A Review of Advanced High Performance, Insensitive and Thermally Stable Energetic Materials Emerging for Military and Space Applications
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Applying Machine Learning Techniques to Predict the Properties of Energetic Materials
Applying machine learning techniques to predict the properties of energetic materials Daniel C. Elton1,*, Zois Boukouvalas1, Mark S. Butrico1, Mark D. Fuge1, and Peter W. Chung1,** 1Department of Mechanical Engineering, University of Maryland, College Park, 20742, United States ABSTRACT We present a proof of concept that machine learning techniques can be used to predict the properties of CNOHF energetic molecules from their molecular structures. We focus on a small but diverse dataset consisting of 109 molecular structures spread across ten compound classes. Up until now, candidate molecules for energetic materials have been screened using predictions from expensive quantum simulations and thermochemical codes. We present a comprehensive comparison of machine learning models and several molecular featurization methods - sum over bonds, custom descriptors, Coulomb matrices, Bag of Bonds, and fingerprints. The best featurization was sum over bonds (bond counting), and the best model was kernel ridge regression. Despite having a small data set, we obtain acceptable errors and Pearson correlations for the prediction of detonation pressure, detonation velocity, explosive energy, heat of formation, density, and other properties out of sample. By including another dataset with ≈ 300 additional molecules in our training we show how the error can be pushed lower, although the convergence with number of molecules is slow. Our work paves the way for future applications of machine learning in this domain, including automated lead generation and interpreting machine learning models to obtain novel chemical insights. * [email protected] ** [email protected] 1 Introduction During the past few decades, enormous resources have been invested in research efforts to discover new energetic materials with improved performance, thermodynamic stability, and safety. -
Applying Machine Learning Techniques to Predict the Properties of Energetic Materials
Applying machine learning techniques to predict the properties of energetic materials Daniel C. Elton1,*, Zois Boukouvalas1, Mark S. Butrico1, Mark D. Fuge1, and Peter W. Chung1,** 1Department of Mechanical Engineering, University of Maryland, College Park, 20742, United States ABSTRACT We present a proof of concept that machine learning techniques can be used to predict the properties of CNOHF energetic molecules from their molecular structures. We focus on a small but diverse dataset consisting of 109 molecular structures spread across ten compound classes. Up until now, candidate molecules for energetic materials have been screened using predictions from expensive quantum simulations and thermochemical codes. We present a comprehensive comparison of machine learning models and several molecular featurization methods - sum over bonds, custom descriptors, Coulomb matrices, Bag of Bonds, and fingerprints. The best featurization was sum over bonds (bond counting), and the best model was kernel ridge regression. Despite having a small data set, we obtain acceptable errors and Pearson correlations for the prediction of detonation pressure, detonation velocity, explosive energy, heat of formation, density, and other properties out of sample. By including another dataset with ≈ 300 additional molecules in our training we show how the error can be pushed lower, although the convergence with number of molecules is slow. Our work paves the way for future applications of machine learning in this domain, including automated lead generation and interpreting machine learning models to obtain novel chemical insights. * [email protected] ** [email protected] 1 Introduction During the past few decades, enormous resources have been invested in research efforts to discover new energetic materials with improved performance, thermodynamic stability, and safety. -
Towards New Directions in Oxidizers/Energetic Fillers for Composite Propellants
Towards New Directions in Oxidizers/Energetic Fillers for Composite Propellants... 377 Central European Journal of Energetic Materials, 2015, 12(2), 377-399 ISSN 1733-7178 e-ISSN 2353-1843 Towards New Directions in Oxidizers/Energetic Fillers for Composite Propellants: an Overview Abhijit DEY 1,*, Arun Kanti SIKDER 1,**, Mahadev B. TALAWAR 1, Santanu CHOTTOPADHYAY 2 1 High Energy Materials Research Laboratory, Sutarwadi, Pune-411021, India 2 Indian Institute of Technology, Kharagpur-721302, West Bengal, India E-mails:*[email protected], **[email protected] Abstract: There is continued interest in the development of safe and reliable composite propellant formulations using modern energetic ingredients such as energetic oxidizers/energetic ingredients, energetic binders, and energetic ballistic modifiers. There are continued efforts by energetic materials researchers, scientists, technologists and engineers to design composite propellant formulations with better ballistic properties than conventional formulations. The efforts in many research and development (R & D) laboratories all over the world are aimed at utilizing modern oxidizers/ energetic fillers for the development of composite propellant formulations for both space and defence applications. Composite propellants are considered to be the major source of chemical energy for rockets and missiles. Energetic oxidizers/fillers play vital roles in the preparation or manufacture of composite propellant formulations. Various energetic oxidizers/fillers have been developed during the last five decades to address environmental safety, high energy and processing conditions. In this article, the authors have reviewed the characteristic properties of the energetic oxidizers/fillers used in the preparation of composite propellants. The characteristic properties of the energetic ingredients play an important role in the preparation of composite propellant formulations with the desired mechanical properties. -
Organic Chemistry of Explosives
JWBK121-FM October 11, 2006 21:10 Char Count= 0 Organic Chemistry of Explosives Dr. Jai Prakash Agrawal CChem FRSC (UK) Former Director of Materials Defence R&D Organisation DRDO House, New Delhi, India email: [email protected] Dr. Robert Dale Hodgson Consultant Organic Chemist, Syntech Chemical Consultancy, Morecambe, Lancashire, UK Website: http://www.syntechconsultancy.co.uk email: [email protected] iii JWBK121-FM October 11, 2006 21:10 Char Count= 0 iii JWBK121-FM October 11, 2006 21:10 Char Count= 0 Organic Chemistry of Explosives i JWBK121-FM October 11, 2006 21:10 Char Count= 0 ii JWBK121-FM October 11, 2006 21:10 Char Count= 0 Organic Chemistry of Explosives Dr. Jai Prakash Agrawal CChem FRSC (UK) Former Director of Materials Defence R&D Organisation DRDO House, New Delhi, India email: [email protected] Dr. Robert Dale Hodgson Consultant Organic Chemist, Syntech Chemical Consultancy, Morecambe, Lancashire, UK Website: http://www.syntechconsultancy.co.uk email: [email protected] iii JWBK121-FM October 11, 2006 21:10 Char Count= 0 Copyright C 2007 John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England Telephone (+44) 1243 779777 Email (for orders and customer service enquiries): [email protected] Visit our Home Page on www.wiley.com All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except under the terms of the Copyright, Designs and Patents Act 1988 or under the terms of a licence issued by the Copyright Licensing Agency Ltd, 90 Tottenham Court Road, London W1T 4LP, UK, without the permission in writing of the Publisher. -
Review of Some Newly Synthesized High Energetic Materials
Sci. Tech. Energetic Materials, Vol.65, No.6, 2004 215 Review Review of some newly synthesized high energetic materials S. Thangadurai*, K.P.S. Kartha**, D. R. Sharma**, and S. K. Shukla** *Department of Geology and Mining, Guindy, Chennai-600 032, INDIA e-mail: [email protected] (or) [email protected] **Central Forensic Science Laboratory, “Directorate of Forensic Sciences,” Govt. of India, Hyderabad-500 013, INDIA Received: April 12, 2004 Accepted: September 1, 2004 Abstract Towards the end of the last millennium many new high energetic materials were developed. These materials may replace the presently used explosives, sooner or later. In this review, the authors try to explore some of these materials viz., polynitropolycyclic cage explosives, cyclic nitramines, cage explosives, nitro derivatized heterocyclic compounds, nickel hydrazine nitrate (NHN) complex, nitrocubanes, hafnium explosives, heat-resistant explosives, new insensitive high explosives and some other novel high energetic materials. There is a need for the development of analytical methods for identification of these materials and their post explosion residues as these are likely to be encountered in crimes. 1. Introduction much as 80% ammonium nitrate. By the beginning of During the nineteenth century the developing science of World War II, the research to discover alternative explo- chemistry began to create molecular species with explosive sives resulted in another group of explosive molecules that properties. These molecules contain not only atoms that act could be used for the filling of ordnance 2). After two major as fuels, i.e. carbon and hydrogen, but also contain nitro World Wars in twentieth century, picric acid, TNT, tetryl, groups (NO2) similar to nitrates. -
A Theoretical Investigation of the Ring Strain Energy, Destabilization Energy, and Heat of Formation of CL-20
Hindawi Publishing Corporation Advances in Physical Chemistry Volume 2012, Article ID 175146, 7 pages doi:10.1155/2012/175146 Research Article A Theoretical Investigation of the Ring Strain Energy, Destabilization Energy, and Heat of Formation of CL-20 John A. Bumpus Department of Chemistry and Biochemistry, University of Northern Iowa, Cedar Falls, IA 50614, USA Correspondence should be addressed to John A. Bumpus, [email protected] Received 10 April 2012; Accepted 13 August 2012 Academic Editor: Dennis Salahub Copyright © 2012 John A. Bumpus. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The cage compound CL-20 (a.k.a., 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane, HNIW, or 2,4,6,8,10,12-hexanitro- 2,4,6,8,10,12-hexaazatetracyclo[5.5.0.03,11.05,9]dodecane) is a well-studied high-energy-density material (HEDM). The high Δ ◦ Δ ◦ positive gas- ( f Hg ) and solid- ( f Hs ) phase heat of formation values for CL-20 conformers have often been attributed to the strain energy of this cage compound and, by implication, to the conventional ring strain energy (CRSE) inherent in isowurtzitane Δ ◦ which may be viewed as a “parent compound” (although not the synthetic precursor) of CL-20. f Hg values and destabilization energies (DSEs), which include the contribution from CRSE, were determined by computation using a relatively new multilevel ab intio model chemistry. Compared to cubane, isowurtzitane does not have an exceptionally high CRSE. -
Bonding Analysis of the Effect of Strain on Trigger Bonds in Organic-Cage
Theoretical Chemistry Accounts (2020) 139:95 https://doi.org/10.1007/s00214-020-02604-0 REGULAR ARTICLE Bonding analysis of the efect of strain on trigger bonds in organic‑cage energetic materials Craig A. Bayse1 · Mohammad Jafar1 Received: 14 January 2020 / Accepted: 6 May 2020 / Published online: 22 May 2020 © Springer-Verlag GmbH Germany, part of Springer Nature 2020 Abstract Wiberg bond index and natural bond orbital analyses were used to examine the efect of strain on trigger bonds for a series of organic-cage molecules. In substituted cage hydrocarbons, weakening of the interior C–C bonds and strengthening of exte- rior C–X bonds are explained in terms of the contributions of the carbon 2s and 2p atomic orbitals to the bonds. The interior C–C, rather than C–NO2, bonds are expected to break to initiate explosive decomposition in nitro-substituted tetrahedranes, prismanes, and cubanes. Activation of C–C bonds in cage molecules increases with nitro substitution, but persubstituted cages are not necessarily the most activated. For example, heptanitrocubane is predicted to be more sensitive than octanitrocubane, consistent with experimental studies. In contrast, for a series of hypothetical nitroester substituted prismanes, the strengthening of the exterior C–ONO2 bond weakens the O–NO2 bond more than the interior C–C bonds. In CL-20 and TEX, cage strain as determined by WBI analysis in the fused fve- and six-membered rings is less signifcant than for the cage hydrocarbon. In these known energetic materials, the N–NO2 trigger bonds are activated by the orientation of the nitro groups.