Oculocutaneous Albinism
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
ELECTRONIC CLAIMS MANAGEMENT ENGINE (ECME) Version 1.0
ELECTRONIC CLAIMS MANAGEMENT ENGINE (ECME) Version 1.0 USER MANUAL December 2020 Department of Veterans Affairs Office of Information and Technology (OIT) Product Development Revision History Date Description (Patch # if applicable) Project Manager Technical Writer 12/2020 Updated for BPS*1*27 MCCF EDI TAS MCCF EDI TAS Updated Potential Secondary Rx Claims Report ePharmacy ePharmacy Screen Display Development TeamDevelopment Team Updated Title Page date and footers 04/2020 Updated for BPS*1*26 REDACTED REDACTED Updated section 5.6 Add/View Comments Updated Title Page date and footers 1/2019 Updated for BPS*1*24 REDACTED REDACTED Change label on Claim Log, Modify Change View (CV), Enhance Claim Reports 08/2018 Updated for BPS*1*23 REDACTED REDACTED Update Title page date, footer date Modification filter questions CV Change View action, Rx Activity Log to add Date of Service to ECME Log, Resubmit with Edits action, Process Secondary/TRICARE Rx to ECME option, Payable Claims Report, Rejected Claims Report, Reversal Claims Report, Claims Submitted Not Yet Released Report, Recent Transactions Report, Closed Claims Report, View ePharmacy Rx Report Option 11/2017 Updated for BPS*1*22 REDACTED REDACTED Update Title page date, modification to Change View action; change auto-reverse parameter and auto-reversal bulletin; add Facility ID Qualifier and Reconciliation ID to Claim Log and Claim Response Inquiry; add new action PR Print Reports to VER View ePharmacy Rx. 05/2017 Updated for BPS*1*21 REDACTED REDACTED 08/2016 Updated for BPS*1*20 REDACTED -
Electronic Claims Management Version 1.0 Engine User Manual
Electronic Claims Management Engine (ECME) Version 1.0 User Manual May 2021 Department of Veterans Affairs Office of Information and Technology (OIT) Revision History Description (Patch # if Date Project Manager Technical Writer applicable) 05/2021 Updated for BPS*1*28 MCCF EDI TAS MCCF EDI TAS Updated Title Page date and ePharmacy ePharmacy footers Development Development Added Section 6.3.3 SC Team Team Prescriptions for Active Duty Prescriptions Added Section 8.1.11 Duplicate Claims Report 12/2020 Updated for BPS*1*27 MCCF EDI TAS MCCF EDI TAS Updated Potential Secondary Rx ePharmacy ePharmacy Claims Report Screen Display Development Development Updated Title Page date and Team Team footers 04/2020 Updated for BPS*1*26 REDACTED REDACTED Updated section 5.6 Add/View Comments Updated Title Page date and footers 1/2019 Updated for BPS*1*24 REDACTED REDACTED Change label on Claim Log, Modify Change View (CV), Enhance Claim Reports 08/2018 Updated for BPS*1*23 REDACTED REDACTED Update Title page date, footer date Modification filter questions CV Change View action, Rx Activity Log to add Date of Service to ECME Log, Resubmit with Edits action, Process Secondary/TRICARE Rx to ECME option, Payable Claims Report, Rejected Claims Report, Reversal Claims Report, Claims Submitted Not Yet Released Report, Recent Transactions Report, Closed Claims Report, View ePharmacy Rx Report Option Electronic Claims Management Engine V. 1.0 User Manual ii May 2021 Description (Patch # if Date Project Manager Technical Writer applicable) 11/2017 Updated for BPS*1*22 REDACTED REDACTED Update Title page date, modification to Change View action; change auto-reverse parameter and auto-reversal bulletin; add Facility ID Qualifier and Reconciliation ID to Claim Log and Claim Response Inquiry; add new action PR Print Reports to VER View ePharmacy Rx. -
Title 16. Crimes and Offenses Chapter 13. Controlled Substances Article 1
TITLE 16. CRIMES AND OFFENSES CHAPTER 13. CONTROLLED SUBSTANCES ARTICLE 1. GENERAL PROVISIONS § 16-13-1. Drug related objects (a) As used in this Code section, the term: (1) "Controlled substance" shall have the same meaning as defined in Article 2 of this chapter, relating to controlled substances. For the purposes of this Code section, the term "controlled substance" shall include marijuana as defined by paragraph (16) of Code Section 16-13-21. (2) "Dangerous drug" shall have the same meaning as defined in Article 3 of this chapter, relating to dangerous drugs. (3) "Drug related object" means any machine, instrument, tool, equipment, contrivance, or device which an average person would reasonably conclude is intended to be used for one or more of the following purposes: (A) To introduce into the human body any dangerous drug or controlled substance under circumstances in violation of the laws of this state; (B) To enhance the effect on the human body of any dangerous drug or controlled substance under circumstances in violation of the laws of this state; (C) To conceal any quantity of any dangerous drug or controlled substance under circumstances in violation of the laws of this state; or (D) To test the strength, effectiveness, or purity of any dangerous drug or controlled substance under circumstances in violation of the laws of this state. (4) "Knowingly" means having general knowledge that a machine, instrument, tool, item of equipment, contrivance, or device is a drug related object or having reasonable grounds to believe that any such object is or may, to an average person, appear to be a drug related object. -
Title Structure of the Human Histamine H1 Receptor Complex With
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Kyoto University Research Information Repository Structure of the human histamine H1 receptor complex with Title doxepin. Shimamura, Tatsuro; Shiroishi, Mitsunori; Weyand, Simone; Tsujimoto, Hirokazu; Winter, Graeme; Katritch, Vsevolod; Author(s) Abagyan, Ruben; Cherezov, Vadim; Liu, Wei; Han, Gye Won; Kobayashi, Takuya; Stevens, Raymond C; Iwata, So Citation Nature (2011), 475(7354): 65-70 Issue Date 2011-07-07 URL http://hdl.handle.net/2433/156845 © 2011 Nature Publishing Group, a division of Macmillan Right Publishers Limited. Type Journal Article Textversion author Kyoto University Title: Structure of the human histamine H1 receptor in complex with doxepin. Authors Tatsuro Shimamura 1,2,3*, Mitsunori Shiroishi 1,2,4*, Simone Weyand 1,5,6, Hirokazu Tsujimoto 1,2, Graeme Winter 6, Vsevolod Katritch7, Ruben Abagyan7, Vadim Cherezov3, Wei Liu3, Gye Won Han3, Takuya Kobayashi 1,2‡, Raymond C. Stevens3‡and So Iwata1,2,5,6,8‡ 1. Human Receptor Crystallography Project, ERATO, Japan Science and Technology Agency, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan. 2. Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-Ku, Kyoto 606-8501, Japan. 3. Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA. 4. Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan. 5. Division of Molecular Biosciences, Membrane Protein Crystallography Group, Imperial College, London SW7 2AZ, UK. 6. Diamond Light Source, Harwell Science and Innovation Campus, Chilton, Didcot, Oxfordshire OX11 0DE, UK. -
The Use of Stems in the Selection of International Nonproprietary Names (INN) for Pharmaceutical Substances
WHO/PSM/QSM/2006.3 The use of stems in the selection of International Nonproprietary Names (INN) for pharmaceutical substances 2006 Programme on International Nonproprietary Names (INN) Quality Assurance and Safety: Medicines Medicines Policy and Standards The use of stems in the selection of International Nonproprietary Names (INN) for pharmaceutical substances FORMER DOCUMENT NUMBER: WHO/PHARM S/NOM 15 © World Health Organization 2006 All rights reserved. Publications of the World Health Organization can be obtained from WHO Press, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland (tel.: +41 22 791 3264; fax: +41 22 791 4857; e-mail: [email protected]). Requests for permission to reproduce or translate WHO publications – whether for sale or for noncommercial distribution – should be addressed to WHO Press, at the above address (fax: +41 22 791 4806; e-mail: [email protected]). The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted lines on maps represent approximate border lines for which there may not yet be full agreement. The mention of specific companies or of certain manufacturers’ products does not imply that they are endorsed or recommended by the World Health Organization in preference to others of a similar nature that are not mentioned. Errors and omissions excepted, the names of proprietary products are distinguished by initial capital letters. -
Natural Psychoplastogens As Antidepressant Agents
molecules Review Natural Psychoplastogens As Antidepressant Agents Jakub Benko 1,2,* and Stanislava Vranková 1 1 Center of Experimental Medicine, Institute of Normal and Pathological Physiology, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia; [email protected] 2 Faculty of Medicine, Comenius University, 813 72 Bratislava, Slovakia * Correspondence: [email protected]; Tel.: +421-948-437-895 Academic Editor: Olga Pecháˇnová Received: 31 December 2019; Accepted: 2 March 2020; Published: 5 March 2020 Abstract: Increasing prevalence and burden of major depressive disorder presents an unavoidable problem for psychiatry. Existing antidepressants exert their effect only after several weeks of continuous treatment. In addition, their serious side effects and ineffectiveness in one-third of patients call for urgent action. Recent advances have given rise to the concept of psychoplastogens. These compounds are capable of fast structural and functional rearrangement of neural networks by targeting mechanisms previously implicated in the development of depression. Furthermore, evidence shows that they exert a potent acute and long-term positive effects, reaching beyond the treatment of psychiatric diseases. Several of them are naturally occurring compounds, such as psilocybin, N,N-dimethyltryptamine, and 7,8-dihydroxyflavone. Their pharmacology and effects in animal and human studies were discussed in this article. Keywords: depression; antidepressants; psychoplastogens; psychedelics; flavonoids 1. Introduction 1.1. Depression Depression is the most common and debilitating mental disease. Its prevalence and burden have been steadily rising in the past decades. For example, in 1990, the World Health Organization (WHO) projected that depression would increase from 4th to 2nd most frequent cause of world-wide disability by 2020 [1]. -
Pharmaceuticals As Environmental Contaminants
PharmaceuticalsPharmaceuticals asas EnvironmentalEnvironmental Contaminants:Contaminants: anan OverviewOverview ofof thethe ScienceScience Christian G. Daughton, Ph.D. Chief, Environmental Chemistry Branch Environmental Sciences Division National Exposure Research Laboratory Office of Research and Development Environmental Protection Agency Las Vegas, Nevada 89119 [email protected] Office of Research and Development National Exposure Research Laboratory, Environmental Sciences Division, Las Vegas, Nevada Why and how do drugs contaminate the environment? What might it all mean? How do we prevent it? Office of Research and Development National Exposure Research Laboratory, Environmental Sciences Division, Las Vegas, Nevada This talk presents only a cursory overview of some of the many science issues surrounding the topic of pharmaceuticals as environmental contaminants Office of Research and Development National Exposure Research Laboratory, Environmental Sciences Division, Las Vegas, Nevada A Clarification We sometimes loosely (but incorrectly) refer to drugs, medicines, medications, or pharmaceuticals as being the substances that contaminant the environment. The actual environmental contaminants, however, are the active pharmaceutical ingredients – APIs. These terms are all often used interchangeably Office of Research and Development National Exposure Research Laboratory, Environmental Sciences Division, Las Vegas, Nevada Office of Research and Development Available: http://www.epa.gov/nerlesd1/chemistry/pharma/image/drawing.pdfNational -
Pharmaceutical Appendix to the Harmonized Tariff Schedule
Harmonized Tariff Schedule of the United States Basic Revision 3 (2021) Annotated for Statistical Reporting Purposes PHARMACEUTICAL APPENDIX TO THE HARMONIZED TARIFF SCHEDULE Harmonized Tariff Schedule of the United States Basic Revision 3 (2021) Annotated for Statistical Reporting Purposes PHARMACEUTICAL APPENDIX TO THE TARIFF SCHEDULE 2 Table 1. This table enumerates products described by International Non-proprietary Names INN which shall be entered free of duty under general note 13 to the tariff schedule. The Chemical Abstracts Service CAS registry numbers also set forth in this table are included to assist in the identification of the products concerned. For purposes of the tariff schedule, any references to a product enumerated in this table includes such product by whatever name known. -
Structure, Function, and Pharmaceutical Ligands of 5-Hydroxytryptamine 2B Receptor
pharmaceuticals Review Structure, Function, and Pharmaceutical Ligands of 5-Hydroxytryptamine 2B Receptor Qing Wang 1,2 , Yu Zhou 2 , Jianhui Huang 1 and Niu Huang 2,3,* 1 School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; [email protected] (Q.W.); [email protected] (J.H.) 2 National Institute of Biological Sciences, No. 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China; [email protected] 3 Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 102206, China * Correspondence: [email protected]; Tel.: +86-10-80720645 Abstract: Since the first characterization of the 5-hydroxytryptamine 2B receptor (5-HT2BR) in 1992, significant progress has been made in 5-HT2BR research. Herein, we summarize the biological function, structure, and small-molecule pharmaceutical ligands of the 5-HT2BR. Emerging evidence has suggested that the 5-HT2BR is implicated in the regulation of the cardiovascular system, fibrosis disorders, cancer, the gastrointestinal (GI) tract, and the nervous system. Eight crystal complex structures of the 5-HT2BR bound with different ligands provided great insights into ligand recognition, activation mechanism, and biased signaling. Numerous 5-HT2BR antagonists have been discovered and developed, and several of them have advanced to clinical trials. It is expected that the novel 5-HT2BR antagonists with high potency and selectivity will lead to the development of first-in-class drugs in various therapeutic areas. Keywords: GPCR; 5-HT2BR; biased signaling; agonist; antagonist Citation: Wang, Q.; Zhou, Y.; Huang, J.; Huang, N. Structure, Function, and Pharmaceutical Ligands of 5-Hydroxytryptamine 2B Receptor. 1. Introduction Pharmaceuticals 2021, 14, 76. -
A Double-Blind Placebo-Controlled Study of Fluvoxamine and Imipramine in Out-Patients with Primary Depression T.M
Br. J. clin. Pharmac. (1983), 15, 433S-438S A DOUBLE-BLIND PLACEBO-CONTROLLED STUDY OF FLUVOXAMINE AND IMIPRAMINE IN OUT-PATIENTS WITH PRIMARY DEPRESSION T.M. ITIL, R.K. SHRIVASTAVA, S. MUKHERJEE, B.S. COLEMAN' & S.T. MICHAEL New York Institute for Research into Contemporary Medicine, Tarrytown, N.Y., affiliated with the Department of Psychiatry, New York Medical College, Valhalla, N.Y. and 'Kali-Duphar Laboratories, Inc., Columbus, Ohio 43229, U.S.A. 1 A double-blind placebo-controlled study of fluvoxamine and imipramine was performed in a group of depressed patients. Twenty-two patients received fluvoxamine (mean dose 101 mg/day), 25 received imipramine (mean dose 127 mg/day) and 22 received placebo. 2 Apart from an increase in the SGOT and SGPT values offour imipramine patients, no statistically significant changes in haematology or urinalysis were judged to be medically relevant. Fluvoxamine exhibited fewer anticholinergic side effects than imipramine. 3 Both fluvoxamine treated patients and imipramine-treated patients exhibited a statistically sig- nificant improvement at the end ofthe 28-day treatment period with respect to the placebo patients, as measured using the Hamilton Rating Scale for Depression, and the Clinical Global Impression Scale. Evaluations ofthe results of the Beck Depression Inventory and the Profile ofMood States revealed a statistically significant improvement for imipramine patients with respect to placebo at week 4, but not for fluvoxamine patients. It is postulated on the basis of quantitative pharmaco-EEG findings, that the slight superiority of imipramine over fluvoxamine was due to underdosing of the latter. Introduction Despite the development of a series of new anti- study in human volunteers (Menon & Vijvers, 1974) depressants, there is still a need to develop an anti- confirmed the absence of anticholinergic effects. -
Mypgx Abstract Booklet
MyPGx® Abstract booklet July 2018 Version number: 003 Content I. General information abstracts – Pharmacogenetics (PGx), single nucleotide polymorphisms (SNPs) and adverse drug reactions (ADRs) 2 II. Psychiatry - MyPSY 10 III. Rheumatology - MyRHUMA 14 IV. Neuology – MyNEURO 16 V. Oncology – MyONCO 18 VI. Cardiology– MyCARDIO 21 VII. APPENDIX 1: U.S.Food & Drug administration (FDA) PGx Biomarker in drug labelling 26 VIII. APPENDIX 2: Genetic biomarkers associated with inter-individual differences in drug pharmacokinetic or pharmacodynamics parameters 42 © 2018 SYNLAB International GmbH. All rights reserved. MyPGx® is a registered trade mark of SYNLAB International GmbH. 1 I. General information abstracts – Pharmacogenetics (PGx), single nucleotide polymorphisms (SNPs) and adverse drug reactions (ADRs) A Survey on Polypharmacy and Use of Inappropriate Medications Rambhade, S., Chakarborty, A., Shrivastava, A., Patil, U. K., & Rambhade, A. (2012). A survey on polypharmacy and use of inappropriate medications. Toxicology international, 19(1), 68. In the past, polypharmacy was referred to the mixing of many drugs in one prescription. Today polypharmacy implies to the prescription of too many medications for an individual patient, with an associated higher risk of adverse drug reactions (ADRs) and interactions. Situations certainly exist where the combination therapy or polytherapy is the used for single disease condition. Polypharmacy is a problem of substantial importance, in terms of both direct medication costs and indirect medication costs resulting from drug-related morbidity. Polypharmacy increases the risk of side effects and interactions. Moreover it is a preventable problem. A retrospective study was carried out at Bhopal district (Capital of Madhya Pradesh, India) in the year of September-November 2009 by collecting prescriptions of consultants at various levels of health care. -
Title Structure of the Human Histamine H1 Receptor Complex with Doxepin
Structure of the human histamine H1 receptor complex with Title doxepin. Shimamura, Tatsuro; Shiroishi, Mitsunori; Weyand, Simone; Tsujimoto, Hirokazu; Winter, Graeme; Katritch, Vsevolod; Author(s) Abagyan, Ruben; Cherezov, Vadim; Liu, Wei; Han, Gye Won; Kobayashi, Takuya; Stevens, Raymond C; Iwata, So Citation Nature (2011), 475(7354): 65-70 Issue Date 2011-07-07 URL http://hdl.handle.net/2433/156845 © 2011 Nature Publishing Group, a division of Macmillan Publishers Limited.; This is not the published version. Please Right cite only the published version.; この論文は出版社版であり ません。引用の際には出版社版をご確認ご利用ください 。 Type Journal Article Textversion author Kyoto University Title: Structure of the human histamine H1 receptor in complex with doxepin. Authors Tatsuro Shimamura 1,2,3*, Mitsunori Shiroishi 1,2,4*, Simone Weyand 1,5,6, Hirokazu Tsujimoto 1,2, Graeme Winter 6, Vsevolod Katritch7, Ruben Abagyan7, Vadim Cherezov3, Wei Liu3, Gye Won Han3, Takuya Kobayashi 1,2‡, Raymond C. Stevens3‡and So Iwata1,2,5,6,8‡ 1. Human Receptor Crystallography Project, ERATO, Japan Science and Technology Agency, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan. 2. Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-Ku, Kyoto 606-8501, Japan. 3. Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA. 4. Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan. 5. Division of Molecular Biosciences, Membrane Protein Crystallography Group, Imperial College, London SW7 2AZ, UK. 6. Diamond Light Source, Harwell Science and Innovation Campus, Chilton, Didcot, Oxfordshire OX11 0DE, UK. 7. Skaggs School of Pharmacy and Pharmaceutical Sciences and San Diego Supercomputer Center, University of California, San Diego, La Jolla, CA 92093, USA.