Coastal Flooding, Climate Change, and Your Health
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Town of Ocean City, Maryland Nuisance Flood Plan September
Town of Ocean City, Maryland Nuisance Flood Plan September 2020 Town of Ocean City, Maryland Nuisance Flood Plan Table of Contents I. Executive Summary 2 II. Nuisance Flood Plan 3 III. Mapping Risk Areas 6 IV. Best Practices from Other Coastal Communities 10 V. Inventory of Known Nuisance Flood Hazard Areas 11 VI. Nuisance Flood Thresholds 14 VII. Staged Response Plan for Nuisance Flooding 16 VIII. Nuisance Flood Impact Mitigation Strategies 17 IX. Conclusion – Next Steps and Future Update 20 Appendix I – Nuisance Flood Plan Work Group 21 Appendix II – Vertical Datum for Flood Mapping 23 Appendix III – Coastal Community Case Studies 24 Appendix IV – Nuisance Flood Maps 30 Inventory of Known Flood Hazard Areas 35 Appendix V - Flood Event Table and Tide Charts 37 1 I. Executive Summary Maryland House Bill 1350/1472 requires each coastal community that experiences nuisance flooding to prepare a Nuisance Flood Plan, to inform the public, and to take action in support of community resilience. Elements of the plan must include: • Inventory of nuisance flood areas • Thresholds for warning and response • Documentation of Events and Response Activity Ocean City MD experiences periodic nuisance flooding conditions (up to 1 foot deep* that cause inconvenience but not significant property damage). Nuisance flooding does not affect Ocean City uniformly – first to flood (lowest elevation) areas have been identified, along with areas that experience limited storm drainage capacity (flooding with heavy rainfall/flash flooding). Downtown streets along the bayside between the Inlet and 4th Street are the most frequently impacted, and create the greatest nuisance especially during the active tourist season. -
Equity: a Guide for Local Health Departments” Is a Product of the Public Health Institute Center for Climate Change and Health
Climate Change, Health, and A Guide For Local Equity: Health Departments Authors Contributors Linda Rudolph, MD, MPH Heather Kuiper, PhD, MPH Catherine Harrison, RN, MPH Zachariah Baker, JD Laura Buckley, MPH Neil Maizlish, PhD, MPH Savannah North, MPH Elsie Moore, MPH Acknowledgements “Climate Change, Health, and Equity: A Guide for Local Health Departments” is a product of the Public Health Institute Center for Climate Change and Health. “Climate Change, Health, and Equity: A Guide for Local Health Departments” was developed under Agreement #16-11001 with the California Department of Public Health Office of Health Equity and with funding from the American Public Health Association. Additional support was provided by The Kresge Foundation. This guide was designed by Amy Weiher at Weiher Creative, Inc. and was edited by Ann Greenberger at Greenline Editing. The authors wish to give special appreciation to the local health departments that have worked to integrate climate change into their work, and shared their experiences with the authors. Their work has inspired us to help others become more engaged in this urgent and critical issue. A special thanks to our reviewers: Charles Benjamin Beard, MS, PhD Chelsea Gridley-Smith, PhD Olubukolami Musa, MPH Centers for Disease Control and Prevention National Association of City and County American Public Health Association Health Officials Andrew Deckert, MD, MPH Kate Robb, MSPH Public Health Officer, Shasta County Linda Helland, MPH American Public Health Association California Department of Public -
National Weather Service Reference Guide
National Weather Service Reference Guide Purpose of this Document he National Weather Service (NWS) provides many products and services which can be T used by other governmental agencies, Tribal Nations, the private sector, the public and the global community. The data and services provided by the NWS are designed to fulfill us- ers’ needs and provide valuable information in the areas of weather, hydrology and climate. In addition, the NWS has numerous partnerships with private and other government entities. These partnerships help facilitate the mission of the NWS, which is to protect life and prop- erty and enhance the national economy. This document is intended to serve as a reference guide and information manual of the products and services provided by the NWS on a na- tional basis. Editor’s note: Throughout this document, the term ―county‖ will be used to represent counties, parishes, and boroughs. Similarly, ―county warning area‖ will be used to represent the area of responsibility of all of- fices. The local forecast office at Buffalo, New York, January, 1899. The local National Weather Service Office in Tallahassee, FL, present day. 2 Table of Contents Click on description to go directly to the page. 1. What is the National Weather Service?…………………….………………………. 5 Mission Statement 6 Organizational Structure 7 County Warning Areas 8 Weather Forecast Office Staff 10 River Forecast Center Staff 13 NWS Directive System 14 2. Non-Routine Products and Services (watch/warning/advisory descriptions)..…….. 15 Convective Weather 16 Tropical Weather 17 Winter Weather 18 Hydrology 19 Coastal Flood 20 Marine Weather 21 Non-Precipitation 23 Fire Weather 24 Other 25 Statements 25 Other Non-Routine Products 26 Extreme Weather Wording 27 Verification and Performance Goals 28 Impact-Based Decision Support Services 30 Requesting a Spot Fire Weather Forecast 33 Hazardous Materials Emergency Support 34 Interactive Warning Team 37 HazCollect 38 Damage Surveys 40 Storm Data 44 Information Requests 46 3. -
PRC.15.1.1 a Publication of AXA XL Risk Consulting
Property Risk Consulting Guidelines PRC.15.1.1 A Publication of AXA XL Risk Consulting WINDSTORMS INTRODUCTION A variety of windstorms occur throughout the world on a frequent basis. Although most winds are related to exchanges of energy (heat) between different air masses, there are a number of weather mechanisms that are involved in wind generation. These depend on latitude, altitude, topography and other factors. The different mechanisms produce windstorms with various characteristics. Some affect wide geographical areas, while others are local in nature. Some storms produce cooling effects, whereas others rapidly increase the ambient temperatures in affected areas. Tropical cyclones born over the oceans, tornadoes in the mid-west and the Santa Ana winds of Southern California are examples of widely different windstorms. The following is a short description of some of the more prevalent wind phenomena. A glossary of terms associated with windstorms is provided in PRC.15.1.1.A. The Beaufort Wind Scale, the Saffir/Simpson Hurricane Scale, the Australian Bureau of Meteorology Cyclone Severity Scale and the Fugita Tornado Scale are also provided in PRC.15.1.1.A. Types Of Windstorms Local Windstorms A variety of wind conditions are brought about by local factors, some of which can generate relatively high wind conditions. While they do not have the extreme high winds of tropical cyclones and tornadoes, they can cause considerable property damage. Many of these local conditions tend to be seasonal. Cold weather storms along the East coast are known as Nor’easters or Northeasters. While their winds are usually less than hurricane velocity, they may create as much or more damage. -
Hurricane Response Annex Overview Introduction
TABLE OF CONTENTS SECTION I – HURICANE RESPONSE ANNEX OVERVIEW ............................................................... 2 INTRODUCTION .................................................................................................................................................. 3 PLANNING ASSUMPTIONS ................................................................................................................................... 4 COMMUNITY IMPACTS ........................................................................................................................................ 4 SECTION II – CONCEPT OF OPERATIONS ........................................................................................ 5 DEFINING THE HAZARD ...................................................................................................................................... 5 Tropical Cyclones ..................................................................................................................................................... 5 TIMELINES ........................................................................................................................................................... 6 HURRICANE SEASON ...................................................................................................................................... 6 RESPONDER REENTRY HOUR ......................................................................................................................... 7 SECTION III – ROLES & RESPONSIBILITIES -
Lessons for Coastal Cities from Hurricane Sandy (PDF)
NRDC: Preparing for Climate Change - Lessons for Coastal Cities from Hurricane Sandy (PDF) APRIL 2014 NRDC REPORT R:14-04-A Preparing for Climate Change: Lessons for Coastal Cities from Hurricane Sandy AUTHORS: Kim Knowlton, Dr.P.H. Miriam Rotkin-Ellman, M.P.H. Natural Resources Defense Council ACKNOWLEDGMENTS The authors would like to thank Zev Ross and Hollie Kitson of ZevRoss Spatial Analysis, Ithaca, New York, for conducting the mapping of areas in the five boroughs of New York City that were affected by unexpected flooding as a result of Hurricane Sandy in October–November 2012. We would also like to acknowledge the sustainable development project work of Barnard College students Carly Wertheim, Mariah Chen, Reeva Dua, Claudia Mack, Jenny Pensky, and Emilie Schattman (advised by professor Martin Stute), who, in the fall of 2013, developed a preliminary analysis of health and economic costs in areas unexpectedly flooded during Hurricane Sandy. Their work helped shape this issue brief. This work is an outgrowth of a panel presentation titled Climate Change & Public Health Policy Implications of Sandy, given by Kim Knowlton, Dr.P.H., at a Special Session of the 2013 American Public Health Association meeting in Boston. We are grateful to the following colleagues and external peer reviewers who provided invaluable comments on this report: David Abramson of the National Center for Disaster Preparedness; Patrick L. Kinney, director of the Climate and Health Program at the Mailman School of Public Health, Columbia University; Robert Moore and Ben Chou of NRDC’s Climate and Water program; and NRDC colleagues Steve Fleischli, Becky Hammer, Becky Hayat, Theo Spencer and Monty Schmitt. -
Hazardous Weather Hazardous Weather
Texas Division of Emergency Management Texas State Operations Center Situation Awareness Brief Sunday, May 3rd, 2021 As of 0900 CST Incidents Reported to the State Operations Center (last 24 hours) Final DATE SUBJECT LOCATION Report (Y/N) 05/02/21 Initial Report of a Road Closure (US281) Live Oak County N 05/03/21 Preliminary Earthquake Report (M3.4) Culberson County Y 05/03/21 Final Report of a Road Closure (US 281) Live Oak County Y Informational Products Distributed by the State Operations Center DATE SUBJECT 05/03/21 CLEAR Alert Discontinuation - The Colony PD - Walker 05/03/21 AMBER Alert Activation - Austin PD - Wyatt Crowley 05/03/21 CLEAR Alert Activation - Allen Police Department - Bracey 05/03/21 NWS Shreveport Severe Weather Tonight and Tuesday 050321 05/02/21 20-0003 COVID-19 2020 SITREP 409 05/03/21 21-0003 February Winter WEATHER 2021 SITREP 74 Weather Forecast Highs Lows Weather Forecast Wind Speeds Gusts Hazardous Weather Hazardous Weather A High Wind Warning is in effect for Guadalupe Severe thunderstorms are possible this afternoon Pass late this evening through tonight. into this evening across eastern and southern Oklahoma and north Texas. There is the potential for hail up to the size of baseballs and thunderstorm wind gusts of 60 to 80 mph. The tornado risk is still very low and generally confined to southeast Oklahoma. Hazardous Weather Severe storms will be possible this evening and Thunderstorms are expected to move into our early tonight across the northern Big Country, northwest zones later this evening through the to the north of a Hamlin to Albany line. -
Marine Litter Legislation: a Toolkit for Policymakers
Marine Litter Legislation: A Toolkit for Policymakers The views expressed in this publication are those of the authors and do not necessarily reflect the views of the United Nations Environment Programme. No use of this publication may be made for resale or any other commercial purpose whatsoever without prior permission in writing from the United Nations Environment Programme. Applications for such permission, with a statement of the purpose and extent of the reproduction, should be addressed to the Director, DCPI, UNEP, P.O. Box 30552, Nairobi, Kenya. Acknowledgments This report was developed by the Environmental Law Institute (ELI) for the United Nations Environment Programme (UNEP). It was researched, drafted, and produced by Carl Bruch, Kathryn Mengerink, Elana Harrison, Davonne Flanagan, Isabel Carey, Thomas Casey, Meggan Davis, Elizabeth Hessami, Joyce Lombardi, Norka Michel- en, Colin Parts, Lucas Rhodes, Nikita West, and Sofia Yazykova. Within UNEP, Heidi Savelli, Arnold Kreilhuber, and Petter Malvik oversaw the development of the report. The authors express their appreciation to the peer reviewers, including Catherine Ayres, Patricia Beneke, Angela Howe, Ileana Lopez, Lara Ognibene, David Vander Zwaag, and Judith Wehrli. Cover photo: Plastics floating in the ocean The views expressed in this report do not necessarily reflect those of the United Nations Environment Programme. © 2016. United Nations Environment Programme. Marine Litter Legislation: A Toolkit for Policymakers Contents Foreword .................................................................................................. -
Unit, District, and Council General and Contingency Planning Guide for Boy Scouts of America©
Doctorial Project for Completion of the Degree Doctorate, Commissioner’s Science Boy Scouts of America University of Scouting Commissioner’s College Unit, District, and Council General and Contingency Planning Guide for Boy Scouts of America© Version 0.99b 4 February 2010 By Larry D. Hahn, Lt Col, USAF Ret Unit Commissioner Chesapeake Bay District Colonial Virginia Council 2010 - BSA General n Contingency Planning Guide - L. Hahn.docx Approval Letter Advisor Memorandum for Record To: Larry D. Hahn, Unit Commissioner (Doctorial Candidate) From: Ronald Davis, District Commissioner (Candidate’s Advisor) CC: Lloyd Dunnavant, Dean, Commissioners College Date: January 10, 2019 Re: Approval of BSA Scout University Doctorial Project After careful review of the submitted project from Larry D. Hahn for completion of his Commissioner’s College doctorial degree, I grant my approved and acceptance for the degree of Doctorate (PhD) in Commissioner’s Science through the Boy Scouts of America, University of Scouting. As of this date, and as his advisor, I submit this signed letter as official documentation of approval. Ronald Davis Advisor Chesapeake Bay District Commissioner Approval Letter Council Commissioner Memorandum for Record To: Larry D. Hahn, Unit Commissioner (Doctorial Candidate) From: Mike Fry, Council Commissioner CC: Ronald Davis, District Commissioner (Candidate’s Advisor) Date: January 10, 2019 Re: Approval of BSA Scout University Doctorial Project After careful review of the submitted project from Larry D. Hahn for completion of his Commissioner’s College doctorial degree, I grant my approved and acceptance for the degree of Doctorate (PhD) in Commissioner’s Science through the Boy Scouts of America, University of Scouting. -
Tidal Flooding and Coastal Adaptation Responses in Pekalongan City
E3S Web of Conferences 202, 06027 (2020) https://doi.org/10.1051/e3sconf/202020206027 ICENIS 2020 Tidal flooding and coastal adaptation responses in Pekalongan City * Andrea Ramadhani Maharlika , Sudharto Prawata Hadi, Kismartini, and Ade Lenty Hoya Environmental Sciences, Postgraduate School, Diponegoro University, Semarang, Indonesia Abstract. Over the past 10 years, the coastal region of Pekalongan City has experienced the phenomenon of tidal flooding and has almost submerged coastal areas almost daily. At present, tidal floods have submerged 51% of the total area of Pekalongan City with a maximum inundation height of 1.1 meters. As a result, there has been damage to the economic, social, and physical (infrastructure). Adaptation response from all parties involved is needed to reduce negative impacts. The writing of this manuscript aims to find out the phenomenon of tidal flooding and the government's adaptation response together with the community in the coastal area of Pekalongan City. Lots of research on this issue, but in this manuscript focus on structural and non-structural adaptation responses. Data collection techniques in the study of literature and documentation. The results of the study showed that the tidal flooding in the coastal area of Pekalongan City in addition to sea-level rise and topography, this condition was also exacerbated by the phenomenon of land subsidence which reached minus 30-50 cm. Non-structural adaptation response by establishing disaster response organizations and disaster prepared posts, while early warning systems and flood control infrastructure are forms of structural adaptation responses. Keywords: Tidal flooding, Structural adaptation, Non-structural adaptation 1 Introduction Pekalongan City is one of the cities in Central Java which is located on the Northside of Java Island. -
Understanding Storm Surge
The Education Program at the New Jersey Sea Grant Consortium 22 Magruder Road, Fort Hancock, NJ 07732 (732) 872-1300 www.njseagrant.org UNDERSTANDING STORM SURGE OVERVIEW In this climate education module, students will gain an understanding of the term “storm surge” by exploring the meteorological principles that create storms and generate storm surges. Many basics of weather are discussed, including air pressure, air circulation, and the influence of the Coriolis effect on weather. TABLE OF Background……………………………………….......................1-4 CONTENTS Activity #1- Oceans of Pressure …......................................... 5-10 Activity #2- Windy Balloon ……………………….................... 11-13 Activity #3- Density Driven Currents ………………................ 14-18 Activity #4- Coriolis Effect……………………………………. 19-22 Activity #5- Pressure Driven Storms and Surge…………..... 23-25 Activity #6- Surge of the Storm ………................................. 26-34 How Meteorologists’ Measure and Predict Storm Surge…… 35-37 Why should you care about understanding storm surge? ...... 38-39 Storm Surge Watches and Warnings ………………….……. 40-42 NOAA’s Top 10 Tips for Being Ready for a Storm Surge…...... 43 References …............................................................................ 44 OBJECTIVES Following completion of this module, students will be able to: Define storm surge and the factors that influence it Learn how temperature affects air density and the formation of high and low pressure systems in the atmosphere Explore the effect of gravity on air in the atmosphere Discover the role of Earth’s rotation on global and localized wind patterns Examine the effects that air pressure has on storm surge levels Determine how storm surge affects coastal communities Explore the impact of shoreline shape and beach slope on storm surge GRADE LEVEL 5 – 12 The New Jersey Sea Grant Consortium (NJSGC) is an affiliation of colleges, universities and other groups dedicated to advancing knowledge and stewardship of New Jersey’s marine and coastal environment. -
ESSENTIALS of METEOROLOGY (7Th Ed.) GLOSSARY
ESSENTIALS OF METEOROLOGY (7th ed.) GLOSSARY Chapter 1 Aerosols Tiny suspended solid particles (dust, smoke, etc.) or liquid droplets that enter the atmosphere from either natural or human (anthropogenic) sources, such as the burning of fossil fuels. Sulfur-containing fossil fuels, such as coal, produce sulfate aerosols. Air density The ratio of the mass of a substance to the volume occupied by it. Air density is usually expressed as g/cm3 or kg/m3. Also See Density. Air pressure The pressure exerted by the mass of air above a given point, usually expressed in millibars (mb), inches of (atmospheric mercury (Hg) or in hectopascals (hPa). pressure) Atmosphere The envelope of gases that surround a planet and are held to it by the planet's gravitational attraction. The earth's atmosphere is mainly nitrogen and oxygen. Carbon dioxide (CO2) A colorless, odorless gas whose concentration is about 0.039 percent (390 ppm) in a volume of air near sea level. It is a selective absorber of infrared radiation and, consequently, it is important in the earth's atmospheric greenhouse effect. Solid CO2 is called dry ice. Climate The accumulation of daily and seasonal weather events over a long period of time. Front The transition zone between two distinct air masses. Hurricane A tropical cyclone having winds in excess of 64 knots (74 mi/hr). Ionosphere An electrified region of the upper atmosphere where fairly large concentrations of ions and free electrons exist. Lapse rate The rate at which an atmospheric variable (usually temperature) decreases with height. (See Environmental lapse rate.) Mesosphere The atmospheric layer between the stratosphere and the thermosphere.