Oculocutaneous Albinism

Total Page:16

File Type:pdf, Size:1020Kb

Oculocutaneous Albinism CBA HoliRD REPORT: Oculocutaneous Albinism Marina Esteban Medina María Peña-Chilet Carlos Loucera Joaquín Dopazo Clinical Bioinformatics Area - FPS Sevilla, January 27, 2020 Collaborators: Dr.Luis Montoliu’s group - U756 CIBERER Research team at National Centre of Biotechnology (CNB-CSIC), Campus Cantoblanco, Madrid. CBA Objectives and methodology: The Holistic Rare Disease project (HoliRD) aims to build Diseases Maps for as many Rare Diseases as possible and to model them to systematize research in drug repurposing. In order to achieve this purpose several databases such as ORPHANET, OMIM, HPO, PubMed, KEGG, STRING, as well as the literature is used to collect all the up-to-date knowledge of the diseases under study and defining a Disease Map that contains the functional relationships among the known disease genes, as well as the functional consequences of their activity. Then, a mechanistic model that accounts for the activity of such map is used. The HiPathia algorithm, which has successfully proven to predict cell activities related to cancer hallmarks (Hidalgo et al., Oncotarget 2017; 8:5160-5178; Hidalgo et al., Biol Direct. 2018;13:16) as well as the effect of protein inhibitions on cell survival (Cubuk et al., Cancer Res. 2018; 78:6059-6072) is used to simulate the activity of the disease map. Finally, machine learning algorithms are used to find other proteins, already target of drugs with another indication, which display a potential causal effect on the activity of the previously defined disease map. The drugs that target these proteins are potential candidates for repurposing. Schematic representation of the method used. Examples of the use of this approach can be found in Esteban-Medina et al., BMC Bioinformatics. 2019, 20(1):370. CBA Report This report describes the results of the different steps of the HoliRD approach applied to Oculocutaneous Albinism. Identification of genes highly related to the rare disease (RD) under study in Orphanet/OMIM A total of 7 genes annotated as Oculocutaneous Albinism (ALB) were found in the Orphanet / OMIM database. ALB highly related genes Disease ID Entrez ID Gene Symbol OMIM:203200 4948 OCA2 ORPHA:370097 283652 SLC24A5 ORPHA:79433 7306 TYRP1 ORPHA:79435 51151 SLC45A2 OMIM:615179 83938 LRMDA ORPHA:79434 7299 TYR ORPHA:79432 4157 MC1R CBA Identification of highly related HPO to the RD under study: A total of 13 HPO codes associated to ALB with specificity >=7 were selected. ALB highly related HPOs HPO ID HPO term Specificity level HP:0000483 Astigmatism 10 HP:0000486 Strabismus 7 HP:0000613 Photophobia 9 HP:0000639 Nystagmus 7 HP:0000992 Cutaneous photosensitivity 7 HP:0002227 White eyelashes 15 HP:0002671 Basal cell carcinoma 8 HP:0006739 Squamous cell carcinoma of the skin 9 HP:0007513 Generalized hypopigmentation 8 HP:0007730 Iris hypopigmentation 9 HP:0007750 Hypoplasia of the fovea 15 HP:0008499 High hypermetropia 7 HP:0011364 White hair 9 CBA Identification of genes that shared at least RD-HPO codes Genes with >= 4 ALB-HPO codes Gene symbol Entrez Gene symbol Entrez Gene symbol Entrez RERE 473 MYO5A 4644 AP3B1 8546 CACNA1F 778 NDN 4692 HERC2 8924 LYST 1130 GPR143 4935 AP3D1 8943 CNGA3 1261 OCA2 4948 RECQL4 9401 DDB2 1643 PCYT1A 5130 MKRN3-AS1 10108 ERCC2 2068 PDE6C 5146 HPS5 11234 ERCC3 2071 PDE6H 5149 ATF6 22926 ERCC4 2072 PITX2 5308 PMPCA 23203 ERCC5 2073 PITX3 5309 CRB1 23418 ERCC6 2074 RPGR 6103 NPAP1 23742 FOXE3 2301 SKI 6497 SLC45A2 51151 GABRD 2563 SNRPN 6638 MAGEL2 54551 GJA1 2697 TYR 7299 CNGB3 54714 GNAT2 2780 TYRP1 7306 PRDM16 63976 GTF2E2 2961 CLRN1 7401 HPS6 79803 HARS 3035 BEST1 7439 CEP78 84131 IPW 3653 XPC 7508 HPS4 89781 KRAS 3845 MKRN3 7681 MPLKIP 136647 CBA MC1R 4157 RNF113A 7737 PWAR1 145624 MITF 4286 KCNAB2 8514 KCNV2 169522 SNORD115-1 338433 SLC6A19 340024 SLC24A5 283652 BLOC1S3 388552 GTF2H5 404672 PWRN1 791114 10003341 SNORD116-1 3 Genes with >= 6 ALB-HPO codes Gene Symbol Entrez Gene Symbol Entrez CACNA1F 778 ERCC5 2073 LYST 1130 MC1R 4157 ERCC2 2068 MITF 4286 ERCC3 2071 GPR143 4935 ERCC4 2072 OCA2 4948 SLC45A2 51151 TYR 7299 BLOC1S3 388552 CBA Genes with >= 8 ALB-HPO codes Gene Symbol Entrez MC1R 4157 OCA2 4948 TYR 7299 SLC45A2 51151 In order to maintain the specificity and not over expand the Disease Map of action only genes with >=6 ALB-HPO codes were selected. Location of the selected disease related genes in KEGG pathways to define the Disease Map of action. After locating the RD associated genes within KEGG pathways, a total of 17 circuits belonging to 8 KEGG pathways were found as part of the disease map. KEGG pathway KEGG-pathway code MAPK signaling pathway hsa04010 cGMP-PKG signaling pathway hsa04022 cAMP signaling pathway hsa04024 Serotonergic synapse hsa04726 GABAergic synapse hsa04727 Insulin secretion hsa04911 Melanogenesis hsa04916 Oxytocin signaling pathway hsa04921 HiPathia is a signal propagation algorithm that considers pathways as collections of circuits defined as sub-pathways or sequences of proteins connecting signal receptor proteins to effector proteins. HiPathia uses expression values genes as proxies of the level of activation of the corresponding protein in the circuit. Taking into account the inferred protein activity and the interactions between the proteins (activation or inhibition) defined in the pathway, the level of activity of a circuit is estimated using a signal propagation algorithm. Ultimately, effector proteins are annotated with a cellular function. CBA In order to enable a better visualization of the RD Map the HiPathia viewer has been used. The circuits that define the RD Map are marked in RED (please ignore the color legend). The pathways that contain these circuits are highlighted in the right window with a red arrow. The only purpose of this report is to represent the components (genes and interaction) and functions of the circuits that compose the RD Map. Click to access the RD Map Report Hipathia uses KEGG pathway for the graphical representation of the circuits. The original pathways can also be visualized in the KEGG repository https://www.genome.jp/kegg/pathway.html Select prefix: hsa (Organism) Enter keywords: e.g. FoxOsignalingpathway (any HiPathia pathway) Prediction of relevance of gene targets from approved drugs extracted from DRUGBANK database (release 5.1.4) The HoliRD approach takes the mechanistic model of the disease map as the proxy for the molecular basis of the disease outcome. Then, a Multi-Output Random Forest (MORF) regressor, a machine learning algorithm that predicts the circuit activities across the whole disease map, is trained on GTEx gene expression data to find proteins (which are targets for drugs with indications for other diseases) that correctly predict the behavior of the disease map. The drugs targeting the best predictor proteins are candidate for drug repurposing. The relevance score accounts for the accuracy of the prediction contributed by each individual protein. Relevance are absolute values and do not account for the direction of the prediction, that is, if the interaction is an activation or an inhibition. CBA From a total of 683 targets for approved drugs (AT) in the DRUGBANK database (release 5.1.4) the machine learning algorithm selected the 25 most relevant ones (top AT). Entrez Gene Symbol Relevance score Entrez Gene Symbol Relevance score 7299 TYR 0.2811105738 2100 ESR2 0.0065114645 3356 HTR2A 0.216515967 3757 KCNH2 0.0059683608 3357 HTR2B 0.1028354357 4137 MAPT 0.005070877 3778 KCNMA1 0.0546554091 776 CACNA1D 0.0049331 3849 KRT2 0.0458333973 6335 SCN9A 0.0043507735 50632 CALY 0.0178556769 2562 GABRB3 0.0036459506 4882 NPR2 0.0176289214 3274 HRH2 0.0035269408 9900 SV2A 0.0164550149 777 CACNA1E 0.0034067533 6324 SCN1B 0.0143180942 6262 RYR2 0.0032688947 291 SLC25A4 0.0135524337 6785 ELOVL4 0.0031980558 5535 PPP3R2 0.0084035268 6261 RYR1 0.0029505544 775 CACNA1C 0.0080491854 774 CACNA1B 0.0029303435 3358 HTR2C 0.007654728 Relevance plot depicting the 25 most relevant gene targets. CBA Drugs from DRUGBANK db (release 5.1.4) that target top AT. And the list of drugs that target the 25 most relevant genes follows: You can click on the hyperlink of the Drug ID to see more detailed information about the drug in DrugBank DB. Relevance Drug ID Drug Name Drug Effect Target Associated condition score DB00548 Azelaic acid inhibitor TYR Acne Vulgaris 0,28111 DB09526 Hydroquinone inhibitor TYR Melasma 0,28111 DB11217 Arbutin inhibitor TYR 0,28111 DB00246 Ziprasidone antagonist HTR2A Acute Agitation 0,21652 DB00247 Methysergide antagonist HTR2A 0,21652 DB00321 Amitriptyline antagonist HTR2A Acute Depression 0,21652 DB00334 Olanzapine antagonist HTR2A Acute Agitation 0,21652 DB00363 Clozapine antagonist HTR2A Suicidal Behaviour 0,21652 DB00370 Mirtazapine antagonist HTR2A Depressive illness 0,21652 DB00408 Loxapine antagonist HTR2A Acute Agitation 0,21652 DB00434 Cyproheptadine antagonist HTR2A Allergic Reactions 0,21652 Acute Intermittent DB00477 Chlorpromazine antagonist HTR2A 0,21652 Porphyria (AIP) Acute Depressive DB00540 Nortriptyline antagonist HTR2A 0,21652 Episode DB00589 Lisuride agonist HTR2A 0,21652 DB00656 Trazodone antagonist HTR2A Alcohol Dependence 0,21652 DB00696 Ergotamine agonist HTR2A Cluster Headache 0,21652 DB00734 Risperidone antagonist HTR2A Acute Mania 0,21652 DB00805 Minaprine antagonist HTR2A 0,21652 DB00924 Cyclobenzaprine antagonist HTR2A 0,21652 CBA DB00933 Mesoridazine antagonist HTR2A 0,21652 Anorexia Nervosa DB01151 Desipramine antagonist HTR2A 0,21652 (AN) Acute Depressive DB01224 Quetiapine antagonist HTR2A 0,21652 Episode DB01238
Recommended publications
  • ELECTRONIC CLAIMS MANAGEMENT ENGINE (ECME) Version 1.0
    ELECTRONIC CLAIMS MANAGEMENT ENGINE (ECME) Version 1.0 USER MANUAL December 2020 Department of Veterans Affairs Office of Information and Technology (OIT) Product Development Revision History Date Description (Patch # if applicable) Project Manager Technical Writer 12/2020 Updated for BPS*1*27 MCCF EDI TAS MCCF EDI TAS Updated Potential Secondary Rx Claims Report ePharmacy ePharmacy Screen Display Development TeamDevelopment Team Updated Title Page date and footers 04/2020 Updated for BPS*1*26 REDACTED REDACTED Updated section 5.6 Add/View Comments Updated Title Page date and footers 1/2019 Updated for BPS*1*24 REDACTED REDACTED Change label on Claim Log, Modify Change View (CV), Enhance Claim Reports 08/2018 Updated for BPS*1*23 REDACTED REDACTED Update Title page date, footer date Modification filter questions CV Change View action, Rx Activity Log to add Date of Service to ECME Log, Resubmit with Edits action, Process Secondary/TRICARE Rx to ECME option, Payable Claims Report, Rejected Claims Report, Reversal Claims Report, Claims Submitted Not Yet Released Report, Recent Transactions Report, Closed Claims Report, View ePharmacy Rx Report Option 11/2017 Updated for BPS*1*22 REDACTED REDACTED Update Title page date, modification to Change View action; change auto-reverse parameter and auto-reversal bulletin; add Facility ID Qualifier and Reconciliation ID to Claim Log and Claim Response Inquiry; add new action PR Print Reports to VER View ePharmacy Rx. 05/2017 Updated for BPS*1*21 REDACTED REDACTED 08/2016 Updated for BPS*1*20 REDACTED
    [Show full text]
  • Electronic Claims Management Version 1.0 Engine User Manual
    Electronic Claims Management Engine (ECME) Version 1.0 User Manual May 2021 Department of Veterans Affairs Office of Information and Technology (OIT) Revision History Description (Patch # if Date Project Manager Technical Writer applicable) 05/2021 Updated for BPS*1*28 MCCF EDI TAS MCCF EDI TAS Updated Title Page date and ePharmacy ePharmacy footers Development Development Added Section 6.3.3 SC Team Team Prescriptions for Active Duty Prescriptions Added Section 8.1.11 Duplicate Claims Report 12/2020 Updated for BPS*1*27 MCCF EDI TAS MCCF EDI TAS Updated Potential Secondary Rx ePharmacy ePharmacy Claims Report Screen Display Development Development Updated Title Page date and Team Team footers 04/2020 Updated for BPS*1*26 REDACTED REDACTED Updated section 5.6 Add/View Comments Updated Title Page date and footers 1/2019 Updated for BPS*1*24 REDACTED REDACTED Change label on Claim Log, Modify Change View (CV), Enhance Claim Reports 08/2018 Updated for BPS*1*23 REDACTED REDACTED Update Title page date, footer date Modification filter questions CV Change View action, Rx Activity Log to add Date of Service to ECME Log, Resubmit with Edits action, Process Secondary/TRICARE Rx to ECME option, Payable Claims Report, Rejected Claims Report, Reversal Claims Report, Claims Submitted Not Yet Released Report, Recent Transactions Report, Closed Claims Report, View ePharmacy Rx Report Option Electronic Claims Management Engine V. 1.0 User Manual ii May 2021 Description (Patch # if Date Project Manager Technical Writer applicable) 11/2017 Updated for BPS*1*22 REDACTED REDACTED Update Title page date, modification to Change View action; change auto-reverse parameter and auto-reversal bulletin; add Facility ID Qualifier and Reconciliation ID to Claim Log and Claim Response Inquiry; add new action PR Print Reports to VER View ePharmacy Rx.
    [Show full text]
  • Title 16. Crimes and Offenses Chapter 13. Controlled Substances Article 1
    TITLE 16. CRIMES AND OFFENSES CHAPTER 13. CONTROLLED SUBSTANCES ARTICLE 1. GENERAL PROVISIONS § 16-13-1. Drug related objects (a) As used in this Code section, the term: (1) "Controlled substance" shall have the same meaning as defined in Article 2 of this chapter, relating to controlled substances. For the purposes of this Code section, the term "controlled substance" shall include marijuana as defined by paragraph (16) of Code Section 16-13-21. (2) "Dangerous drug" shall have the same meaning as defined in Article 3 of this chapter, relating to dangerous drugs. (3) "Drug related object" means any machine, instrument, tool, equipment, contrivance, or device which an average person would reasonably conclude is intended to be used for one or more of the following purposes: (A) To introduce into the human body any dangerous drug or controlled substance under circumstances in violation of the laws of this state; (B) To enhance the effect on the human body of any dangerous drug or controlled substance under circumstances in violation of the laws of this state; (C) To conceal any quantity of any dangerous drug or controlled substance under circumstances in violation of the laws of this state; or (D) To test the strength, effectiveness, or purity of any dangerous drug or controlled substance under circumstances in violation of the laws of this state. (4) "Knowingly" means having general knowledge that a machine, instrument, tool, item of equipment, contrivance, or device is a drug related object or having reasonable grounds to believe that any such object is or may, to an average person, appear to be a drug related object.
    [Show full text]
  • Title Structure of the Human Histamine H1 Receptor Complex With
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Kyoto University Research Information Repository Structure of the human histamine H1 receptor complex with Title doxepin. Shimamura, Tatsuro; Shiroishi, Mitsunori; Weyand, Simone; Tsujimoto, Hirokazu; Winter, Graeme; Katritch, Vsevolod; Author(s) Abagyan, Ruben; Cherezov, Vadim; Liu, Wei; Han, Gye Won; Kobayashi, Takuya; Stevens, Raymond C; Iwata, So Citation Nature (2011), 475(7354): 65-70 Issue Date 2011-07-07 URL http://hdl.handle.net/2433/156845 © 2011 Nature Publishing Group, a division of Macmillan Right Publishers Limited. Type Journal Article Textversion author Kyoto University Title: Structure of the human histamine H1 receptor in complex with doxepin. Authors Tatsuro Shimamura 1,2,3*, Mitsunori Shiroishi 1,2,4*, Simone Weyand 1,5,6, Hirokazu Tsujimoto 1,2, Graeme Winter 6, Vsevolod Katritch7, Ruben Abagyan7, Vadim Cherezov3, Wei Liu3, Gye Won Han3, Takuya Kobayashi 1,2‡, Raymond C. Stevens3‡and So Iwata1,2,5,6,8‡ 1. Human Receptor Crystallography Project, ERATO, Japan Science and Technology Agency, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan. 2. Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-Ku, Kyoto 606-8501, Japan. 3. Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA. 4. Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan. 5. Division of Molecular Biosciences, Membrane Protein Crystallography Group, Imperial College, London SW7 2AZ, UK. 6. Diamond Light Source, Harwell Science and Innovation Campus, Chilton, Didcot, Oxfordshire OX11 0DE, UK.
    [Show full text]
  • The Use of Stems in the Selection of International Nonproprietary Names (INN) for Pharmaceutical Substances
    WHO/PSM/QSM/2006.3 The use of stems in the selection of International Nonproprietary Names (INN) for pharmaceutical substances 2006 Programme on International Nonproprietary Names (INN) Quality Assurance and Safety: Medicines Medicines Policy and Standards The use of stems in the selection of International Nonproprietary Names (INN) for pharmaceutical substances FORMER DOCUMENT NUMBER: WHO/PHARM S/NOM 15 © World Health Organization 2006 All rights reserved. Publications of the World Health Organization can be obtained from WHO Press, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland (tel.: +41 22 791 3264; fax: +41 22 791 4857; e-mail: [email protected]). Requests for permission to reproduce or translate WHO publications – whether for sale or for noncommercial distribution – should be addressed to WHO Press, at the above address (fax: +41 22 791 4806; e-mail: [email protected]). The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted lines on maps represent approximate border lines for which there may not yet be full agreement. The mention of specific companies or of certain manufacturers’ products does not imply that they are endorsed or recommended by the World Health Organization in preference to others of a similar nature that are not mentioned. Errors and omissions excepted, the names of proprietary products are distinguished by initial capital letters.
    [Show full text]
  • Natural Psychoplastogens As Antidepressant Agents
    molecules Review Natural Psychoplastogens As Antidepressant Agents Jakub Benko 1,2,* and Stanislava Vranková 1 1 Center of Experimental Medicine, Institute of Normal and Pathological Physiology, Slovak Academy of Sciences, 841 04 Bratislava, Slovakia; [email protected] 2 Faculty of Medicine, Comenius University, 813 72 Bratislava, Slovakia * Correspondence: [email protected]; Tel.: +421-948-437-895 Academic Editor: Olga Pecháˇnová Received: 31 December 2019; Accepted: 2 March 2020; Published: 5 March 2020 Abstract: Increasing prevalence and burden of major depressive disorder presents an unavoidable problem for psychiatry. Existing antidepressants exert their effect only after several weeks of continuous treatment. In addition, their serious side effects and ineffectiveness in one-third of patients call for urgent action. Recent advances have given rise to the concept of psychoplastogens. These compounds are capable of fast structural and functional rearrangement of neural networks by targeting mechanisms previously implicated in the development of depression. Furthermore, evidence shows that they exert a potent acute and long-term positive effects, reaching beyond the treatment of psychiatric diseases. Several of them are naturally occurring compounds, such as psilocybin, N,N-dimethyltryptamine, and 7,8-dihydroxyflavone. Their pharmacology and effects in animal and human studies were discussed in this article. Keywords: depression; antidepressants; psychoplastogens; psychedelics; flavonoids 1. Introduction 1.1. Depression Depression is the most common and debilitating mental disease. Its prevalence and burden have been steadily rising in the past decades. For example, in 1990, the World Health Organization (WHO) projected that depression would increase from 4th to 2nd most frequent cause of world-wide disability by 2020 [1].
    [Show full text]
  • Pharmaceuticals As Environmental Contaminants
    PharmaceuticalsPharmaceuticals asas EnvironmentalEnvironmental Contaminants:Contaminants: anan OverviewOverview ofof thethe ScienceScience Christian G. Daughton, Ph.D. Chief, Environmental Chemistry Branch Environmental Sciences Division National Exposure Research Laboratory Office of Research and Development Environmental Protection Agency Las Vegas, Nevada 89119 [email protected] Office of Research and Development National Exposure Research Laboratory, Environmental Sciences Division, Las Vegas, Nevada Why and how do drugs contaminate the environment? What might it all mean? How do we prevent it? Office of Research and Development National Exposure Research Laboratory, Environmental Sciences Division, Las Vegas, Nevada This talk presents only a cursory overview of some of the many science issues surrounding the topic of pharmaceuticals as environmental contaminants Office of Research and Development National Exposure Research Laboratory, Environmental Sciences Division, Las Vegas, Nevada A Clarification We sometimes loosely (but incorrectly) refer to drugs, medicines, medications, or pharmaceuticals as being the substances that contaminant the environment. The actual environmental contaminants, however, are the active pharmaceutical ingredients – APIs. These terms are all often used interchangeably Office of Research and Development National Exposure Research Laboratory, Environmental Sciences Division, Las Vegas, Nevada Office of Research and Development Available: http://www.epa.gov/nerlesd1/chemistry/pharma/image/drawing.pdfNational
    [Show full text]
  • Pharmaceutical Appendix to the Harmonized Tariff Schedule
    Harmonized Tariff Schedule of the United States Basic Revision 3 (2021) Annotated for Statistical Reporting Purposes PHARMACEUTICAL APPENDIX TO THE HARMONIZED TARIFF SCHEDULE Harmonized Tariff Schedule of the United States Basic Revision 3 (2021) Annotated for Statistical Reporting Purposes PHARMACEUTICAL APPENDIX TO THE TARIFF SCHEDULE 2 Table 1. This table enumerates products described by International Non-proprietary Names INN which shall be entered free of duty under general note 13 to the tariff schedule. The Chemical Abstracts Service CAS registry numbers also set forth in this table are included to assist in the identification of the products concerned. For purposes of the tariff schedule, any references to a product enumerated in this table includes such product by whatever name known.
    [Show full text]
  • Structure, Function, and Pharmaceutical Ligands of 5-Hydroxytryptamine 2B Receptor
    pharmaceuticals Review Structure, Function, and Pharmaceutical Ligands of 5-Hydroxytryptamine 2B Receptor Qing Wang 1,2 , Yu Zhou 2 , Jianhui Huang 1 and Niu Huang 2,3,* 1 School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; [email protected] (Q.W.); [email protected] (J.H.) 2 National Institute of Biological Sciences, No. 7 Science Park Road, Zhongguancun Life Science Park, Beijing 102206, China; [email protected] 3 Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 102206, China * Correspondence: [email protected]; Tel.: +86-10-80720645 Abstract: Since the first characterization of the 5-hydroxytryptamine 2B receptor (5-HT2BR) in 1992, significant progress has been made in 5-HT2BR research. Herein, we summarize the biological function, structure, and small-molecule pharmaceutical ligands of the 5-HT2BR. Emerging evidence has suggested that the 5-HT2BR is implicated in the regulation of the cardiovascular system, fibrosis disorders, cancer, the gastrointestinal (GI) tract, and the nervous system. Eight crystal complex structures of the 5-HT2BR bound with different ligands provided great insights into ligand recognition, activation mechanism, and biased signaling. Numerous 5-HT2BR antagonists have been discovered and developed, and several of them have advanced to clinical trials. It is expected that the novel 5-HT2BR antagonists with high potency and selectivity will lead to the development of first-in-class drugs in various therapeutic areas. Keywords: GPCR; 5-HT2BR; biased signaling; agonist; antagonist Citation: Wang, Q.; Zhou, Y.; Huang, J.; Huang, N. Structure, Function, and Pharmaceutical Ligands of 5-Hydroxytryptamine 2B Receptor. 1. Introduction Pharmaceuticals 2021, 14, 76.
    [Show full text]
  • A Double-Blind Placebo-Controlled Study of Fluvoxamine and Imipramine in Out-Patients with Primary Depression T.M
    Br. J. clin. Pharmac. (1983), 15, 433S-438S A DOUBLE-BLIND PLACEBO-CONTROLLED STUDY OF FLUVOXAMINE AND IMIPRAMINE IN OUT-PATIENTS WITH PRIMARY DEPRESSION T.M. ITIL, R.K. SHRIVASTAVA, S. MUKHERJEE, B.S. COLEMAN' & S.T. MICHAEL New York Institute for Research into Contemporary Medicine, Tarrytown, N.Y., affiliated with the Department of Psychiatry, New York Medical College, Valhalla, N.Y. and 'Kali-Duphar Laboratories, Inc., Columbus, Ohio 43229, U.S.A. 1 A double-blind placebo-controlled study of fluvoxamine and imipramine was performed in a group of depressed patients. Twenty-two patients received fluvoxamine (mean dose 101 mg/day), 25 received imipramine (mean dose 127 mg/day) and 22 received placebo. 2 Apart from an increase in the SGOT and SGPT values offour imipramine patients, no statistically significant changes in haematology or urinalysis were judged to be medically relevant. Fluvoxamine exhibited fewer anticholinergic side effects than imipramine. 3 Both fluvoxamine treated patients and imipramine-treated patients exhibited a statistically sig- nificant improvement at the end ofthe 28-day treatment period with respect to the placebo patients, as measured using the Hamilton Rating Scale for Depression, and the Clinical Global Impression Scale. Evaluations ofthe results of the Beck Depression Inventory and the Profile ofMood States revealed a statistically significant improvement for imipramine patients with respect to placebo at week 4, but not for fluvoxamine patients. It is postulated on the basis of quantitative pharmaco-EEG findings, that the slight superiority of imipramine over fluvoxamine was due to underdosing of the latter. Introduction Despite the development of a series of new anti- study in human volunteers (Menon & Vijvers, 1974) depressants, there is still a need to develop an anti- confirmed the absence of anticholinergic effects.
    [Show full text]
  • Mypgx Abstract Booklet
    MyPGx® Abstract booklet July 2018 Version number: 003 Content I. General information abstracts – Pharmacogenetics (PGx), single nucleotide polymorphisms (SNPs) and adverse drug reactions (ADRs) 2 II. Psychiatry - MyPSY 10 III. Rheumatology - MyRHUMA 14 IV. Neuology – MyNEURO 16 V. Oncology – MyONCO 18 VI. Cardiology– MyCARDIO 21 VII. APPENDIX 1: U.S.Food & Drug administration (FDA) PGx Biomarker in drug labelling 26 VIII. APPENDIX 2: Genetic biomarkers associated with inter-individual differences in drug pharmacokinetic or pharmacodynamics parameters 42 © 2018 SYNLAB International GmbH. All rights reserved. MyPGx® is a registered trade mark of SYNLAB International GmbH. 1 I. General information abstracts – Pharmacogenetics (PGx), single nucleotide polymorphisms (SNPs) and adverse drug reactions (ADRs) A Survey on Polypharmacy and Use of Inappropriate Medications Rambhade, S., Chakarborty, A., Shrivastava, A., Patil, U. K., & Rambhade, A. (2012). A survey on polypharmacy and use of inappropriate medications. Toxicology international, 19(1), 68. In the past, polypharmacy was referred to the mixing of many drugs in one prescription. Today polypharmacy implies to the prescription of too many medications for an individual patient, with an associated higher risk of adverse drug reactions (ADRs) and interactions. Situations certainly exist where the combination therapy or polytherapy is the used for single disease condition. Polypharmacy is a problem of substantial importance, in terms of both direct medication costs and indirect medication costs resulting from drug-related morbidity. Polypharmacy increases the risk of side effects and interactions. Moreover it is a preventable problem. A retrospective study was carried out at Bhopal district (Capital of Madhya Pradesh, India) in the year of September-November 2009 by collecting prescriptions of consultants at various levels of health care.
    [Show full text]
  • Title Structure of the Human Histamine H1 Receptor Complex with Doxepin
    Structure of the human histamine H1 receptor complex with Title doxepin. Shimamura, Tatsuro; Shiroishi, Mitsunori; Weyand, Simone; Tsujimoto, Hirokazu; Winter, Graeme; Katritch, Vsevolod; Author(s) Abagyan, Ruben; Cherezov, Vadim; Liu, Wei; Han, Gye Won; Kobayashi, Takuya; Stevens, Raymond C; Iwata, So Citation Nature (2011), 475(7354): 65-70 Issue Date 2011-07-07 URL http://hdl.handle.net/2433/156845 © 2011 Nature Publishing Group, a division of Macmillan Publishers Limited.; This is not the published version. Please Right cite only the published version.; この論文は出版社版であり ません。引用の際には出版社版をご確認ご利用ください 。 Type Journal Article Textversion author Kyoto University Title: Structure of the human histamine H1 receptor in complex with doxepin. Authors Tatsuro Shimamura 1,2,3*, Mitsunori Shiroishi 1,2,4*, Simone Weyand 1,5,6, Hirokazu Tsujimoto 1,2, Graeme Winter 6, Vsevolod Katritch7, Ruben Abagyan7, Vadim Cherezov3, Wei Liu3, Gye Won Han3, Takuya Kobayashi 1,2‡, Raymond C. Stevens3‡and So Iwata1,2,5,6,8‡ 1. Human Receptor Crystallography Project, ERATO, Japan Science and Technology Agency, Yoshidakonoe-cho, Sakyo-ku, Kyoto 606-8501, Japan. 2. Department of Cell Biology, Graduate School of Medicine, Kyoto University, Yoshidakonoe-cho, Sakyo-Ku, Kyoto 606-8501, Japan. 3. Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA. 4. Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan. 5. Division of Molecular Biosciences, Membrane Protein Crystallography Group, Imperial College, London SW7 2AZ, UK. 6. Diamond Light Source, Harwell Science and Innovation Campus, Chilton, Didcot, Oxfordshire OX11 0DE, UK. 7. Skaggs School of Pharmacy and Pharmaceutical Sciences and San Diego Supercomputer Center, University of California, San Diego, La Jolla, CA 92093, USA.
    [Show full text]