Gis in Building the Earth Information System

Total Page:16

File Type:pdf, Size:1020Kb

Gis in Building the Earth Information System THE ROLES OF GIS IN BUILDING THE EARTH INFORMATION SYSTEM 12.1 May Yuan The University of Oklahoma, Norman, Oklahoma 1 INTRODUCTION The EIS envisioned here is a comprehensive and integrated system that Geographic Information Systems (GIS) monitors natural and built environments, emerge as an enabling technology for integrates, manages, and disseminates data geospatial data handling, integration, of physical and human environments, analysis, modeling and visualization. With a synthesizes data from multiple variables wide range of spatially enabling functions, across scales in space and time, formulates GIS technology and the science (GIScience) new knowledge, explores patterns of interest that underpins the technology ought to play and visualizes findings to facilitate a central role in building the earth understanding. Hence, a comprehensive information system (EIS). In practice, EIS consists of not only “a four-dimensional however, GIS technology has not yet been gridded set of quantitative, geo-referenced fully recognized in scientific information data” or “a digital earth” but tools and management and computing. Many procedures to reason, analyze, model, and technological and societal barriers constrain visualize the dynamics of the earth systems. the use of GIS technology in scientific inquiry. Societal barriers may be overcome To date, we have a suite of remote by organizational and institutional solutions, sensing and surface observing systems that such as setting data standards and open- regularly take measurements around the source means. Technical advances require world (Mikusch et al. 2000). Although many strengthening GIScience fundamentals and gaps exist, especially in ocean observations, technological innovations for direct and NOAA, NASA, and USGS have been robust information support. partnered with international organizations and the private industry to implement and This paper emphasizes the need for promote integrated earth observation scientific and technological innovations to systems across the world. Many specialized empower GIS roles in support for EIS programs have been developed by research development. While the significance of communities and the industry for data societal barriers cannot be over-stated, assimilation, information synthesis ad theses barriers will not be discussed in this visualization, and knowledge acquisition. paper for two reasons. First, they are well While GIS technology has much to offer in recognized by government organizations, these areas, the linkage of GIS to these developers and users, and therefore, much specially developed data analysis and resource has been allocated to develop computational models is, unfortunately, solutions for data standards, interoperability, weak. Adoption of GIS technology to and portals, such as major progresses and atmospheric research, for example, is still in accomplishments by the OpenGIS its infancy, and applications appear limited Consortium, USGS, FGDC, NASA and to data distribution, mapping, and simple NOAA. Secondly, removal of societal spatial query and analysis. There are many barriers facilitates data exchange and reasons contributing to limited GIS distributions but has very limited effects on applications in scientific computing and the relevance of GIS technology on scientific ultimately the marginal attention given to computing, which demands computational GIS in building the earth information system. support for data analysis, modeling, and One fundamental issue relates to the lack of visualization. GIS support for 4D spatiotemporal data and the use of GIS as a mapping system, rather Unidata Thematic Realtime Environmental than an information system. Distributed Data Services (THREDDS) (Domenico 2002). However, as specified by This paper calls for a multi-system the Federal Geographic Data Committee approach to integrate existing databases, (FGDC), the content standard for digital information systems, and modeling geospatial metadata (http: //www.fgdc.gov/ environments to achieve a comprehensive metadata/csdgm/) is considerably limited to and integrated EIS that can effectively information pertinent to maps and specific to facilitate understanding and reasoning both individual data sets. The lack of means to physical and human dimensions of the cataloging data that are spatially and dynamic world through monitoring, temporally correlated may have constrained integration, analysis, synthesis, modeling access to geospatial data. For example, the and visualization. Figure 1 illustrates the development of a severe weather event components of a comprehensive EIS. GIS (such as Hurricane Ivan) may be captured technology has much to contribute in by multiple sensors and observing networks management, dissemination, analysis, (radars, GEOS, MODIS, etc.) across space modeling, and synthesis. and over time. Geospatial meta-data should provide mechanisms to relate all kinds of data corresponding to a certain event. 2 MANAGEMENT Manual documentation of such meta-data seems impractical. Alternatively, GIS GIS technology is designed to manage functions of spatial overlays and buffering geospatial data. Its capabilities to can be used to automate the process. georeference data and associate attributes Spatial overlays of the path and outlines of at locations enable spatial integration of data Hurricane Ivan to other data sets can reveal from multiple sources. Data integration is related data sets from other sources that critical, since Earth should be considered as also capture the hurricane. an integrated system (Carr 2001). The integration allows users to query information Spatiotemporal query support can based on locations or spatial relationships be greatly enhanced with the additional embedded in geospatial data. GIS has been meta-data across multiple sources because recognized as a powerful tool for spatial the user is able to identify or retrieve data of data management (Kingsbury 2001). interest based on spatial and temporal Beyond basic spatial search and geospatial relationships among geographic phenomena data retrieval, GIS technology can advance and events (Yuan and McIntosh 2002). For the levels of information query, analysis, and example, we can submit a query to retrieve modeling by incorporating temporal and data at stream gages within the path of spatial data and meta data to represent Hurricane Ivan and 7 days before and after geographic dynamics. the arrival of the hurricane. GIS technology ought to provide the needed capabilities that Meta-data is central to geospatial spatially and temporally relate data sets by data management. GIS meta-data cataloging georeferenced features and document, in general, geo-referencing events and applying such catalogs for data information, attribute definitions, and data access. sources and credits. These kinds of information are useful to determine the proper use of a data set. The development 3 DISSEMINATION of digital libraries has pushed the needs of data catalogs that highlight the essential Data dissemination serves two purposes: (1) content of a data set. Significant efforts in distributing data to the user, now mostly via cataloging geospatial data contribute to the the internet; and (2) interfacing the data and implementation of Alexandria Digital Library, the user by visual means. These data can meta-data catalogs at Center for be observations or results from analytical or International Earth Science Information modeling. In a broad sense, GIS technology Network (CIESIN), NASA’s Earth Data is contributing to building the EIS. As the Information System (Schaefer 1995) and internet GIS technology becomes popular, A Comprehensive Earth Information System Monitoring satellites remote sensing surface observing networks Management geo-referencing Dissemination assimilation Distribution integration Visualization query Analysis Modeling Synthesis spatial analysis geospatial models reasoning temporal analysis statistical models knowledge base Spatiotemporal analysis numerical models data mining simulation models Figure 1: Components of a comprehensive earth information system. Arrows indicate directions of data flows. many web-based geospatial data clearing dissemination and, moreover, visualization, houses and data portals disseminate diverse analysis, and modeling. geospatial data worldwide. While there is no short of success stories on Internet GIS applications, GIS technology is currently not 4 ANALYSIS, MODELING, AND playing an active role in building geo- SYNTHESIS cyberinfruncture. Most GIS software packages are proprietary, which may be one GIS technology offers a suite of analytical of the key factors prohibiting the broad use and modeling functions for geospatial data. of GIS technology in science communities, Unfortunately, there is only limited set of who, like Meteorologists, have been spatial functions commonly used in developing their own data dissemination and geoscientific applications. As mentioned visualization packages that couple well with earlier, most GIS applications are on domain-specific data formats, quite different mapping. While mapping is critical to from the ones used in GIS. For example, visualization and revealing spatial netCDF files store meteorological data in 3D relationships, advanced analytical and space and 1D time. However, true 4D modeling functions can probe new patterns, spatiotemporal GIS data models are relationships, and thoughts into geoscientific unavailable, and therefore, current GIS investigation. technology cannot support adequately
Recommended publications
  • DESIGN Principles & Practices: an International Journal
    DESIGN Principles & Practices: An International Journal Volume 3, Number 1 A Computational Investigation into the Fractal Dimensions of the Architecture of Kazuyo Sejima Michael J. Ostwald, Josephine Vaughan and Stephan K. Chalup www.design-journal.com DESIGN PRINCIPLES AND PRACTICES: AN INTERNATIONAL JOURNAL http://www.Design-Journal.com First published in 2009 in Melbourne, Australia by Common Ground Publishing Pty Ltd www.CommonGroundPublishing.com. © 2009 (individual papers), the author(s) © 2009 (selection and editorial matter) Common Ground Authors are responsible for the accuracy of citations, quotations, diagrams, tables and maps. All rights reserved. Apart from fair use for the purposes of study, research, criticism or review as permitted under the Copyright Act (Australia), no part of this work may be reproduced without written permission from the publisher. For permissions and other inquiries, please contact <[email protected]>. ISSN: 1833-1874 Publisher Site: http://www.Design-Journal.com DESIGN PRINCIPLES AND PRACTICES: AN INTERNATIONAL JOURNAL is peer- reviewed, supported by rigorous processes of criterion-referenced article ranking and qualitative commentary, ensuring that only intellectual work of the greatest substance and highest significance is published. Typeset in Common Ground Markup Language using CGCreator multichannel typesetting system http://www.commongroundpublishing.com/software/ A Computational Investigation into the Fractal Dimensions of the Architecture of Kazuyo Sejima Michael J. Ostwald, The University of Newcastle, NSW, Australia Josephine Vaughan, The University of Newcastle, NSW, Australia Stephan K. Chalup, The University of Newcastle, NSW, Australia Abstract: In the late 1980’s and early 1990’s a range of approaches to using fractal geometry for the design and analysis of the built environment were developed.
    [Show full text]
  • Digital Mapping & Spatial Analysis
    Digital Mapping & Spatial Analysis Zach Silvia Graduate Community of Learning Rachel Starry April 17, 2018 Andrew Tharler Workshop Agenda 1. Visualizing Spatial Data (Andrew) 2. Storytelling with Maps (Rachel) 3. Archaeological Application of GIS (Zach) CARTO ● Map, Interact, Analyze ● Example 1: Bryn Mawr dining options ● Example 2: Carpenter Carrel Project ● Example 3: Terracotta Altars from Morgantina Leaflet: A JavaScript Library http://leafletjs.com Storytelling with maps #1: OdysseyJS (CartoDB) Platform Germany’s way through the World Cup 2014 Tutorial Storytelling with maps #2: Story Maps (ArcGIS) Platform Indiana Limestone (example 1) Ancient Wonders (example 2) Mapping Spatial Data with ArcGIS - Mapping in GIS Basics - Archaeological Applications - Topographic Applications Mapping Spatial Data with ArcGIS What is GIS - Geographic Information System? A geographic information system (GIS) is a framework for gathering, managing, and analyzing data. Rooted in the science of geography, GIS integrates many types of data. It analyzes spatial location and organizes layers of information into visualizations using maps and 3D scenes. With this unique capability, GIS reveals deeper insights into spatial data, such as patterns, relationships, and situations - helping users make smarter decisions. - ESRI GIS dictionary. - ArcGIS by ESRI - industry standard, expensive, intuitive functionality, PC - Q-GIS - open source, industry standard, less than intuitive, Mac and PC - GRASS - developed by the US military, open source - AutoDESK - counterpart to AutoCAD for topography Types of Spatial Data in ArcGIS: Basics Every feature on the planet has its own unique latitude and longitude coordinates: Houses, trees, streets, archaeological finds, you! How do we collect this information? - Remote Sensing: Aerial photography, satellite imaging, LIDAR - On-site Observation: total station data, ground penetrating radar, GPS Types of Spatial Data in ArcGIS: Basics Raster vs.
    [Show full text]
  • Techniques for Spatial Analysis and Visualization of Benthic Mapping Data: Final Report
    Techniques for spatial analysis and visualization of benthic mapping data: final report Item Type monograph Authors Andrews, Brian Publisher NOAA/National Ocean Service/Coastal Services Center Download date 29/09/2021 07:34:54 Link to Item http://hdl.handle.net/1834/20024 TECHNIQUES FOR SPATIAL ANALYSIS AND VISUALIZATION OF BENTHIC MAPPING DATA FINAL REPORT April 2003 SAIC Report No. 623 Prepared for: NOAA Coastal Services Center 2234 South Hobson Avenue Charleston SC 29405-2413 Prepared by: Brian Andrews Science Applications International Corporation 221 Third Street Newport, RI 02840 TABLE OF CONTENTS Page 1.0 INTRODUCTION..........................................................................................1 1.1 Benthic Mapping Applications..........................................................................1 1.2 Remote Sensing Platforms for Benthic Habitat Mapping ..........................................2 2.0 SPATIAL DATA MODELS AND GIS CONCEPTS ................................................3 2.1 Vector Data Model .......................................................................................3 2.2 Raster Data Model........................................................................................3 3.0 CONSIDERATIONS FOR EFFECTIVE BENTHIC HABITAT ANALYSIS AND VISUALIZATION .........................................................................................4 3.1 Spatial Scale ...............................................................................................4 3.2 Habitat Scale...............................................................................................4
    [Show full text]
  • Business Analyst: Using Your Own Data with Enrichment & Infographics
    Business Analyst: Using Your Own Data with Enrichment & Infographics Steven Boyd Daniel Stauning Tony Howser Wednesday, July 11, 2018 2:30 PM – 3:15 PM • Business Analysis solution built on ArcGIS ArcGIS Business • Connected Apps, Tools, Reports & Data Analyst • Workflows to solve business problems Sites Customers Markets ArcGIS Business Analyst Web App Mobile App Desktop/Pro App …powered by ArcGIS Enterprise / ArcGIS Online “Custom” Data in Business Analyst • Your organization’s own data • Third-party data • Any data that you want to use alongside Esri’s data in mapping, reporting, Infographics, and more “Custom” Data in Business Analyst • Your organization’s own data • Third-party data • Any data that you want to use alongside Esri’s data in mapping, reporting, Infographics, and more “Custom” Data in Business Analyst • Your organization’s own data • Third-party data • Any data that you want to use alongside Esri’s data in mapping, reporting, Infographics, and more “Custom”“Custom” Data Data in Business Analyst in Business Analyst • Your organization’s own data • Your• Third organization’s-party data own data• Data that you want to use alongside Esri’s data in mapping, reporting, Infographics, and more • Third-party data • Any data that you want to use alongside Esri’s data in mapping, reporting, Infographics, and more Custom Data in Apps, Reports, and Infographics Daniel Stauning Steven Boyd Please Take Our Survey on the App Download the Esri Events Select the session Scroll down to find the Complete answers app and find your event you attended feedback section and select “Submit” See Us Here WORKSHOP LOCATION TIME FRAME ArcGIS Business Analyst: Wednesday, July 11 SDCC – Room 30E An Introduction (2nd offering) 4:00 PM – 5:00 PM Esri's US Demographics: Thursday, July 12 SDCC – Room 8 What's New 2:30 PM – 3:30 PM Chat with members of the Business Analyst team at the Spatial Analysis Island at the UC Expo .
    [Show full text]
  • 11.205 : Intro to Spatial Analysis
    11.205 : INTRO TO SPATIAL ANALYSIS INSTRUCTOR : SARAH WILLIAMS ([email protected]) LAB INSTRUCTORS : Melissa Yvonne Chinchilla ([email protected] ), Mike Foster ([email protected]), Michael Thomas Wilson ([email protected]) TEACHING ASSISTANTS: Elizabeth Joanna Irvin ([email protected])& Halley Brunsteter Reeves ([email protected]) LECTURE : Monday and Wednesday 2:30- 4pm, Room 9-354 LABS : (All in Room W31-301) Monday, Tuesday, Wednesday, Thursdays 5-7pm – To Be Assigned Class Description: Geographic Information Systems (GIS) are tools for managing data about where features are (geographic coordinate data) and what they are like (attribute data), and for providing the ability to query, manipulate, and analyze those data. Because GIS allows one to represent social and environmental data as a map, it has become an important analysis tool used across a variety of fields including: planning, architecture, engineering, public health, environmental science, economics, epidemiology, and business. GIS has become an important political instrument allowing communities and regions to graphically tell their story. GIS is a powerful tool, and this course is meant to introduce students to the basics. Because GIS can be applied to many research fields, this class is meant to give you an understanding of its possibilities. Learning Through Practice: The class will focus on teaching through practical example. All the course exercises will focus on a relationship with the Bronx River Alliance, a local advocacy group for the Bronx River. Exercises will focus on the Bronx River Alliance’s real-world needs, in order to give students a better understanding of how GIS is applied to planning situations.
    [Show full text]
  • Modeling Fractal Structure of Systems of Cities Using Spatial Correlation Function
    Modeling Fractal Structure of Systems of Cities Using Spatial Correlation Function Yanguang Chen1, Shiguo Jiang2 (1. Department of Geography, Peking University, Beijing 100871, PRC. E-mail: [email protected]; 2. Department of Geography, The Ohio State University, USA. Email: [email protected].) Abstract: This paper proposes a new method to analyze the spatial structure of urban systems using ideas from fractals. Regarding a system of cities as a set of “particles” distributed randomly on a triangular lattice, we construct a spatial correlation function of cities. Suppose that the spatial correlation follows the power law. It can be proved that the correlation exponent is the second order generalized dimension. The spatial correlation model is applied to the system of cities in China. The results show that the Chinese urban system can be described by the correlation dimension ranging from 1.3 to 1.6. The fractality of self-organized network of cities in both the conventional geographic space and the “time” space is revealed with the empirical evidence. The spatial correlation analysis is significant in that it is applicable to both large and small sizes of samples and can be used to link different fractal dimensions in urban study, including box dimension and radial dimension. 1 Introduction The evolution of cities as systems and systems of cities bears some similarity. In theory, a system of cites follows the same spatial scaling laws with a city as a system. The great majority of fractal models and methods for urban form and structure are in fact available for systems of cities.
    [Show full text]
  • Avian Flu Case Study with Nspace and Geotime
    Avian Flu Case Study with nSpace and GeoTime Pascale Proulx, Sumeet Tandon, Adam Bodnar, David Schroh, Robert Harper, and William Wright* Oculus Info Inc. ABSTRACT 1.1 nSpace - A Unified Analytical Workspace GeoTime and nSpace are new analysis tools that provide nSpace combines several interactive visualization techniques to innovative visual analytic capabilities. This paper uses an create a unified workspace that supports the analytic process. One epidemiology analysis scenario to illustrate and discuss these new technique, called TRIST (The Rapid Information Scanning Tool), investigative methods and techniques. In addition, this case study uses multiple linked views to support rapid and efficient scanning is an exploration and demonstration of the analytical synergy and triaging of thousands of search results in one display. The achieved by combining GeoTime’s geo-temporal analysis other technique, called the Sandbox, supports both ad-hoc and capabilities, with the rapid information triage, scanning and sense- formal sense making within a flexible free thinking environment. making provided by nSpace. Additionally, nSpace makes use of multiple advanced A fictional analyst works through the scenario from the initial computational linguistic functions using a web services interface brainstorming through to a final collaboration and report. With the and protocol [6, 3]. efficient knowledge acquisition and insights into large amounts of documents, there is more time for the analyst to reason about the 1.1.1 TRIST problem and imagine ways to mitigate threats. The use of both nSpace and GeoTime initiated a synergistic exchange of ideas, where hypotheses generated in either software tool could be cross- TRIST, as seen in Figure 1, uses advanced information retrieval referenced, refuted, and supported by the other tool.
    [Show full text]
  • The Language of Spatial ANALYSIS CONTENTS
    The Language of spatial ANALYSIS CONTENTS Foreword How to use this book Chapter 1 An introduction to spatial analysis Chapter 2 The vocabulary of spatial analysis Understanding where Measuring size, shape, and distribution Determining how places are related Finding the best locations and paths Detecting and quantifying patterns Making predictions Chapter 3 The seven steps to successful spatial analysis Chapter 4 The benefits of spatial analysis Case study Bringing it all together to solve the problem Reference A quick guide to spatial analysis Additional resources FOREWORD Watching the GIS industry grow for more than 25 years, I have seen innovation in the problems we solve, the people we can reach through technology, the stories we tell, and the decisions that help make our organizations and the world more successful. However, what has not changed is our longstanding goal to better understand our world through spatial analysis. Traveling the world I have met people from many diverse cultures who work in a wide range of industries. However, as I listen to their mission and challenges, there is a common pattern: we all speak the same language—it is the language of spatial analysis. This language consists of a core set of questions that we ask, a taxonomy that organizes and expands our understanding, and the fundamental steps to spatial analysis that embody how we solve spatial problems. I encourage each of you to learn and communicate to the world the power of spatial analysis. Learn the definition, learn the vocabulary and the process, and most important, be able to speak this language to the world.
    [Show full text]
  • Fractal-Based Modeling and Spatial Analysis of Urban Form and Growth: a Case Study of Shenzhen in China
    International Journal of Geo-Information Article Fractal-Based Modeling and Spatial Analysis of Urban Form and Growth: A Case Study of Shenzhen in China Xiaoming Man and Yanguang Chen * Department of Geography, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China; [email protected] * Correspondence: [email protected] Received: 7 October 2020; Accepted: 11 November 2020; Published: 13 November 2020 Abstract: Fractal dimension curves of urban growth can be modeled with sigmoid functions, including logistic function and quadratic logistic function. Different types of logistic functions indicate different spatial dynamics. The fractal dimension curves of urban growth in Western countries follow the common logistic function, while the fractal dimension growth curves of cities in northern China follow the quadratic logistic function. Now, we want to investigate whether other Chinese cities, especially cities in South China, follow the same rules of urban evolution and attempt to analyze the reasons. This paper is devoted to exploring the fractals and fractal dimension properties of the city of Shenzhen in southern China. The urban region is divided into four subareas using ArcGIS technology, the box-counting method is adopted to extract spatial datasets, and the least squares regression method is employed to estimate fractal parameters. The results show that (1) the urban form of Shenzhen city has a clear fractal structure, but fractal dimension values of different subareas are different; (2) the fractal dimension growth curves of all the four study areas can only be modeled by the common logistic function, and the goodness of fit increases over time; (3) the peak of urban growth in Shenzhen had passed before 1986 and the fractal dimension growth is approaching its maximum capacity.
    [Show full text]
  • 11. Visualising Spatial Distributions
    11 Visualising spatial distributions M-J KRAAK Maps are an integral part of the process of spatial data handling. They are used to visualise spatial data, to reveal and understand spatial distributions and relations. Recent developments such as scientific visualisation and exploratory data analysis have had a great impact. In contemporary cartography three roles for visualisation can be recognised. First, visualisation may be used to present spatial information where one needs function to create well-designed maps. Second, visualisation may be used to analyse. Here functions are required to access individual map components to extract information, and functions to process, manipulate, or summarise that information. Third, visualisation may be used to explore. Functions are required to allow the user to explore the spatial data visually, for instance by animation or linked views. 1 INTRODUCTION multimedia, and virtual reality have boosted interest in graphics and stimulated sophisticated (spatial) Developments in spatial data handling have been data presentation. From this perspective it appears considerable during the past few decades and it that there are almost no barriers left. Second, user- seems likely that this will continue. GIS have oriented developments, often as an explicit reaction introduced the integration of spatial data from to technological developments, have stimulated different kinds of sources, such as remote sensing, scientific visualisation and exploratory data analysis statistical databases, and recycled paper maps. Their (Anselin, Chapter 17). Also, the cartographic functionality offers the ability to manipulate, discipline has reacted to these changes. New analyse, and visualise the combined data. Their users concepts such as dynamic variables, digital can link application-based models to them and try landscape models, and digital cartographic models to find answers to (spatial) questions.
    [Show full text]
  • A Geological Metaphor for Geospatial-Temporal Data Analysis
    A Geological Metaphor for Geospatial-temporal Data Analysis Tom Liebmann, Patrick Oesterling, Stefan Janicke¨ and Gerik Scheuermann Image and Signal Processing Group, Institute of Computer Science, University of Leipzig, Leipzig, Germany Keywords: Visual Data Exploration, Abstract Data Visualization, Geo-Visualization, Comparative Visualization. Abstract: To provide visual access to geospatial-temporal data, existing systems usually highlight the data’s spatial, temporal and topical distribution individually in separated, but linked views. Because this design often com- plicates queries that concern multiple data aspects and also involves more user interaction, in this paper, we present a geological metaphor that aims to combine relations between orthogonal data aspects. We describe how our adopted landscape metaphor intuitively depicts global and local relationships based on its surface, glyph augmentation and inner sediment structure. We validate the geological metaphor with case studies, compare it with existing systems and describe how it can be integrated into those as an alternative map view. 1 INTRODUCTION example, if the data’s spatial distribution over time, or topical distribution at certain locations over time Analyzing data and extracting information from is questioned, the user is required to perform single databases has long been text-based. However, defin- selections in the time-widget, while watching how ing queries with proper keywords can be frustrat- linked selections change in the map-widget. Not only ing and browsing through textual result sets does not does this imply many selections, the user also needs scale well, depends on language, and excludes human to store a mental map of all changes because linked abilities to distinguish and rank things visually.
    [Show full text]
  • Step-By-Step Guide to Vulnerability Hotspots Mapping: Implementing the Spatial Index Approach
    Step-by-Step Guide to Vulnerability Hotspots Mapping: Implementing the Spatial Index Approach Developed by the Center for International Earth Science Information Network (CIESIN), The Earth Institute, Columbia University Under contract with TetraTech/ARD for the US Agency for International Development (USAID) Planning for Resilience in East Africa through Policy, Adaptation, Research, and Economic Development (PREPARED) Project November 2015 1 Authors: Malanding S Jaiteh, PhD Tricia Chai-Onn Valentina Mara Alex de Sherbinin, PhD Acknowledgements This work was performed under contract with TetraTech/ARD for the US Agency for International Development (USAID) Planning for Resilience in East Africa through Policy, Adaptation, Research, and Economic Development (PREPARED) project. The work also benefited greatly from vulnerability mapping efforts under the USAID-funded African and Latin American Resilience to Climate Change (ARCC) project. Slides on Installing and configuring R adapted from R-Cran available at: http://cran.r-project.org/bin/windows/base/rw-FAQ.html We wish to acknowledge the contributions of Dr. idris Bexi Wasama, University of Djibouti, who reviewed the draft manual while visiting CIESIN as a Hubert H. Humphrey Fellow through the University of California, Davis. Cover image by Jeremy Chevrier, USAID Sahel Regional Office. Citing this Guide CIESIN (Center for International Earth Science Information Network), Columbia University. (2015). A Step-by-Step Guide to Vulnerability Hotspots Mapping: Implementing the Spatial Index
    [Show full text]