Feedforward Excitation of the Hippocampus by Afferents from the Entorhinal Cortex: Redefinition of the Role of the Trisynaptic Pathway MARK F

Total Page:16

File Type:pdf, Size:1020Kb

Feedforward Excitation of the Hippocampus by Afferents from the Entorhinal Cortex: Redefinition of the Role of the Trisynaptic Pathway MARK F Proc. Natl. Acad. Sci. USA Vol. 87, pp. 5832-5836, August 1990 Neurobiology Feedforward excitation of the hippocampus by afferents from the entorhinal cortex: Redefinition of the role of the trisynaptic pathway MARK F. YECKEL* AND THEODORE W. BERGER*tt Departments of *Behavioral Neuroscience and tPsychiatry, University of Pittsburgh, Pittsburgh, PA Communicated by Richard F. Thompson, April 9, 1990 (received for review September 26, 1989) ABSTRACT For the past 3 decades, functional character- hippocampal cell groups (see Fig. 1). Although evidence for izations of the hippocampus have emphasized its intrinsic the functional viability of monosynaptic entorhinal input to trisynaptic circuitry, which consists of successive excitatory pyramidal neurons has been provided (9-11), the relative projections from the entorhinal cortex to the dentate gyrus, strengths ofthe monosynaptic and trisynaptic pathways have from granule cells of the dentate to the CA3/4 pyramidal cell gone untested. At least one investigation has questioned the region, and from CA3/4 to the CA1/2 pyramidal cell region. sufficiency ofmonosynaptic entorhinal input for suprathresh- Despite unequivocal anatomical evidence for a monosynaptic old activation of pyramidal neurons (5). Other studies using projection from entorhinal to CA3 and CA1/2, few in vivo the in vitro hippocampal slice have examined pyramidal cell electrophysiological studies of the direct pathway have been responses to electrical stimulation of monosynaptic afferents reported. In the experiments presented here, we stimulated within the dendritic region containing terminals of entorhinal axons of entorhinal cortical neurons in vivo and recorded axons (12). The entorhinal pathway cannot be activated evoked single unit and population spike responses in the selectively in an in vitro preparation, however, because dentate, CA3, and CAl of hippocampus, to determine if afferents from other brain regions terminate within the same pyramidal cells are driven primarily via the monosynaptic or dendritic zone (13-15). More importantly, it is not possible to trisynaptic pathways. Our results show that neurons within the establish with an in vitro preparation ifa given subpopulation three subfields ofthe hippocampus discharge simultaneously in of hippocampal pyramidal neurons receives entorhinal input response to input from a given subpopulation of entorhinal primarily via monosynaptic or multisynaptic pathways. cortical neurons and that the initial monosynaptic excitation of Thus, the extent to which the trisynaptic pathway represents pyramidal cells then is followed by weaker excitatory volleys a fundamental constraint on multisynaptic transmission transmitted through the trisynaptic pathway. In addition, we through the hippocampus remains to be determined. In the found that responses of CA3 pyramidal cells often precede experiments reported here, we used electrophysiological those of dentate granule cells and that excitation of CA3 and methods to compare the latency and strength of entorhinal CAl pyramidal cells can occur in the absence of granule cell input to CA3 and CA1 pyramidal neurons with the latency excitation. In total, these results argue for a different concep- and strength of input to dentate granule cells from the same tualization of the functional organization of the hippocampus population of entorhinal fibers. with respect to the propagation of activity through its intrinsic pathways: input from the entorhinal cortex initiates a two- MATERIALS AND METHODS phase feedforward excitation of pyramidal cells, with the Male New Zealand White rabbits (n = 45) were anesthetized dentate gyrus providing feedforward excitation of CA3, and continuously with halothane. Bipolar stimulating electrodes with both the dentate and CA3 providing feedforward excita- were positioned stereotaxically into one or two of the fol- tion of CAL. lowing: (i) perforant path fibers ofthe angular bundle, (ii) the ipsilateral stratum radiatum of CA3 or CAl, (iii) the hilus The hippocampus is composed of three major subdivisions: ipsilateral to the perforant path stimulating electrode, (iv) the the dentate gyrus and the CA3/4 and CA1/2 pyramidal cell hilus contralateral to the perforant path stimulating electrode. regions (1). Connectivity between the three cell fields is Stimulation impulses (0.1-0.2 ms) were delivered by using unidirectional, with granule cells of the dentate gyrus pro- constant low frequencies (0.2 Hz or less); pairs and triplets of jecting to the CA3/4 pyramidal neurons, which in turn project impulses with interimpulse intervals that varied from 10 to to CA1/2 pyramidal cells (2). Excitatory perforant path fibers 200 ms; and trains of 10-20 impulses with interimpulse arising from the entorhinal cortex are the major afferents to intervals corresponding to 5-200 Hz. the dentate (3, 4), and numerous studies have demonstrated Extracellular recording electrodes (insulated stainless that activation of the perforant path can initiate a sequential steel) had tip impedances of 1-2 Mfl when tested using 135 excitation of dentate granule, CA3/4 pyramidal, and CA1/2 Hz in vitro. Recording electrodes were positioned stereo- pyramidal cell populations (5, 6). Serial propagation through taxically throughout the dorsal hippocampus. Recording and this "trisynaptic pathway" has become regarded as the stimulation sites were verified by a Prussian blue reaction for fundamental characteristic of intrinsic hippocampal physiol- iron deposits. In some experiments, the selective GABAA ogy (7). agonist muscimol (500 ,uM) was delivered with a micropres- In contrast to physiological evidence for the trisynaptic sure ejection system (15-ms impulses; 5-15 psi; 1 psi = 6.9 pathway, results from anatomical investigations consistently kPa) simultaneously during recording. Evoked field poten- have shown that the entorhinal cortex innervates each of the tials were band-pass filtered using low- and high-frequency dentate, CA3, and CA1/2 regions (8), suggesting simulta- limits of 10 Hz and 10 kHz, respectively. Unitary spike neous rather than sequential excitation of the three intrinsic Abbreviation: EPSP, excitatory postsynaptic potential. The publication costs ofthis article were defrayed in part by page charge to whom reprint requests should be addressed at: 465 Crawford payment. This article must therefore be hereby marked "advertisement" Hall, Department of Behavioral Neuroscience, University of Pitts- in accordance with 18 U.S.C. §1734 solely to indicate this fact. burgh, Pittsburgh, PA 15260. 5832 Downloaded by guest on September 27, 2021 Neurobiology: Yeckel and Berger Proc. Natl. Acad. Sci. USA 87 (1990) 5833 events evoked from single cells were differentiated from field latencies of 4-7 ms (Fig. 2 A and B), consistent with mono- potentials by using low- and high-frequency limits of 100- synaptic input from the direct entorhinal projection. This 1000 Hz and 6 kHz, respectively. interpretation was supported by several findings. Among those are the results oflaminar analyses, in which a recording RESULTS electrode was lowered progressively from the cell body layer of CA1 to the cell body layer of CA3, parallel to the dendritic Multisynaptic Excitation of CA3 and CAl Pyramidal Neu- axes, during low-frequency stimulation ofthe angular bundle. rons Via the Trisynaptic Pathway. Stimulation of perforant When the recording electrode was located in the cell body path fibers resulted in the sequential excitation of dentate layer of CAl, stimulation evoked a short-latency positive- granule, CA3 pyramidal, and CAl pyramidal cells charac- going field potential-i.e., a population excitatory postsyn- teristic of the trisynaptic pathway. Latencies to population aptic potential (EPSP) consistent with a current sink gener- and single cell responses were progressively longer within ated by synaptic input terminating in the apical dendrites (3, each of the three hippocampal subfields: 4-6 ms for granule 4). Ifsufficient stimulation current was used, a negative-going cells, 9-13 ms for CA3 neurons, and 16-21 ms for CA1 cells. population spike was superimposed on the population EPSP; Responses ofgranule cells satisfied all established criteria (3, the presence of evoked action potentials with latencies cor- 4) for monosynaptic activation (Fig. 1B). The longer latency responding to that of the negative wave confirmed its inter- excitations of CA3 and CA1 neurons were consistent with pretation as a population spike (4, 17). When the recording multisynaptic activation, as they did not follow more than the electrode was moved into the apical dendritic region, the first few impulses of trains of continuous stimulation deliv- population EPSP reversed in polarity (without a change in ered at frequencies of >25 Hz. Latencies of pyramidal cell latency) to become negative going, indicating its generation discharge also were consistent with the cumulative mono- in the apical dendrites. Increasing stimulation intensity re- synaptic latencies for each of the individual pathways com- sulted in greater amplitude and onset slope of the population prising the trisynaptic circuit: 4-6 ms for perforant pathway EPSP without decreasing onset latency, supporting an inter- input to granule cells, 4-8 ms for activation ofCA3 by mossy pretation of the negativity as a dendritic response to mono- fiber stimulation, and 4-6 ms for responses of CA1 cells synaptic input. evoked by Schaffer collateral stimulation. These observa- The population EPSP reached maximum amplitude in the
Recommended publications
  • Transsynaptic Modulation of Presynaptic Short-Term Plasticity Induction in Hippocampal Mossy Fiber Synapses
    bioRxiv preprint doi: https://doi.org/10.1101/2020.10.25.353953; this version posted October 25, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Transsynaptic modulation of presynaptic short-term plasticity induction in hippocampal mossy fiber synapses David Vandael1,2, Yuji Okamoto1, and Peter Jonas2 Cellular Neuroscience, IST Austria (Institute of Science and Technology Austria), Am Campus 1, A-3400 Klosterneuburg, Austria 1 These authors contributed equally. 2 Corresponding authors. E-mail: [email protected] or [email protected] Corresponding author: Dr. David Vandael Dr. Peter Jonas IST Austria (Institute of Science and Technology Austria) Cellular Neuroscience, Am Campus 1 A-3400 Klosterneuburg, Austria Phone: 0043-2243-9000-3700 Fax: 0043-2243-9000-2007 E-mail: [email protected] E-mail: [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.10.25.353953; this version posted October 25, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. SUMMARY The hippocampal mossy fiber synapse is a key synapse of the trisynaptic circuit of the hippocampus. Post-tetanic potentiation (PTP) is the most powerful form of plasticity at this synaptic connection. It is widely believed that mossy fiber PTP is an entirely presynaptic phenomenon, implying that PTP induction is input-specific, and requires neither activity of multiple inputs nor stimulation of postsynaptic neurons for induction.
    [Show full text]
  • Neuromodulators and Long-Term Synaptic Plasticity in Learning and Memory: a Steered-Glutamatergic Perspective
    brain sciences Review Neuromodulators and Long-Term Synaptic Plasticity in Learning and Memory: A Steered-Glutamatergic Perspective Amjad H. Bazzari * and H. Rheinallt Parri School of Life and Health Sciences, Aston University, Birmingham B4 7ET, UK; [email protected] * Correspondence: [email protected]; Tel.: +44-(0)1212044186 Received: 7 October 2019; Accepted: 29 October 2019; Published: 31 October 2019 Abstract: The molecular pathways underlying the induction and maintenance of long-term synaptic plasticity have been extensively investigated revealing various mechanisms by which neurons control their synaptic strength. The dynamic nature of neuronal connections combined with plasticity-mediated long-lasting structural and functional alterations provide valuable insights into neuronal encoding processes as molecular substrates of not only learning and memory but potentially other sensory, motor and behavioural functions that reflect previous experience. However, one key element receiving little attention in the study of synaptic plasticity is the role of neuromodulators, which are known to orchestrate neuronal activity on brain-wide, network and synaptic scales. We aim to review current evidence on the mechanisms by which certain modulators, namely dopamine, acetylcholine, noradrenaline and serotonin, control synaptic plasticity induction through corresponding metabotropic receptors in a pathway-specific manner. Lastly, we propose that neuromodulators control plasticity outcomes through steering glutamatergic transmission, thereby gating its induction and maintenance. Keywords: neuromodulators; synaptic plasticity; learning; memory; LTP; LTD; GPCR; astrocytes 1. Introduction A huge emphasis has been put into discovering the molecular pathways that govern synaptic plasticity induction since it was first discovered [1], which markedly improved our understanding of the functional aspects of plasticity while introducing a surprisingly tremendous complexity due to numerous mechanisms involved despite sharing common “glutamatergic” mediators [2].
    [Show full text]
  • Metabolic Reduction in the Posterior Cingulate Cortex in Very Early Alzheimer’S Disease
    Metabolic Reduction in the Posterior Cingulate Cortex in Very Early Alzheimer’s Disease Satoshi Minoshima, MD, PhD,* Bruno Giordani, PhD,t Stanley Berent, PhD,t$ Kirk A. Frey, MD, PhD,*$ Norman L. Foster, MD,$ and David E. Kuhl, MD* This study investigated cerebral glucose metabolism in very early Alzheimer’s disease, before a clinical diagnosis of probable Alzheimer’s disease is possible, using [ ‘8F]flu~r~de~xygluc~~epositron emission tomography. First, 66 patients with probable Alzheimer’s disease with a spectrum of dementia severity (Mini-Mental State Examination score, 0-23) were recruited and studied. Cortical metabolic activity was analyzed topographically using three-dimensional stereotactic surface projections. Regression analysis was performed for each brain pixel to predict metabolic patterns of very early disease. Predictions were tested prospectively in a group of 8 patients who complained only of memory impairment without general cognitive decline (Mini-Mental State Examination score, 25 Ifr 1) at the time of scanning but whose condition later progressed to probable Alzheimer’s disease. Both results were compared to cerebral metabolic activity in 22 age-similar normal control subjects. Prediction and analysis of actual patients consistently indicated marked metabolic reduction (21-22%) in the posterior cingulate cortex and cinguloparietal transitional area in patients with very early Alzheimer’s disease. Mean metabolic reduction in the posterior cingulate cortex was significantly greater than that in the lateral neocortices or parahippocampal cortex. The result suggests a functional importance for the posterior cingulate cortex in impairment of learning and memory, which is a feature of very early Alzheimer’s disease. Minoshima S, Giordani B, Berent S, Frey KA, Foster NL, Kuhl DE.
    [Show full text]
  • Role of the Human Globus Pallidus in Tremorgenesis
    Role of the human globus pallidus in tremorgenesis by Shane Ellis A thesis submitted in conformity with the requirements for the degree of Master’s of Science Department of Physiology University of Toronto© Copyright by Shane Ellis 2015 Role of the human globus pallidus in tremorgenesis Shane Ellis Master of Science Department of Physiology University of Toronto 2015 Abstract The GPi is a nucleus that serves as an output of the basal ganglia; a collection of nuclei which function in selecting movements to be executed. Tremor is defined as an unintentional, rhythmic, sinusoidal contraction of body parts. Currently, no scientific consensus has been reached as to where in the brain tremor arises. Using microelectrode recordings in human patients with and without tremor, we discovered a sub-population of cells that are capable of being induced into a brief theta oscillation following microstimulation. However, we found that theta burst stimulation was incapable of inducing visible tremor when microstimulating in the GPi, Vim, or STN. We also found preliminary evidence that this theta oscillation is capable of producing an LTP-like response within the GPi. We believe that this work adds strength to the “pallidocentric” view of tremor initiation which holds that the GPi is responsible for the onset of tremor. ii Acknowledgments First and foremost, I would like to thank my supervisor, Dr. Hutchison for his mentorship and guidance through these last two years; I couldn’t have completed this thesis without your help. Next, I would like to thank my parents and family for their continual support throughout the highs and lows of this journey called life.
    [Show full text]
  • Ultrahigh-Resolution Microstructural Diffusion Tensor Imaging Reveals Perforant Path Degradation in Aged Humans in Vivo
    Ultrahigh-resolution microstructural diffusion tensor imaging reveals perforant path degradation in aged humans in vivo Michael A. Yassaa,b, L. Tugan Muftulerc,d, and Craig E. L. Starka,b,1 aCenter for Neurobiology of Learning and Memory, bDepartment of Neurobiology and Behavior, cDepartment of Radiological Sciences, and dCenter for Functional Onco-Imaging, University of California, Irvine, CA 92697 Edited* by Larry R. Squire, Veterans Affairs Medical Center, San Diego, CA, and approved May 19, 2010 (received for review February 20, 2010) The perforant path (PP) undergoes synaptic changes in the course of attempted to investigate the PP in humans in vivo using DTI in aging and dementia. Previous studies attempting to assess the patients with mild cognitive impairment (MCI) or AD. Two integrity of the PP in humans using diffusion tensor imaging (DTI) studies reported changes in the PP region in patients with MCI. were limited by low resolution and the inability to identify PP fibers One study reported reduced intervoxel coherence (i.e., the degree specifically. Here we present an application of DTI at ultrahigh sub- of similarity of adjacent voxel orientation) (16), whereas another millimeter resolution that has allowed us to successfully identify reported an increase in mean diffusivity (a measure of isotropic diffusion signals unique to the PP and compare the intensity of these diffusion, which increases with tissue degradation) (17). De- signals in a sample of young adults and older adults. We report direct creased fractional anisotropy (FA; a measure of the anisotropy of fi evidence of age-related PP degradation in humans in vivo. We nd diffusion) in parahippocampal white matter has also been shown no evidence of such loss in a control pathway, the alveus, suggesting fi fi in studies of patients with AD (18).
    [Show full text]
  • Differential Cortical Atrophy in Subgroups of Mild Cognitive Impairment
    ORIGINAL CONTRIBUTION Differential Cortical Atrophy in Subgroups of Mild Cognitive Impairment Sandra Bell-McGinty, PhD; Oscar L. Lopez, MD; Carolyn Cidis Meltzer, MD; Joelle M. Scanlon, PhD; Ellen M. Whyte, MD; Steven T. DeKosky, MD; James T. Becker, PhD Objective: To compare gray matter brain volumes in jects. Compared with patients with MCI-MCD, patients patients diagnosed with subtypes of mild cognitive im- with MCI-A had significant volume loss of the left ento- pairment (MCI) (those with a focal amnestic disorder and rhinal cortex and inferior parietal lobe. Compared with those with more diffuse cognitive dysfunction) with those patients with MCI-A, patients with MCI-MCD had sig- of elderly controls. nificantly reduced volume of the right inferior frontal gy- rus, right middle temporal gyrus, and bilateral superior Design: Magnetic resonance imaging volumetric study temporal gyrus. Patients with MCI who progressed to Alz- of MCI subgroups (MCI-amnestic [MCI-A], and MCI- heimer disease during follow-up (mean interval 2 years, multiple cognitive domain [MCI-MCD]) using a whole maximum 4.5 years), showed greater atrophy in the left brain voxel-based analysis. entorhinal cortex, bilateral superior temporal gyri, and right inferior frontal gyrus compared with those who did Setting: Referral dementia clinic. not progress. Patients: Thirty-seven patients with MCI (age range, Conclusions: These data provide evidence of distinct 49-85 years; MCI-A, n=9; MCI-MCD, n=28) and 47 con- brain structural abnormalities in 2 groups of patients with trol subjects (age range, 55-81 years). MCI. While both have mesial temporal and cortical vol- ume loss, those with a focal memory deficit have more Main Outcome Measures: Volumetric anatomical mag- involvement of the mesial temporal structures and less netic resonance imaging differences between MCI sub- involvement of the neocortical heteromodal association groups and normal controls, and between patients with areas than those patients with MCI with diffuse cogni- MCI who progressed to dementia.
    [Show full text]
  • Frequency-Tuned Distribution of Inhibition in the Dentate Gyrus
    The Journal of Neuroscience, September 22, 2010 • 30(38):12597–12607 • 12597 Cellular/Molecular Frequency-Tuned Distribution of Inhibition in the Dentate Gyrus Laura A. Ewell and Mathew V. Jones Department of Physiology, University of Wisconsin, Madison, Wisconsin 53706 Granule cells (GCs) of the dentate gyrus use sparse encoding to perform redundancy reduction, pattern separation, and novelty detection. One likely candidate mechanism to enforce low spiking activity is feedforward inhibition, in which the cortical excitatory drive from the perforant path (PP) recruits GABAergic interneurons that then inhibit GCs. Little is known, however, about how PP drive is balanced between GCs versus inhibitory neurons. In simultaneous recordings of GCs and fast-spiking (FS) interneurons from C57BL/6 mice, we find that focal PP stimulation preferentially recruits spiking in FS interneurons over GCs, because GCs require a larger excitatory synaptic current density to reach spike threshold. Blocking inhibition reversed this relationship, revealing a stronger intrinsic coupling between the PP and GCs versus FS interneurons and showing that inhibition can sparsify the output of the dentate gyrus by tightly regulating GC spike probability. Moreover, this regulation is dynamic, because the spiking profile of FS interneurons was frequency tuned, displaying bursting behavior in response to PP stimulation near theta rhythm frequency (ϳ10 Hz). The later spikes in the bursts were part of the feedback inhibitory pathway because they were driven by late EPSCs, were blocked by an inhibitor of synaptic output from GCs, and shared the same frequency dependence as GC spiking. Therefore, the temporal content of signals arriving via the PP determines whether a FS interneuron participates in only feedforward (one spike) or both feedforward and feedback (burst) inhibition.
    [Show full text]
  • Entorhinal Cortex Stimulation Induces Dentate Gyrus Neurogenesis Through Insulin Receptor Signaling T
    Brain Research Bulletin 144 (2019) 75–84 Contents lists available at ScienceDirect Brain Research Bulletin journal homepage: www.elsevier.com/locate/brainresbull Research report Entorhinal cortex stimulation induces dentate gyrus neurogenesis through insulin receptor signaling T Abdolaziz Ronaghia, Mohammad Ismail Zibaiib, Sareh Pandamooza, Nasrin Nourzeia, ⁎ Fereshteh Motamedia, Abolhassan Ahmadiania, Leila Dargahic, a Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran b Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, Iran c Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran ARTICLE INFO ABSTRACT Keywords: Deep brain stimulation (DBS) has been established as a therapeutically effective method to treat pharmacological Deep brain stimulation resistant neurological disorders. The molecular and cellular mechanisms underlying the beneficial effects of DBS Entorhinal cortex on the brain are not yet fully understood. Beside numerous suggested mechanisms, regulation of neurogenesis is Neurogenesis an attractive mechanism through which DBS can affect the cognitive functions. Considering the high expression Insulin receptor of insulin receptors in hippocampus and also impaired neurogenesis in diabetic brain, the present study aimed to examine the role of insulin receptor signaling in DBS induced neurogenesis. High frequency stimulation was applied on the entorhinal cortex of rats and then neurogenesis markers in the dentate gyrus region of the hip- pocampus were examined using molecular and histological methods in the sham, DBS and insulin receptor antagonist-treated groups. In parallel, the changes in insulin receptor signaling in the hippocampus and spatial learning and memory performance were also assessed. DBS promoted adult hippocampal neurogenesis and fa- cilitated the spatial memory concomitant with changes in insulin receptor signaling parameters including IR, IRS2 and GSK3β.
    [Show full text]
  • On the Integration of Subthreshold Inputs from Perforant Path and Schaffer Collaterals in Hippocampal CA1 Pyramidal Neurons
    Journal of Computational Neuroscience 14, 185–192, 2003 c 2003 Kluwer Academic Publishers. Manufactured in The Netherlands. On the Integration of Subthreshold Inputs from Perforant Path and Schaffer Collaterals in Hippocampal CA1 Pyramidal Neurons MICHELE MIGLIORE Section of Neurobiology, Yale University School of Medicine, New Haven, CT, USA; Institute of Biophysics, Nat. Res. Council, Palermo, Italy [email protected] Received October 15, 2001; Revised September 6, 2002; Accepted September 6, 2002 Action Editor: E. Bard Ermentrout Abstract. Using a realistic model of a CA1 hippocampal pyramidal neuron, we make experimentally testable predictions on the roles of the non-specific cation current, Ih, and the A-type Potassium current, IA, in modulating the temporal window for the integration of the two main excitatory afferent pathways of a CA1 neuron, the Schaffer Collaterals and the Perforant Path. The model shows that the experimentally observed increase in the dendritic density of Ih and IA could have a major role in constraining the temporal integration window for these inputs, in such a way that a somatic action potential (AP) is elicited only when they are activated with a relative latency consistent with the anatomical arrangement of the hippocampal circuitry. Keywords: dendritic integration, IA, Ih, CA1, modeling Introduction these two conductances between pyramidal neurons of hippocampus and neocortex. The gKA increases with Although important details on how dendrites and their distance from the soma in CA1, whereas in neocor- active properties are involved in neural computation tical neurons it is constant (Korngreen and Sakmann, have been elucidated, the rules according to which 2000; Bekkers, 2000), and it does not seem to play the dendritic trees and, especially, ionic conductances are same role as in CA1 (Stuart and H¨ausser, 2001).
    [Show full text]
  • A Computational Theory of Hippocampal Function, and Empirical Tests of the Theory Edmund T
    Progress in Neurobiology 79 (2006) 1–48 www.elsevier.com/locate/pneurobio A computational theory of hippocampal function, and empirical tests of the theory Edmund T. Rolls a,*, Raymond P. Kesner b a University of Oxford, Department of Experimental Psychology, South Parks Road, Oxford OX1 3UD, United Kingdom b University of Utah, Department of Psychology, 380S 1530E Room 502, Salt Lake City, UT 84112, USA Received 23 September 2005; received in revised form 23 March 2006; accepted 28 April 2006 Abstract The main aim of the paper is to present an up-to-date computational theory of hippocampal function and the predictions it makes about the different subregions (dentate gyrus, CA3 and CA1), and to examine behavioral and electrophysiological data that address the functions of the hippocampus and particularly its subregions. Based on the computational proposal that the dentate gyrus produces sparse representations by competitive learning and via the mossy fiber pathway forces new representations on the CA3 during learning (encoding), it has been shown behaviorally that the dentate gyrus supports spatial pattern separation during learning. Based on the computational proposal that CA3–CA3 autoassociative networks are important for episodic memory, it has been shown behaviorally that the CA3 supports spatial rapid one-trial learning, learning of arbitrary associations where space is a component, pattern completion, spatial short-term memory, and sequence learning by associations formed between successive items. The concept that the CA1 recodes information from CA3 and sets up associatively learned backprojections to neocortex to allow subsequent retrieval of information to neocortex, is consistent with findings on consolidation.
    [Show full text]
  • The Three Amnesias
    The Three Amnesias Russell M. Bauer, Ph.D. Department of Clinical and Health Psychology College of Public Health and Health Professions Evelyn F. and William L. McKnight Brain Institute University of Florida PO Box 100165 HSC Gainesville, FL 32610-0165 USA Bauer, R.M. (in press). The Three Amnesias. In J. Morgan and J.E. Ricker (Eds.), Textbook of Clinical Neuropsychology. Philadelphia: Taylor & Francis/Psychology Press. The Three Amnesias - 2 During the past five decades, our understanding of memory and its disorders has increased dramatically. In 1950, very little was known about the localization of brain lesions causing amnesia. Despite a few clues in earlier literature, it came as a complete surprise in the early 1950’s that bilateral medial temporal resection caused amnesia. The importance of the thalamus in memory was hardly suspected until the 1970’s and the basal forebrain was an area virtually unknown to clinicians before the 1980’s. An animal model of the amnesic syndrome was not developed until the 1970’s. The famous case of Henry M. (H.M.), published by Scoville and Milner (1957), marked the beginning of what has been called the “golden age of memory”. Since that time, experimental analyses of amnesic patients, coupled with meticulous clinical description, pathological analysis, and, more recently, structural and functional imaging, has led to a clearer understanding of the nature and characteristics of the human amnesic syndrome. The amnesic syndrome does not affect all kinds of memory, and, conversely, memory disordered patients without full-blown amnesia (e.g., patients with frontal lesions) may have impairment in those cognitive processes that normally support remembering.
    [Show full text]
  • Glutamate Regulation in the Hippocampal Trisynaptic Pathway in Aging and Status Epilepticus
    University of Kentucky UKnowledge University of Kentucky Doctoral Dissertations Graduate School 2009 GLUTAMATE REGULATION IN THE HIPPOCAMPAL TRISYNAPTIC PATHWAY IN AGING AND STATUS EPILEPTICUS Michelle Lee Stephens University of Kentucky, [email protected] Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Stephens, Michelle Lee, "GLUTAMATE REGULATION IN THE HIPPOCAMPAL TRISYNAPTIC PATHWAY IN AGING AND STATUS EPILEPTICUS" (2009). University of Kentucky Doctoral Dissertations. 736. https://uknowledge.uky.edu/gradschool_diss/736 This Dissertation is brought to you for free and open access by the Graduate School at UKnowledge. It has been accepted for inclusion in University of Kentucky Doctoral Dissertations by an authorized administrator of UKnowledge. For more information, please contact [email protected]. ABSTRACT OF DISSERTATION Michelle Lee Stephens The Graduate School University of Kentucky 2009 GLUTAMATE REGULATION IN THE HIPPOCAMPAL TRISYNAPTIC PATHWAY IN AGING AND STATUS EPILEPTICUS ABSTRACT OF DISSERTATION A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the College of Medicine at the University of Kentucky By Michelle Lee Stephens Lexington, Kentucky Director: Dr. Greg A. Gerhardt, Professor of Anatomy and Neurobiology Lexington, Kentucky 2009 Copyright © Michelle Lee Stephens 2009 ABSTRACT OF DISSERTATION GLUTAMATE REGULATION IN THE HIPPOCAMPAL TRISYNAPTIC PATHWAY IN AGING AND STATUS EPILEPTICUS A positive correlation exists between increasing age and the incidence of hippocampal-associated dysfunction and disease. Normal L-glutamate neurotransmission is absolutely critical for hippocampal function, while abnormal glutamate neurotransmission has been implicated in many neurodegenerative diseases. Previous studies, overwhelmingly utilizing ex vivo methods, have filled the literature with contradicting reports about hippocampal glutamate regulation during aging.
    [Show full text]