrence Livermore National Laboratory, Livermore, USA IDO AKKERMAN Delft University of Technology, Netherlands JOHANN DAHM IBM Research { Almaden, Almaden, USA DAVID MEDINA Occalytics, LLC, Houston, USA STEFANO ZAMPINI King Abdullah University of Science and Technology, Thuwal, Saudi Arabia Abstract. MFEM is an open-source, lightweight, flexible and scalable C++ library for modular finite element methods that features arbitrary high-order finite element meshes and spaces, support for a wide variety of dis- cretization approaches and emphasis on usability, portability, and high-performance computing efficiency. MFEM's goal is to provide application scientists with access to cutting-edge algorithms for high-order finite element mesh- ing, discretizations and linear solvers, while enabling researchers to quickly and easily develop and test new algorithms in very general, fully unstructured, high-order, parallel and GPU-accelerated settings. In this paper we describe the underlying algorithms and finite element abstractions provided by MFEM, discuss the software implementation, and illustrate various applications of the library. arXiv:1911.09220v2 [cs.MS] 13 Jul 2020 1. Introduction The Finite Element Method (FEM) is a powerful discretization technique that uses general unstructured grids to approximate the solutions of many partial differential equations (PDEs). It has been exhaustively studied, both theoretically and in practice, in the past several decades [1, 2, 3, 4, 5, 6, 7, 8]. MFEM is an open-source, lightweight, modular and scalable software library for finite elements, featuring arbitrary high-order finite element meshes and spaces, support for a wide variety of discretization approaches and emphasis on usability, portability, and high-performance computing (HPC) efficiency [9].
    [Show full text]
  • Accelerating the LOBPCG Method on Gpus Using a Blocked Sparse Matrix Vector Product
    Accelerating the LOBPCG method on GPUs using a blocked Sparse Matrix Vector Product Hartwig Anzt and Stanimire Tomov and Jack Dongarra Innovative Computing Lab University of Tennessee Knoxville, USA Email: [email protected], [email protected], [email protected] Abstract— the computing power of today’s supercomputers, often accel- erated by coprocessors like graphics processing units (GPUs), This paper presents a heterogeneous CPU-GPU algorithm design and optimized implementation for an entire sparse iter- becomes challenging. ative eigensolver – the Locally Optimal Block Preconditioned Conjugate Gradient (LOBPCG) – starting from low-level GPU While there exist numerous efforts to adapt iterative lin- data structures and kernels to the higher-level algorithmic choices ear solvers like Krylov subspace methods to coprocessor and overall heterogeneous design. Most notably, the eigensolver technology, sparse eigensolvers have so far remained out- leverages the high-performance of a new GPU kernel developed side the main focus. A possible explanation is that many for the simultaneous multiplication of a sparse matrix and a of those combine sparse and dense linear algebra routines, set of vectors (SpMM). This is a building block that serves which makes porting them to accelerators more difficult. Aside as a backbone for not only block-Krylov, but also for other from the power method, algorithms based on the Krylov methods relying on blocking for acceleration in general. The subspace idea are among the most commonly used general heterogeneous LOBPCG developed here reveals the potential of eigensolvers [1]. When targeting symmetric positive definite this type of eigensolver by highly optimizing all of its components, eigenvalue problems, the recently developed Locally Optimal and can be viewed as a benchmark for other SpMM-dependent applications.
    [Show full text]
  • MFEM: a Modular Finite Element Methods Library
    MFEM: A Modular Finite Element Methods Library Robert Anderson1, Andrew Barker1, Jamie Bramwell1, Jakub Cerveny2, Johann Dahm3, Veselin Dobrev1,YohannDudouit1, Aaron Fisher1,TzanioKolev1,MarkStowell1,and Vladimir Tomov1 1Lawrence Livermore National Laboratory 2University of West Bohemia 3IBM Research July 2, 2018 Abstract MFEM is a free, lightweight, flexible and scalable C++ library for modular finite element methods that features arbitrary high-order finite element meshes and spaces, support for a wide variety of discretization approaches and emphasis on usability, portability, and high-performance computing efficiency. Its mission is to provide application scientists with access to cutting-edge algorithms for high-order finite element meshing, discretizations and linear solvers. MFEM also enables researchers to quickly and easily develop and test new algorithms in very general, fully unstructured, high-order, parallel settings. In this paper we describe the underlying algorithms and finite element abstractions provided by MFEM, discuss the software implementation, and illustrate various applications of the library. Contents 1 Introduction 3 2 Overview of the Finite Element Method 4 3Meshes 9 3.1 Conforming Meshes . 10 3.2 Non-Conforming Meshes . 11 3.3 NURBS Meshes . 12 3.4 Parallel Meshes . 12 3.5 Supported Input and Output Formats . 13 1 4 Finite Element Spaces 13 4.1 FiniteElements....................................... 14 4.2 DiscretedeRhamComplex ................................ 16 4.3 High-OrderSpaces ..................................... 17 4.4 Visualization . 18 5 Finite Element Operators 18 5.1 DiscretizationMethods................................... 18 5.2 FiniteElementLinearSystems . 19 5.3 Operator Decomposition . 23 5.4 High-Order Partial Assembly . 25 6 High-Performance Computing 27 6.1 Parallel Meshes, Spaces, and Operators . 27 6.2 Scalable Linear Solvers .
    [Show full text]
  • Deflation by Restriction for the Inverse-Free Preconditioned Krylov Subspace Method
    NUMERICAL ALGEBRA, doi:10.3934/naco.2016.6.55 CONTROL AND OPTIMIZATION Volume 6, Number 1, March 2016 pp. 55{71 DEFLATION BY RESTRICTION FOR THE INVERSE-FREE PRECONDITIONED KRYLOV SUBSPACE METHOD Qiao Liang Department of Mathematics University of Kentucky Lexington, KY 40506-0027, USA Qiang Ye∗ Department of Mathematics University of Kentucky Lexington, KY 40506-0027, USA (Communicated by Xiaoqing Jin) Abstract. A deflation by restriction scheme is developed for the inverse-free preconditioned Krylov subspace method for computing a few extreme eigen- values of the definite symmetric generalized eigenvalue problem Ax = λBx. The convergence theory for the inverse-free preconditioned Krylov subspace method is generalized to include this deflation scheme and numerical examples are presented to demonstrate the convergence properties of the algorithm with the deflation scheme. 1. Introduction. The definite symmetric generalized eigenvalue problem for (A; B) is to find λ 2 R and x 2 Rn with x 6= 0 such that Ax = λBx (1) where A; B are n × n symmetric matrices and B is positive definite. The eigen- value problem (1), also referred to as a pencil eigenvalue problem (A; B), arises in many scientific and engineering applications, such as structural dynamics, quantum mechanics, and machine learning. The matrices involved in these applications are usually large and sparse and only a few of the eigenvalues are desired. Iterative methods such as the Lanczos algorithm and the Arnoldi algorithm are some of the most efficient numerical methods developed in the past few decades for computing a few eigenvalues of a large scale eigenvalue problem, see [1, 11, 19].
    [Show full text]
  • XAMG: a Library for Solving Linear Systems with Multiple Right-Hand
    XAMG: A library for solving linear systems with multiple right-hand side vectors B. Krasnopolsky∗, A. Medvedev∗∗ Institute of Mechanics, Lomonosov Moscow State University, 119192 Moscow, Michurinsky ave. 1, Russia Abstract This paper presents the XAMG library for solving large sparse systems of linear algebraic equations with multiple right-hand side vectors. The library specializes but is not limited to the solution of linear systems obtained from the discretization of elliptic differential equations. A corresponding set of numerical methods includes Krylov subspace, algebraic multigrid, Jacobi, Gauss-Seidel, and Chebyshev iterative methods. The parallelization is im- plemented with MPI+POSIX shared memory hybrid programming model, which introduces a three-level hierarchical decomposition using the corre- sponding per-level synchronization and communication primitives. The code contains a number of optimizations, including the multilevel data segmen- tation, compression of indices, mixed-precision floating-point calculations, arXiv:2103.07329v1 [cs.MS] 12 Mar 2021 vector status flags, and others. The XAMG library uses the program code of the well-known hypre library to construct the multigrid matrix hierar- chy. The XAMG’s own implementation for the solve phase of the iterative methods provides up to a twofold speedup compared to hypre for the tests ∗E-mail address: [email protected] ∗∗E-mail address: [email protected] Preprint submitted to Elsevier March 15, 2021 performed. Additionally, XAMG provides extended functionality to solve systems with multiple right-hand side vectors. Keywords: systems of linear algebraic equations, Krylov subspace iterative methods, algebraic multigrid method, multiple right-hand sides, hybrid programming model, MPI+POSIX shared memory Nr.
    [Show full text]
  • A Generalized Eigenvalue Algorithm for Tridiagonal Matrix Pencils Based on a Nonautonomous Discrete Integrable System
    A generalized eigenvalue algorithm for tridiagonal matrix pencils based on a nonautonomous discrete integrable system Kazuki Maedaa, , Satoshi Tsujimotoa ∗ aDepartment of Applied Mathematics and Physics, Graduate School of Informatics, Kyoto University, Kyoto 606-8501, Japan Abstract A generalized eigenvalue algorithm for tridiagonal matrix pencils is presented. The algorithm appears as the time evolution equation of a nonautonomous discrete integrable system associated with a polynomial sequence which has some orthogonality on the support set of the zeros of the characteristic polynomial for a tridiagonal matrix pencil. The convergence of the algorithm is discussed by using the solution to the initial value problem for the corresponding discrete integrable system. Keywords: generalized eigenvalue problem, nonautonomous discrete integrable system, RII chain, dqds algorithm, orthogonal polynomials 2010 MSC: 37K10, 37K40, 42C05, 65F15 1. Introduction Applications of discrete integrable systems to numerical algorithms are important and fascinating top- ics. Since the end of the twentieth century, a number of relationships between classical numerical algorithms and integrable systems have been studied (see the review papers [1–3]). On this basis, new algorithms based on discrete integrable systems have been developed: (i) singular value algorithms for bidiagonal matrices based on the discrete Lotka–Volterra equation [4, 5], (ii) Pade´ approximation algorithms based on the dis- crete relativistic Toda lattice [6] and the discrete Schur flow [7], (iii) eigenvalue algorithms for band matrices based on the discrete hungry Lotka–Volterra equation [8] and the nonautonomous discrete hungry Toda lattice [9], and (iv) algorithms for computing D-optimal designs based on the nonautonomous discrete Toda (nd-Toda) lattice [10] and the discrete modified KdV equation [11].
    [Show full text]
  • Analysis of a Fast Hankel Eigenvalue Algorithm
    Analysis of a Fast Hankel Eigenvalue Algorithm a b Franklin T Luk and Sanzheng Qiao a Department of Computer Science Rensselaer Polytechnic Institute Troy New York USA b Department of Computing and Software McMaster University Hamilton Ontario LS L Canada ABSTRACT This pap er analyzes the imp ortant steps of an O n log n algorithm for nding the eigenvalues of a complex Hankel matrix The three key steps are a Lanczostype tridiagonalization algorithm a fast FFTbased Hankel matrixvector pro duct pro cedure and a QR eigenvalue metho d based on complexorthogonal transformations In this pap er we present an error analysis of the three steps as well as results from numerical exp eriments Keywords Hankel matrix eigenvalue decomp osition Lanczos tridiagonalization Hankel matrixvector multipli cation complexorthogonal transformations error analysis INTRODUCTION The eigenvalue decomp osition of a structured matrix has imp ortant applications in signal pro cessing In this pap er nn we consider a complex Hankel matrix H C h h h h n n h h h h B C n n B C B C H B C A h h h h n n n n h h h h n n n n The authors prop osed a fast algorithm for nding the eigenvalues of H The key step is a fast Lanczos tridiago nalization algorithm which employs a fast Hankel matrixvector multiplication based on the Fast Fourier transform FFT Then the algorithm p erforms a QRlike pro cedure using the complexorthogonal transformations in the di agonalization to nd the eigenvalues In this pap er we present an error analysis and discuss
    [Show full text]
  • Introduction to Mathematical Programming
    Introduction to Mathematical Programming Ming Zhong Lecture 24 October 29, 2018 Ming Zhong (JHU) AMS Fall 2018 1 / 18 Singular Value Decomposition (SVD) Table of Contents 1 Singular Value Decomposition (SVD) Ming Zhong (JHU) AMS Fall 2018 2 / 18 Singular Value Decomposition (SVD) Matrix Decomposition n×n We have discussed several decomposition techniques (for A 2 R ), A = LU when A is non-singular (Gaussian elimination). A = LL> when A is symmetric positive definite (Cholesky). A = QR for any real square matrix (unique when A is non-singular). A = PDP−1 if A has n linearly independent eigen-vectors). A = PJP−1 for any real square matrix. We are now ready to discuss the Singular Value Decomposition (SVD), A = UΣV∗; m×n m×m n×n m×n for any A 2 C , U 2 C , V 2 C , and Σ 2 R . Ming Zhong (JHU) AMS Fall 2018 3 / 18 Singular Value Decomposition (SVD) Some Brief History Going back in time, It was originally developed by differential geometers, equivalence of bi-linear forms by independent orthogonal transformation. Eugenio Beltrami in 1873, independently Camille Jordan in 1874, for bi-linear forms. James Joseph Sylvester in 1889 did SVD for real square matrices, independently; singular values = canonical multipliers of the matrix. Autonne in 1915 did SVD via polar decomposition. Carl Eckart and Gale Young in 1936 did the proof of SVD of rectangular and complex matrices, as a generalization of the principal axis transformaton of the Hermitian matrices. Erhard Schmidt in 1907 defined SVD for integral operators. Emile´ Picard in 1910 is the first to call the numbers singular values.
    [Show full text]
  • Inexact and Nonlinear Extensions of the FEAST Eigenvalue Algorithm
    University of Massachusetts Amherst ScholarWorks@UMass Amherst Doctoral Dissertations Dissertations and Theses October 2018 Inexact and Nonlinear Extensions of the FEAST Eigenvalue Algorithm Brendan E. Gavin University of Massachusetts Amherst Follow this and additional works at: https://scholarworks.umass.edu/dissertations_2 Part of the Numerical Analysis and Computation Commons, and the Numerical Analysis and Scientific Computing Commons Recommended Citation Gavin, Brendan E., "Inexact and Nonlinear Extensions of the FEAST Eigenvalue Algorithm" (2018). Doctoral Dissertations. 1341. https://doi.org/10.7275/12360224 https://scholarworks.umass.edu/dissertations_2/1341 This Open Access Dissertation is brought to you for free and open access by the Dissertations and Theses at ScholarWorks@UMass Amherst. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of ScholarWorks@UMass Amherst. For more information, please contact [email protected]. INEXACT AND NONLINEAR EXTENSIONS OF THE FEAST EIGENVALUE ALGORITHM A Dissertation Presented by BRENDAN GAVIN Submitted to the Graduate School of the University of Massachusetts Amherst in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY September 2018 Electrical and Computer Engineering c Copyright by Brendan Gavin 2018 All Rights Reserved INEXACT AND NONLINEAR EXTENSIONS OF THE FEAST EIGENVALUE ALGORITHM A Dissertation Presented by BRENDAN GAVIN Approved as to style and content by: Eric Polizzi, Chair Zlatan Aksamija, Member
    [Show full text]
  • Direct Solvers for Symmetric Eigenvalue Problems
    John von Neumann Institute for Computing Direct Solvers for Symmetric Eigenvalue Problems Bruno Lang published in Modern Methods and Algorithms of Quantum Chemistry, Proceedings, Second Edition, J. Grotendorst (Ed.), John von Neumann Institute for Computing, Julich,¨ NIC Series, Vol. 3, ISBN 3-00-005834-6, pp. 231-259, 2000. c 2000 by John von Neumann Institute for Computing Permission to make digital or hard copies of portions of this work for personal or classroom use is granted provided that the copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise requires prior specific permission by the publisher mentioned above. http://www.fz-juelich.de/nic-series/ DIRECT SOLVERS FOR SYMMETRIC EIGENVALUE PROBLEMS BRUNO LANG Aachen University of Technology Computing Center Seffenter Weg 23, 52074 Aachen, Germany E-mail: [email protected] This article reviews classical and recent direct methods for computing eigenvalues and eigenvectors of symmetric full or banded matrices. The ideas underlying the methods are presented, and the properties of the algorithms with respect to ac- curacy and performance are discussed. Finally, pointers to relevant software are given. This article reviews classical, as well as recent state-of-the-art, direct solvers for standard and generalized symmetric eigenvalue problems. In Section 1 we explain what direct solvers for symmetric eigenvalue problems are. Section 2 describes what we may reasonably expect from an eigenvalue solver in terms of accuracy and how algorithms should be structured in order to minimize the computing time, and introduces two basic tools on which most eigensolvers are based, namely similarity transformations and deflation.
    [Show full text]
  • Slepc Users Manual Scalable Library for Eigenvalue Problem Computations
    Departamento de Sistemas Inform´aticos y Computaci´on Technical Report DSIC-II/24/02 SLEPc Users Manual Scalable Library for Eigenvalue Problem Computations https://slepc.upv.es Jose E. Roman Carmen Campos Lisandro Dalcin Eloy Romero Andr´es Tom´as To be used with slepc 3.15 March, 2021 Abstract This document describes slepc, the Scalable Library for Eigenvalue Problem Computations, a software package for the solution of large sparse eigenproblems on parallel computers. It can be used for the solution of various types of eigenvalue problems, including linear and nonlinear, as well as other related problems such as the singular value decomposition (see a summary of supported problem classes on page iii). slepc is a general library in the sense that it covers both Hermitian and non-Hermitian problems, with either real or complex arithmetic. The emphasis of the software is on methods and techniques appropriate for problems in which the associated matrices are large and sparse, for example, those arising after the discretization of partial differential equations. Thus, most of the methods offered by the library are projection methods, including different variants of Krylov and Davidson iterations. In addition to its own solvers, slepc provides transparent access to some external software packages such as arpack. These packages are optional and their installation is not required to use slepc, see x8.7 for details. Apart from the solvers, slepc also provides built-in support for some operations commonly used in the context of eigenvalue computations, such as preconditioning or the shift- and-invert spectral transformation. slepc is built on top of petsc, the Portable, Extensible Toolkit for Scientific Computation [Balay et al., 2021].
    [Show full text]
  • Structured Eigenvalue Problems – Structure-Preserving Algorithms, Structured Error Analysis Draft of Chapter for the Second Edition of Handbook of Linear Algebra
    Structured Eigenvalue Problems { Structure-Preserving Algorithms, Structured Error Analysis Draft of chapter for the second edition of Handbook of Linear Algebra Heike Faßbender TU Braunschweig 1 Introduction Many eigenvalue problems arising in practice are structured due to (physical) properties induced by the original problem. Structure can also be introduced by discretization and linearization techniques. Preserving this structure can help preserve physically relevant symmetries in the eigenvalues of the matrix and may improve the accuracy and efficiency of an eigenvalue computation. This is well-known for symmetric matrices A = AT 2 Rn×n: Every eigenvalue is real and every right eigenvector is also a left eigenvector belonging to the same eigenvalue. Many numerical methods, such as QR, Arnoldi and Jacobi- Davidson automatically preserve symmetric matrices (and hence compute only real eigenvalues), so unavoidable round-off errors cannot result in the computation of complex-valued eigenvalues. Algorithms tailored to symmet- ric matrices (e.g., divide and conquer or Lanczos methods) take much less computational effort and sometimes achieve high relative accuracy in the eigenvalues and { having the right representation of A at hand { even in the eigenvectors. Another example is matrices for which the complex eigenvalues with nonzero real part theoretically appear in a pairing λ, λ, λ−1; λ−1. Using a general eigenvalue algorithm such as QR or Arnoldi results here in com- puted eigenvalues which in general do not display this eigenvalue pairing any longer. This is due to the fact, that each eigenvalue is subject to unstructured rounding errors, so that each eigenvalue is altered in a slightly different way 0 Unstructured error Structured error Figure 1: Effect of unstructured and structured rounding errors, round = original eigenvalue, pentagon = unstructured perturbation, star = structured perturbation (see left picture in Figure 1).
    [Show full text]