Oedogoniales Sphaeropleales Chlamydomonadales I

Total Page:16

File Type:pdf, Size:1020Kb

Load more

(outgroup) ‚Dunaliella‘ 0.2 Prasinophyceae -31W . subalternans . subalternans . subalternans . T ow6/16 -2008a T -2008b T T -16W -2d -9W -8W -15W T 1 W U1/1 . kantonensis . T ow6/16 T T ow6/16 ow8/18P-3W lina . turskensis . T ow6/16 T T . turskensis . a 1 ow10/ T . turskensis . T ABRIIN ABRIINW U2/1 . simplex . O 300-5 iridis ABRIINW M1/1 . simplex . simplex . 12-3 sp. BSF3 12-4 sp. BSF2 liella salina is 89515366 Desmodesmus sp. Desmodesmus 89515366 lla salina 159135723 Desmodesmus sp. EH36 sp. Desmodesmus 159135723 159135737 Desmodesmus armatus Desmodesmus 159135737 159135736 Desmodesmus armatus Desmodesmus 159135736 Chlamydomonadales II 159135724 Desmodesmus sp. ET3 sp. Desmodesmus 159135724 12055748 Scenedesmus longus Scenedesmus 12055748 159135734 Desmodesmus armatus Desmodesmus 159135734 A M sp. Desmodesmus 169798018 159135735 Desmodesmus armatus Desmodesmus 159135735 -2d 89515380 Desmodesmus komarekii Desmodesmus 89515380 r va armatus Desmodesmus 89515338 159135726 Desmodesmus opoliensis Desmodesmus 159135726 r va armatus Desmodesmus 89515339 159135725 Desmodesmus opoliensis Desmodesmus 159135725 38491399 Desmodesmus komarekii Desmodesmus 38491399 159135738 Desmodesmus opoliensis Desmodesmus 159135738 A M sp. Desmodesmus 169798015 r va armatus Desmodesmus 159135733 159135727 Desmodesmus opoliensis Desmodesmus 159135727 12055744 Desmodesmus pannonicus Desmodesmus 12055744 Dunaliella viridis -2W unaliella 145587829 Dunaliella salina 12055741 Desmodesmus opoliensis Desmodesmus 12055741 T 1 159135730 Desmodesmus sp. EH69 sp. Desmodesmus 159135730 594 Duna 2645739 Dunaliella sp. 006 65427923 Micromonas pusilla Micromonas 65427923 -2008c pusilla Micromonas 65427933 sp. SPMO 1 47499297 Dunaliella s 65427934 Micromonas pusilla Micromonas 65427934 65427932 Micromonas pusilla Micromonas 65427932 T a parva 205361369 Dunaliella salina 16596837 Dunaliella salina 159135729 Desmodesmus sp. EH42 sp. Desmodesmus 159135729 1 Dunaliella0 Dunaliella sp. SPMO sp. SP 600-1M 159135728 Desmodesmus sp. ET53 sp. Desmodesmus 159135728 12055747 Scenedesmus sp. NIOO-MV5 sp. Scenedesmus 12055747 T Itas6/3 sp. Desmodesmus 89515349 89515350 Desmodesmus sp. Desmodesmus 89515350 573 D 1 ow10/ sp. Desmodesmus 89515381 sp. Desmodesmus 89515348 T 16596834 Dunaliella viridis sp. Desmodesmus 89515382 40288330 Desmodesmus komarekii Desmodesmus 40288330 7613 Dunaliella sp. SPMO BP3 89515383 Desmodesmus sp. Desmodesmus 89515383 71482 87047589 58339343 Dunaliella v 33333776 Dunaliella salina 205371719 Dunaliella sp. 61200913 Dunaliella viridis 205371718 Dunaliella sp. 33333772 Dunaliella16596840 salina Dunaliella bardawil 914 Dunaliella virid hd10 254838316 Dunaliella salina 87047574 Dunaliella Dunaliell145587828 Dunaliella salina 87047 197290927 Dunaliella sp. 71482598 Dunalie 87047576 Dunaliella bardawil 87047572 Dunaliella sp. BSF1 40288333 Desmodesmus pleiomorphus Desmodesmus 40288333 71482596 Dunaliella salina 71482597 Dunaliella71482593 salina Dunaliella salina 87047612 Dunaliella sp. SPMO870476 601-11 8704 12055734 Desmodesmus communis Desmodesmus 12055734 46250926 Dunaliella salina 870476187047614 Dunaliella sp. SPMO 980625-IE 159135731 Desmodesmus pleiomorphus Desmodesmus 159135731 40288334 Desmodesmus pleiomorphus Desmodesmus 40288334 71482595 Dunaliella salina 87047605 Dunaliella sp. SPMO 202-4 16596835 Dunaliella pseudosalina 56122680 Desmodesmus pleiomorphus Desmodesmus 56122680 r va pleiomorphus Desmodesmus 40288335 modesmus sp. CL1 sp. modesmus 33333774 Dunaliella salina sp. esmus T Mary6/3 sp. smodesmus 12055736 Scenedesmus abundans Scenedesmus 12055736 49073091 Dunaliella salina 40288338 Desmodesmus multivariabilis Desmodesmus 40288338 r 40288343 Desmodesmus multivariabilis va multivariabilis Desmodesmus 40288343 61200 r va multivariabilis Desmodesmus 89515343 40288331 Desmodesmus multivariabilis Desmodesmus 40288331 pusilla 87047600 Dunaliella sp. SPMO 201-2 12055735 Desmodesmus subspicatus Desmodesmus 12055735 87047597 Dunaliella sp. SPMO 200-2 47595 Dunaliella a primolecta r va multivariabilis Desmodesmus 40288336 r 40288329 Desmodesmus subspicatus va subspicatus Desmodesmus 40288329 87047599 Dunaliella sp. SPMO 87047594200-8 Dunaliella sp.7596 SPMO Dunaliella 1 sp. SPMO 128-2 ensis 56578597 Dunaliella viridis8704758247499296 Dunaliella870 Dunaliella parva salina r va s 40288332 Desmodesmus subspicatu Desmodesmus 40288332 16596845 87047606 Dunaliella sp. SPMO 207-3 . iberaensis . 159135722 Desmodesmus sp. ET51 sp. Desmodesmus 159135722 r 40288337 Desmodesmus subspicatus va subspicatus Desmodesmus 40288337 87047602 Dunaliella sp. SPMO 201-4 16596836 Dunaliella87047603 salina87047601 Dunaliella Dunaliella sp. SPMO sp. 201-5SPMO 201-3 . iberaensis . 4972019 Desmodesmus bicellularis Desmodesmus 4972019 87047598 Dunaliella sp. SPMO 200-3 89515376 Desmodesmus bicellularis Desmodesmus 89515376 87047604 Dunaliella sp. SPMO 201-6 . ibera . 8704 2055740 Desmodesmus bicellularis Desmodesmus 2055740 12055738 Scenedesmus ecornis Scenedesmus 12055738 1 89515395 Desmodesmus asymmetricus Desmodesmus 89515395 89515370 De 89515370 iella primolecta Des ‚Desmodesmus‘ 15620765 89515367 Desmodesmus asymmetricus Desmodesmus 89515367 r va tus is 89515371 Desmod 89515371 12-2 A M sp. Desmodesmus 169798019 12055743 Scenedesmus jovais Scenedesmus 12055743 ABRIINW M1/2 159135712 Desmodesmus sp. EH21 sp. Desmodesmus 159135712 12-1 159135713 Desmodesmus sp. ET2 sp. Desmodesmus 159135713 71482602 Dunaliella sp. 71482601 Dunaliella parva 71482600 Dunaliell 71482599 Dunaliella09 bardawil Dunaliella tertiolecta r va erforatus smus p smus 76097092 Dunaliella bioculata 77539932 Dunaliella quartolectaDunaliella tertiolecta 77539931 Dunaliella polymorpha 77955899 Dunaliella tertiolecta 51035302 Dunaliella minuta 1-2 5095290259792 Dunal 5 159135721 Desmodesmus sp. ET27b sp. Desmodesmus 159135721 51035304 Dunaliella sp. SAG19.6 65427928 Micromonas 65427928 65427929 Micromonas pusilla 226523057 Micromonas sp. RCC299 sp. Micromonas 226523057 65427940 Micromonas pusilla Micromonas 65427940 51035303 Dunaliella maritima -10W 87245052 Desmodesmus tropicus Desmodesmus 87245052 47933783 Dunaliella tertiolecta 23394022 Desmodesmus tropicus Desmodesmus 23394022 165968412627284 DunaliellaDunaliella tertiolecta primolecta 1097 Micromonas pusilla Micromonas 1097 23394013 Desmodesmus maximus Desmodesmus 23394013 . muzzanensis . smus arthrodesmiformis smus 23394021 Desmodesmus tropicus Desmodesmus 23394021 16596843 Dunaliella parva 65427922 Micromonas pusilla Micromonas 65427922 65427939 Micromonas pusilla Micromonas 65427939 65427941 Micromonas pusilla Micromonas 65427941 65427927 Micromonas pusilla Micromonas 65427927 23394023 Desmodesmus tropicus Desmodesmus 23394023 pusilla Micromonas 65427937 65427938 Micromonas pusilla Micromonas 65427938 65427924 Micromonas pusilla 16596846 Dunaliella peircei 65427925 Micromonas pusilla T ow6/16 T Desmodesmus arthrodesmiformis Desmodesmus esmus arthrodesmiformis esmus 56578596 Dunaliella tertiolecta 23394025 Desmodesmus tropicus Desmodesmus 23394025 197290646 Dunaliella sp. e Desmod 23394020 pusilla Micromonas 65427926 65427936 Micromonas pusilla Micromonas 65427936 r va perforatus Desmodesmus 23394019 desmus sp. Hegewald 1987-51 Hegewald sp. desmus 1 468 65427935 Micromonas pusilla Micromonas 65427935 65427931 Micromonas pusilla Micromonas 65427931 65427930 Micromonas pusilla Micromonas 65427930 87047587 Dunaliella tertiolecta87047575 Chlorosarcinopsis gelatinosa Desmodesmus perfora Desmodesmus 23394018 23394017 Desmodesmus perforatus Desmodesmus 23394017 87047588 Dunaliella tertiolecta87047607 Dunaliella sp. SPMO 210-3 mo 87047578 Dunaliella87047593 sp. Dunaliella CCMP367 sp. SPMO 1 23394016 Desmodesmus perforatus Desmodesmus 23394016 87047583 8704760987047592 Dunaliella87047586 Dunaliella sp. Dunaliella SPMO sp. SPMO 300-4 sp. CCMP2201 23394015 Desmodesmus perforatus Desmodesmus 23394015 87047584 Dunaliella sp. CCMP1641 87047585 Dunaliella sp. CCMP192387047591 Dunaliella sp. SPMO 109-1 89515354 89515354 8704757716596842 Dunaliella Dunaliella bioculata tertiolecta ‚Chlamydomonas III‘ 89515355 Desmodesmus arthrodesmiform Desmodesmus 89515355 16596844 Dunaliella parva 89515353 Desmode 89515353 145587830 Dunaliella tertiolecta 4972024 Desmod 4972024 89515352 Desmodesmus arthrodesmiformis Desmodesmus 89515352 8704759087047608 Dunaliella Dunaliella sp. sp. FL1 SPMO 21 4972023 Des 4972023 W 15216662 Desmodesmus pannonicus Desmodesmus 15216662 89515344 Desmodesmus sp. NDem6/3P-3d sp. Desmodesmus 89515344 r va lefevrei Desmodesmus 4972022 159135714 Desmodesmus sp. EH32 sp. Desmodesmus 159135714 sp. Desmodesmus 89515345 89515375 Desmodesmus pirkollei Desmodesmus 89515375 ow8/18P-4 T win8/18P-2d 15055107 Desmodesmus pirkollei Desmodesmus 15055107 b 5107925 Chloromonas playfairii 159135716 Desmodesmus sp. EH1 sp. Desmodesmus 159135716 1 Desmodesmus hystrix Desmodesmus 1 EH25 16596839 Dunaliella salina 159135715 Desmodesmus sp. ET8a sp. Desmodesmus 159135715 aldevei 33333770 Dunaliella salina smus sp. ET14 sp. smus 1515730272645740 Dunaliella Pyrobotrys14139929 salina stellata Chlamydomonas hedleyi 4028834 40288340 Desmodesmus hystrix Desmodesmus 40288340 1659683887047581 Dunaliella Halosarcinochlamys salina cherokeensis . rectangularis . 89515369 Desmodesmus hystrix Desmodesmus 89515369 us cuneatus us m 9 Scenedesmus 9 12055746 Desmodesmus hystrix Desmodesmus 12055746 1 Desmodesmus sp. sp. Desmodesmus 1 sp. smus 89515340 Desmode 89515340 26457452645746 Chlamydomonas Chlamydomonas allensworthii allensworthii T W sp. Desmodesmus 89515341 olisicus 159135710 Desmode
Recommended publications
  • Flagellar, Cellular and Organismal Polarity in Volvox Carteri

    Flagellar, Cellular and Organismal Polarity in Volvox Carteri

    SUNY Geneseo KnightScholar Biology Faculty/Staff Works Department of Biology 1993 Flagellar, cellular and organismal polarity in Volvox carteri Harold J. Hoops SUNY Geneseo Follow this and additional works at: https://knightscholar.geneseo.edu/biology Recommended Citation Hoops H.J. (1993) Flagellar, cellular and organismal polarity in Volvox carteri. Journal of Cell Science 104: 105-117. doi: This Article is brought to you for free and open access by the Department of Biology at KnightScholar. It has been accepted for inclusion in Biology Faculty/Staff Works by an authorized administrator of KnightScholar. For more information, please contact [email protected]. Journal of Cell Science 104, 105-117 (1993) 105 Printed in Great Britain © The Company of Biologists Limited 1993 Flagellar, cellular and organismal polarity in Volvox carteri Harold J. Hoops Department of Biology, 1 Circle Drive, SUNY-Genesco, Genesco, NY 14454, USA SUMMARY It has previously been shown that the flagellar appara- reorientation of flagellar apparatus components. This tus of the mature Volvox carteri somatic cell lacks the reorientation also results in the movement of the eye- 180˚ rotational symmetry typical of most unicellular spot from a position nearer one of the flagellar bases to green algae. This asymmetry has been postulated to be a position approximately equidistant between them. By the result of rotation of each half of the flagellar appa- analogy to Chlamydomonas, the anti side of the V. car - ratus. Here it is shown that V. carteri axonemes contain teri somatic cell faces the spheroid anterior, the syn side polarity markers that are similar to those found in faces the spheroid posterior.
  • The Hawaiian Freshwater Algae Biodiversity Survey

    The Hawaiian Freshwater Algae Biodiversity Survey

    Sherwood et al. BMC Ecology 2014, 14:28 http://www.biomedcentral.com/1472-6785/14/28 RESEARCH ARTICLE Open Access The Hawaiian freshwater algae biodiversity survey (2009–2014): systematic and biogeographic trends with an emphasis on the macroalgae Alison R Sherwood1*, Amy L Carlile1,2, Jessica M Neumann1, J Patrick Kociolek3, Jeffrey R Johansen4, Rex L Lowe5, Kimberly Y Conklin1 and Gernot G Presting6 Abstract Background: A remarkable range of environmental conditions is present in the Hawaiian Islands due to their gradients of elevation, rainfall and island age. Despite being well known as a location for the study of evolutionary processes and island biogeography, little is known about the composition of the non-marine algal flora of the archipelago, its degree of endemism, or affinities with other floras. We conducted a biodiversity survey of the non-marine macroalgae of the six largest main Hawaiian Islands using molecular and microscopic assessment techniques. We aimed to evaluate whether endemism or cosmopolitanism better explain freshwater algal distribution patterns, and provide a baseline data set for monitoring future biodiversity changes in the Hawaiian Islands. Results: 1,786 aquatic and terrestrial habitats and 1,407 distinct collections of non-marine macroalgae were collected from the islands of Kauai, Oahu, Molokai, Maui, Lanai and Hawaii from the years 2009–2014. Targeted habitats included streams, wet walls, high elevation bogs, taro fields, ditches and flumes, lakes/reservoirs, cave walls and terrestrial areas. Sites that lacked freshwater macroalgae were typically terrestrial or wet wall habitats that were sampled for diatoms and other microalgae. Approximately 50% of the identifications were of green algae, with lesser proportions of diatoms, red algae, cyanobacteria, xanthophytes and euglenoids.
  • Chilling Out: the Evolution and Diversification of Psychrophilic Algae with a Focus on Chlamydomonadales

    Chilling Out: the Evolution and Diversification of Psychrophilic Algae with a Focus on Chlamydomonadales

    Polar Biol DOI 10.1007/s00300-016-2045-4 REVIEW Chilling out: the evolution and diversification of psychrophilic algae with a focus on Chlamydomonadales 1 1 1 Marina Cvetkovska • Norman P. A. Hu¨ner • David Roy Smith Received: 20 February 2016 / Revised: 20 July 2016 / Accepted: 10 October 2016 Ó Springer-Verlag Berlin Heidelberg 2016 Abstract The Earth is a cold place. Most of it exists at or Introduction below the freezing point of water. Although seemingly inhospitable, such extreme environments can harbour a Almost 80 % of the Earth’s biosphere is permanently variety of organisms, including psychrophiles, which can below 5 °C, including most of the oceans, the polar, and withstand intense cold and by definition cannot survive at alpine regions (Feller and Gerday 2003). These seemingly more moderate temperatures. Eukaryotic algae often inhospitable places are some of the least studied but most dominate and form the base of the food web in cold important ecosystems on the planet. They contain a huge environments. Consequently, they are ideal systems for diversity of prokaryotic and eukaryotic organisms, many of investigating the evolution, physiology, and biochemistry which are permanently adapted to the cold (psychrophiles) of photosynthesis under frigid conditions, which has (Margesin et al. 2007). The environmental conditions in implications for the origins of life, exobiology, and climate such habitats severely limit the spread of terrestrial plants, change. Here, we explore the evolution and diversification and therefore, primary production in perpetually cold of photosynthetic eukaryotes in permanently cold climates. environments is largely dependent on microbes. Eukaryotic We highlight the known diversity of psychrophilic algae algae and cyanobacteria are the dominant photosynthetic and the unique qualities that allow them to thrive in severe primary producers in cold habitats, thriving in a surprising ecosystems where life exists at the edge.
  • Transcription of the Hydrogenase Gene During H2 Production in Scenedesmus Obliquus and Chlorella Vulgaris

    Transcription of the Hydrogenase Gene During H2 Production in Scenedesmus Obliquus and Chlorella Vulgaris

    Transcription of the Hydrogenase Gene during H2 Production in Scenedesmus Obliquus and Chlorella Vulgaris Yahaira de Jesus Tamayo Ordóñez Universidad Autónoma de Coahuila: Universidad Autonoma de Coahuila Benjamin Abraham Ayil Gutiérrez Instituto Politécnico Nacional: Instituto Politecnico Nacional Alejandro Ruiz Marin Universidad Autónoma del Carmen: Universidad Autonoma del Carmen Francisco Alberto Tamayo Ordóñez Universidad Autónoma del Carmen: Universidad Autonoma del Carmen Ileana Maria Mayela Moreno Davila Universidad Autónoma de Coahuila: Universidad Autonoma de Coahuila Leopoldo Ríos González Universidad Autónoma de Coahuila: Universidad Autonoma de Coahuila Jose Antonio Rodriguez de la Garza Universidad Autónoma de Coahuila: Universidad Autonoma de Coahuila Juan Carlos Robles Heredia Universidad Autónoma del Carmen: Universidad Autonoma del Carmen Maria Concepcion Tamayo Ordoñez ( [email protected] ) Universidad Autonoma de Coahuila https://orcid.org/0000-0003-0201-0184 Original article Keywords: microalgae, hydrogenase gene, molecular hydrogen, mutation Posted Date: March 24th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-342043/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/30 Abstract There is ongoing research related to the production of molecular hydrogen today and algae have proven to be good biological models for producing several compounds of interest. We analyzed how genetic variations in hydrogenase genes (hyd) can affect the production of
  • Altitudinal Zonation of Green Algae Biodiversity in the French Alps

    Altitudinal Zonation of Green Algae Biodiversity in the French Alps

    Altitudinal Zonation of Green Algae Biodiversity in the French Alps Adeline Stewart, Delphine Rioux, Fréderic Boyer, Ludovic Gielly, François Pompanon, Amélie Saillard, Wilfried Thuiller, Jean-Gabriel Valay, Eric Marechal, Eric Coissac To cite this version: Adeline Stewart, Delphine Rioux, Fréderic Boyer, Ludovic Gielly, François Pompanon, et al.. Altitu- dinal Zonation of Green Algae Biodiversity in the French Alps. Frontiers in Plant Science, Frontiers, 2021, 12, pp.679428. 10.3389/fpls.2021.679428. hal-03258608 HAL Id: hal-03258608 https://hal.archives-ouvertes.fr/hal-03258608 Submitted on 11 Jun 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. fpls-12-679428 June 4, 2021 Time: 14:28 # 1 ORIGINAL RESEARCH published: 07 June 2021 doi: 10.3389/fpls.2021.679428 Altitudinal Zonation of Green Algae Biodiversity in the French Alps Adeline Stewart1,2,3, Delphine Rioux3, Fréderic Boyer3, Ludovic Gielly3, François Pompanon3, Amélie Saillard3, Wilfried Thuiller3, Jean-Gabriel Valay2, Eric Maréchal1* and Eric Coissac3* on behalf of The ORCHAMP Consortium 1 Laboratoire de Physiologie Cellulaire et Végétale, CEA, CNRS, INRAE, IRIG, Université Grenoble Alpes, Grenoble, France, 2 Jardin du Lautaret, CNRS, Université Grenoble Alpes, Grenoble, France, 3 Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, LECA, Grenoble, France Mountain environments are marked by an altitudinal zonation of habitat types.
  • JUDD W.S. Et. Al. (2002) Plant Systematics: a Phylogenetic Approach. Chapter 7. an Overview of Green

    JUDD W.S. Et. Al. (2002) Plant Systematics: a Phylogenetic Approach. Chapter 7. an Overview of Green

    UNCORRECTED PAGE PROOFS An Overview of Green Plant Phylogeny he word plant is commonly used to refer to any auto- trophic eukaryotic organism capable of converting light energy into chemical energy via the process of photosynthe- sis. More specifically, these organisms produce carbohydrates from carbon dioxide and water in the presence of chlorophyll inside of organelles called chloroplasts. Sometimes the term plant is extended to include autotrophic prokaryotic forms, especially the (eu)bacterial lineage known as the cyanobacteria (or blue- green algae). Many traditional botany textbooks even include the fungi, which differ dramatically in being heterotrophic eukaryotic organisms that enzymatically break down living or dead organic material and then absorb the simpler products. Fungi appear to be more closely related to animals, another lineage of heterotrophs characterized by eating other organisms and digesting them inter- nally. In this chapter we first briefly discuss the origin and evolution of several separately evolved plant lineages, both to acquaint you with these important branches of the tree of life and to help put the green plant lineage in broad phylogenetic perspective. We then focus attention on the evolution of green plants, emphasizing sev- eral critical transitions. Specifically, we concentrate on the origins of land plants (embryophytes), of vascular plants (tracheophytes), of 1 UNCORRECTED PAGE PROOFS 2 CHAPTER SEVEN seed plants (spermatophytes), and of flowering plants dons.” In some cases it is possible to abandon such (angiosperms). names entirely, but in others it is tempting to retain Although knowledge of fossil plants is critical to a them, either as common names for certain forms of orga- deep understanding of each of these shifts and some key nization (e.g., the “bryophytic” life cycle), or to refer to a fossils are mentioned, much of our discussion focuses on clade (e.g., applying “gymnosperms” to a hypothesized extant groups.
  • A Taxonomic Reassessment of Chlamydomonas Meslinii (Volvocales, Chlorophyceae) with a Description of Paludistella Gen.Nov

    A Taxonomic Reassessment of Chlamydomonas Meslinii (Volvocales, Chlorophyceae) with a Description of Paludistella Gen.Nov

    Phytotaxa 432 (1): 065–080 ISSN 1179-3155 (print edition) https://www.mapress.com/j/pt/ PHYTOTAXA Copyright © 2020 Magnolia Press Article ISSN 1179-3163 (online edition) https://doi.org/10.11646/phytotaxa.432.1.6 A taxonomic reassessment of Chlamydomonas meslinii (Volvocales, Chlorophyceae) with a description of Paludistella gen.nov. HANI SUSANTI1,6, MASAKI YOSHIDA2, TAKESHI NAKAYAMA2, TAKASHI NAKADA3,4 & MAKOTO M. WATANABE5 1Life Science Innovation, School of Integrative and Global Major, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan. 2Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Japan. 3Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, 997-0052, Japan. 4Systems Biology Program, Graduate School of Media and Governance, Keio University, Fujisawa, Kanagawa, 252-8520, Japan. 5Algae Biomass Energy System Development and Research Center, University of Tsukuba. 6Research Center for Biotechnology, Indonesian Institute of Sciences, Jl. Raya Bogor KM 46 Cibinong West Java, Indonesia. Corresponding author: [email protected] Abstract Chlamydomonas (Volvocales, Chlorophyceae) is a large polyphyletic genus that includes numerous species that should be classified into independent genera. The present study aimed to examine the authentic strain of Chlamydomonas meslinii and related strains based on morphological and molecular data. All the strains possessed an asteroid chloroplast with a central pyrenoid and hemispherical papilla; however, they were different based on cell and stigmata shapes. Molecular phylogenetic analyses based on 18S rDNA, atpB, and psaB indicated that the strains represented a distinct subclade in the clade Chloromonadinia. The secondary structure of ITS-2 supported the separation of the strains into four species.
  • The Genome of Prasinoderma Coloniale Unveils the Existence of a Third Phylum Within Green Plants

    The Genome of Prasinoderma Coloniale Unveils the Existence of a Third Phylum Within Green Plants

    Downloaded from orbit.dtu.dk on: Oct 10, 2021 The genome of Prasinoderma coloniale unveils the existence of a third phylum within green plants Li, Linzhou; Wang, Sibo; Wang, Hongli; Sahu, Sunil Kumar; Marin, Birger; Li, Haoyuan; Xu, Yan; Liang, Hongping; Li, Zhen; Cheng, Shifeng Total number of authors: 24 Published in: Nature Ecology & Evolution Link to article, DOI: 10.1038/s41559-020-1221-7 Publication date: 2020 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Li, L., Wang, S., Wang, H., Sahu, S. K., Marin, B., Li, H., Xu, Y., Liang, H., Li, Z., Cheng, S., Reder, T., Çebi, Z., Wittek, S., Petersen, M., Melkonian, B., Du, H., Yang, H., Wang, J., Wong, G. K. S., ... Liu, H. (2020). The genome of Prasinoderma coloniale unveils the existence of a third phylum within green plants. Nature Ecology & Evolution, 4, 1220-1231. https://doi.org/10.1038/s41559-020-1221-7 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
  • The Symbiotic Green Algae, Oophila (Chlamydomonadales

    The Symbiotic Green Algae, Oophila (Chlamydomonadales

    University of Connecticut OpenCommons@UConn Master's Theses University of Connecticut Graduate School 12-16-2016 The yS mbiotic Green Algae, Oophila (Chlamydomonadales, Chlorophyceae): A Heterotrophic Growth Study and Taxonomic History Nikolaus Schultz University of Connecticut - Storrs, [email protected] Recommended Citation Schultz, Nikolaus, "The yS mbiotic Green Algae, Oophila (Chlamydomonadales, Chlorophyceae): A Heterotrophic Growth Study and Taxonomic History" (2016). Master's Theses. 1035. https://opencommons.uconn.edu/gs_theses/1035 This work is brought to you for free and open access by the University of Connecticut Graduate School at OpenCommons@UConn. It has been accepted for inclusion in Master's Theses by an authorized administrator of OpenCommons@UConn. For more information, please contact [email protected]. The Symbiotic Green Algae, Oophila (Chlamydomonadales, Chlorophyceae): A Heterotrophic Growth Study and Taxonomic History Nikolaus Eduard Schultz B.A., Trinity College, 2014 A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science at the University of Connecticut 2016 Copyright by Nikolaus Eduard Schultz 2016 ii ACKNOWLEDGEMENTS This thesis was made possible through the guidance, teachings and support of numerous individuals in my life. First and foremost, Louise Lewis deserves recognition for her tremendous efforts in making this work possible. She has performed pioneering work on this algal system and is one of the preeminent phycologists of our time. She has spent hundreds of hours of her time mentoring and teaching me invaluable skills. For this and so much more, I am very appreciative and humbled to have worked with her. Thank you Louise! To my committee members, Kurt Schwenk and David Wagner, thank you for your mentorship and guidance.
  • Phylogenetic Analysis of ''Volvocacae'

    Phylogenetic Analysis of ''Volvocacae'

    Phylogenetic analysis of ‘‘Volvocacae’’ for comparative genetic studies Annette W. Coleman† Division of Biology and Medicine, Brown University, Providence, RI 02912 Edited by Elisabeth Gantt, University of Maryland, College Park, MD, and approved September 28, 1999 (received for review June 30, 1999) Sequence analysis based on multiple isolates representing essen- most of those obtained previously with data for other DNA tially all genera and species of the classic family Volvocaeae has regions in identifying major clades and their relationships. clarified their phylogenetic relationships. Cloned internal tran- However, the expanded taxonomic coverage revealed additional scribed spacer sequences (ITS-1 and ITS-2, flanking the 5.8S gene of and unexpected relationships. the nuclear ribosomal gene cistrons) were aligned, guided by ITS transcript secondary structural features, and subjected to parsi- Materials and Methods mony and neighbor joining distance analysis. Results confirm the The algal isolates that form the basis of this study are listed below notion of a single common ancestor, and Chlamydomonas rein- and Volvocacean taxonomy is summarized in Table 1. The taxon harditii alone among all sequenced green unicells is most similar. names are those found in the culture collection listings. Included Interbreeding isolates were nearest neighbors on the evolutionary is the Culture Collection designation [University of Texas, tree in all cases. Some taxa, at whatever level, prove to be clades National Institute for Environmental Studies (Japan), A.W.C. or by sequence comparisons, but others provide striking exceptions. R. C. Starr collection], an abbreviated name, and the GenBank The morphological species Pandorina morum, known to be wide- accession number.
  • Chilling Out: the Evolution and Diversification of Psychrophilic Algae with a Focus on Chlamydomonadales

    Chilling Out: the Evolution and Diversification of Psychrophilic Algae with a Focus on Chlamydomonadales

    Polar Biol (2017) 40:1169–1184 DOI 10.1007/s00300-016-2045-4 REVIEW Chilling out: the evolution and diversification of psychrophilic algae with a focus on Chlamydomonadales 1 1 1 Marina Cvetkovska • Norman P. A. Hu¨ner • David Roy Smith Received: 20 February 2016 / Revised: 20 July 2016 / Accepted: 10 October 2016 / Published online: 21 October 2016 Ó Springer-Verlag Berlin Heidelberg 2016 Abstract The Earth is a cold place. Most of it exists at or Introduction below the freezing point of water. Although seemingly inhospitable, such extreme environments can harbour a Almost 80 % of the Earth’s biosphere is permanently variety of organisms, including psychrophiles, which can below 5 °C, including most of the oceans, the polar, and withstand intense cold and by definition cannot survive at alpine regions (Feller and Gerday 2003). These seemingly more moderate temperatures. Eukaryotic algae often inhospitable places are some of the least studied but most dominate and form the base of the food web in cold important ecosystems on the planet. They contain a huge environments. Consequently, they are ideal systems for diversity of prokaryotic and eukaryotic organisms, many of investigating the evolution, physiology, and biochemistry which are permanently adapted to the cold (psychrophiles) of photosynthesis under frigid conditions, which has (Margesin et al. 2007). The environmental conditions in implications for the origins of life, exobiology, and climate such habitats severely limit the spread of terrestrial plants, change. Here, we explore the evolution and diversification and therefore, primary production in perpetually cold of photosynthetic eukaryotes in permanently cold climates. environments is largely dependent on microbes.
  • Accumulation of Lipid in Dunaliella Salina Under Nutrient Starvation Condition

    Accumulation of Lipid in Dunaliella Salina Under Nutrient Starvation Condition

    American Journal of Food and Nutrition, 2017, Vol. 5, No. 2, 58-61 Available online at http://pubs.sciepub.com/ajfn/5/2/2 ©Science and Education Publishing DOI:10.12691/ajfn-5-2-2 Accumulation of lipid in Dunaliella salina under Nutrient Starvation Condition Truc Mai1,2,*, Phuc Nguyen3, Trung Vo3,*, Hieu Huynh3, Son Tran3, Tran Nim3, Dat Tran3, Hung Nguyen3, Phung Bui3 1Department of Molecular Biology, New Mexico State University, New Mexico, USA 2Department of Plant and Environmental Sciences, New Mexico State University, New Mexico, USA 3Department of Biochemistry and Toxicology, Nguyen Tat Thanh University, Viet Nam *Corresponding author: [email protected] Abstract The effect of nutrient starvation on lipid accumulation of Dunaliella salina A9 was studied. In nutrient starvation, cell colour changed from green to yellow (or orange) and cell growth reached stationary phase after 9 days of the culture. The study showed that under nutrient stress, decreased in cell growth is accompanied by carotenoid biosynthesis and lipid content of Dunaliella salina. The results of this study can be used to increase carotenoid and lipid production in microalgae for functional food and biofuel in the future. Keywords: Dunaliell salina A9, Dunaliella bardawil and Sulfo-phospho-vanillin reagent Cite This Article: Truc Mai, Phuc Nguyen, Trung Vo, Hieu Huynh, Son Tran, Tran Nim, Dat Tran, Hung Nguyen, and Phung Bui, “Accumulation of lipid in Dunaliella salina under Nutrient Starvation Condition.” American Journal of Food and Nutrition, vol. 5, no. 2 (2017): 58-61. doi: 10.12691/ajfn-5-2-2. of β-carotene is suppressed when lipid metabolism pathway is inhibited [30].