Genome-Wide Association Analysis Reveals QTL and Candidate Mutations Structure, Function, and Regulation
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
FARSB Antibody (C-Term) Affinity Purified Rabbit Polyclonal Antibody (Pab) Catalog # Ap14090b
10320 Camino Santa Fe, Suite G San Diego, CA 92121 Tel: 858.875.1900 Fax: 858.622.0609 FARSB Antibody (C-term) Affinity Purified Rabbit Polyclonal Antibody (Pab) Catalog # AP14090b Specification FARSB Antibody (C-term) - Product Information Application WB, IHC-P,E Primary Accession Q9NSD9 Other Accession NP_005678.3 Reactivity Human Host Rabbit Clonality Polyclonal Isotype Rabbit Ig Calculated MW 66116 Antigen Region 535-564 FARSB Antibody (C-term) - Additional Information Gene ID 10056 FARSB Antibody (C-term) (Cat. #AP14090b) western blot analysis in Y79 cell line lysates Other Names (35ug/lane).This demonstrates the FARSB Phenylalanine--tRNA ligase beta subunit, antibody detected the FARSB protein (arrow). Phenylalanyl-tRNA synthetase beta subunit, PheRS, FARSB, FARSLB, FRSB Target/Specificity This FARSB antibody is generated from rabbits immunized with a KLH conjugated synthetic peptide between 535-564 amino acids from the C-terminal region of human FARSB. Dilution WB~~1:1000 IHC-P~~1:10~50 Format Purified polyclonal antibody supplied in PBS with 0.09% (W/V) sodium azide. This antibody is purified through a protein A column, followed by peptide affinity purification. FARSB Antibody (C-term) (Cat. #AP14090b)immunohistochemistry analysis Storage in formalin fixed and paraffin embedded Maintain refrigerated at 2-8°C for up to 2 human cerebellum tissue followed by weeks. For long term storage store at -20°C peroxidase conjugation of the secondary in small aliquots to prevent freeze-thaw antibody and DAB staining.This data cycles. demonstrates the use of ANKS1B FARSB Antibody (C-term) for immunohistochemistry. Precautions Clinical relevance has not been evaluated. FARSB Antibody (C-term) is for research use Page 1/2 10320 Camino Santa Fe, Suite G San Diego, CA 92121 Tel: 858.875.1900 Fax: 858.622.0609 only and not for use in diagnostic or FARSB Antibody (C-term) - Background therapeutic procedures. -
Natural Selection Has Shaped Coding and Non-Coding Transcription in Primate CD4+ T-Cells 2 3 Charles G
bioRxiv preprint doi: https://doi.org/10.1101/083212; this version posted October 25, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Natural Selection has Shaped Coding and Non-coding Transcription in Primate CD4+ T-cells 2 3 Charles G. Danko1,2,*, Zhong Wang1, Edward J. Rice1, Tinyi Chu1,3, Andre L. Martins1, 4 Elia Tait Wojno1,4, John T. Lis5, W. Lee Kraus6,7, & Adam Siepel8,* 5 6 1 Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853. 7 2 Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853. 8 3 Graduate field of Computational Biology, Cornell University, Ithaca, NY 14853. 9 4 Department of Microbiology & Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853. 10 5 Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853. 11 6 Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, 12 University of Texas Southwestern Medical Center, Dallas, TX 75390. 13 7 Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical 14 Center, Dallas, TX 75390. 15 8 Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724. 16 17 * Address correspondence to: 18 Charles G. Danko, Ph.D. Adam Siepel, Ph.D. 19 Baker Institute for Animal Health Simons Center for Quantitative Biology 20 Cornell University Cold Spring Harbor Laboratory 21 Hungerford Hill Rd. -
1 Supporting Information for a Microrna Network Regulates
Supporting Information for A microRNA Network Regulates Expression and Biosynthesis of CFTR and CFTR-ΔF508 Shyam Ramachandrana,b, Philip H. Karpc, Peng Jiangc, Lynda S. Ostedgaardc, Amy E. Walza, John T. Fishere, Shaf Keshavjeeh, Kim A. Lennoxi, Ashley M. Jacobii, Scott D. Rosei, Mark A. Behlkei, Michael J. Welshb,c,d,g, Yi Xingb,c,f, Paul B. McCray Jr.a,b,c Author Affiliations: Department of Pediatricsa, Interdisciplinary Program in Geneticsb, Departments of Internal Medicinec, Molecular Physiology and Biophysicsd, Anatomy and Cell Biologye, Biomedical Engineeringf, Howard Hughes Medical Instituteg, Carver College of Medicine, University of Iowa, Iowa City, IA-52242 Division of Thoracic Surgeryh, Toronto General Hospital, University Health Network, University of Toronto, Toronto, Canada-M5G 2C4 Integrated DNA Technologiesi, Coralville, IA-52241 To whom correspondence should be addressed: Email: [email protected] (M.J.W.); yi- [email protected] (Y.X.); Email: [email protected] (P.B.M.) This PDF file includes: Materials and Methods References Fig. S1. miR-138 regulates SIN3A in a dose-dependent and site-specific manner. Fig. S2. miR-138 regulates endogenous SIN3A protein expression. Fig. S3. miR-138 regulates endogenous CFTR protein expression in Calu-3 cells. Fig. S4. miR-138 regulates endogenous CFTR protein expression in primary human airway epithelia. Fig. S5. miR-138 regulates CFTR expression in HeLa cells. Fig. S6. miR-138 regulates CFTR expression in HEK293T cells. Fig. S7. HeLa cells exhibit CFTR channel activity. Fig. S8. miR-138 improves CFTR processing. Fig. S9. miR-138 improves CFTR-ΔF508 processing. Fig. S10. SIN3A inhibition yields partial rescue of Cl- transport in CF epithelia. -
Exercise, Skeletal Muscle and Inflammation
EEXXEERRCCIISSEE IIMMMMUUNNOOLLOOGGYY RREEVVIIEEWW VOLUME 21 • 2015 The International Society of Exercise and Immunology EXERCISEEXERCISE IMMUNOLOGY IMMUNOLOGY REVIEW REVIEW An official Publication of ISEI and DGSP We gratefully acknowledge and thank for years of sponsoring by the Verein zurK Förderungarsten K derrüg Sportmediziner for the editorial team and all our readers Hinnak Northoff for the editorial team and all our readers EXERCISE VOLUME 21 • 2015 IMMUN OLOGY REVIEW CONTENTS From the Editors 7 Reviews Cytokine expression and secretion by skeletal muscle cells: regulatory mechanisms and exercise effects Jonathan M. Peake, Paul Della Gatta, Katsuhiko Suzuki, David C. Nieman 8 Exercise and inflammation-related epigenetic modifications: focus on DNA methylation. Steven Horsburgh, Paula Robson-Ansley, Rozanne Adams, Carine Smith 26 Exercise, skeletal muscle and inflammation: ARE-binding proteins as key regulators in inflammatory and adaptive networks Thomas Beiter, Miriam Hoene, Frauke Prenzler, Frank C. Mooren, Jürgen M. Steinacker, Cora Weigert, Andreas M. Nieß, Barbara Munz 42 Metabolic signals and innate immune activation in obesity and exercise Robert Ringseis, Klaus Eder, Frank C. Mooren, Karsten Krüger 58 The microbiota: An exercise immunology perspective Stéphane Bermon, Bernardo Petriz, Alma Kajėnienė, Jonato Prestes, Lindy Castell, Octavio L. Franco 70 Understanding graft-versus-host disease. Preliminary findings regarding the effects of exercise in affected patients Carmen Fiuza-Luces, Nuria Garatachea, Richard J. Simpson, -
Downloaded from the App Store and Nucleobase, Nucleotide and Nucleic Acid Metabolism 7 Google Play
Hoytema van Konijnenburg et al. Orphanet J Rare Dis (2021) 16:170 https://doi.org/10.1186/s13023-021-01727-2 REVIEW Open Access Treatable inherited metabolic disorders causing intellectual disability: 2021 review and digital app Eva M. M. Hoytema van Konijnenburg1†, Saskia B. Wortmann2,3,4†, Marina J. Koelewijn2, Laura A. Tseng1,4, Roderick Houben6, Sylvia Stöckler‑Ipsiroglu5, Carlos R. Ferreira7 and Clara D. M. van Karnebeek1,2,4,8* Abstract Background: The Treatable ID App was created in 2012 as digital tool to improve early recognition and intervention for treatable inherited metabolic disorders (IMDs) presenting with global developmental delay and intellectual disabil‑ ity (collectively ‘treatable IDs’). Our aim is to update the 2012 review on treatable IDs and App to capture the advances made in the identifcation of new IMDs along with increased pathophysiological insights catalyzing therapeutic development and implementation. Methods: Two independent reviewers queried PubMed, OMIM and Orphanet databases to reassess all previously included disorders and therapies and to identify all reports on Treatable IDs published between 2012 and 2021. These were included if listed in the International Classifcation of IMDs (ICIMD) and presenting with ID as a major feature, and if published evidence for a therapeutic intervention improving ID primary and/or secondary outcomes is avail‑ able. Data on clinical symptoms, diagnostic testing, treatment strategies, efects on outcomes, and evidence levels were extracted and evaluated by the reviewers and external experts. The generated knowledge was translated into a diagnostic algorithm and updated version of the App with novel features. Results: Our review identifed 116 treatable IDs (139 genes), of which 44 newly identifed, belonging to 17 ICIMD categories. -
© 2016 Hillary Stires ALL RIGHTS RESERVED
© 2016 Hillary Stires ALL RIGHTS RESERVED ELUCIDATING MECHANISMS THAT DRIVE INCREASED TUMORIGENESIS IN RATS EXPOSED TO ALCOHOL IN UTERO By HILLARY STIRES A dissertation submitted to the Graduate School – New Brunswick Rutgers, The State University of New Jersey in partial fulfillment of the requirements for the degree of Doctor of Philosophy Graduate Program in Endocrinology and Animal Biosciences written under the direction of Dr. Wendie S. Cohick and approved by ______________________________ ______________________________ ______________________________ ______________________________ New Brunswick, New Jersey May 2016 ABSTRACT OF THE DISSERTATION Elucidating Mechanisms That Drive Increased Tumorigenesis in Rats Exposed to Alcohol in Utero By HILLARY STIRES Dissertation Director: Dr. Wendie S. Cohick Alcohol exposure during gestation increases breast cancer risk in offspring. While the mechanisms that underlie this effect are not fully understood, serum estradiol (E2) is increased in these animals during proestrus, suggesting a role for the estrogen axis. To test this hypothesis, it was necessary to develop a stress-free method of hormone administration that could be used in long-term studies of carcinogen exposure to ovariectomized (OVX) rats. Rats were OVX on post- natal day (PND) 40 then treated with daily peroral E2 with or without P4 by adding hormones to peanut butter. On PND 50 rats were injected with nitrosomethylurea (NMU) to induce mammary tumor development. After 26 weeks, there was no difference in tumor incidence suggesting that E2 alone at a normal physiological level can result in tumor development. These results indicate that this may be a useful method to examine the mechanisms of steroid action in mammary tumorigenesis. In addition to changes in circulating E2, local estrogen signaling may be altered in the mammary gland in response to alcohol in utero. -
Hybrid Versus Autochthonous Turkey Populations: Homozygous Genomic Regions Occurrences Due to Artificial and Natural Selection
animals Article Hybrid Versus Autochthonous Turkey Populations: Homozygous Genomic Regions Occurrences Due to Artificial and Natural Selection Maria Giuseppina Strillacci 1,* , Stefano Paolo Marelli 1 and Guillermo Martinez-Velazquez 2 1 Department of Veterinary Medicine, University of Milan, Via Festa del Perdono, 7, 20122 Milano, Italy; [email protected] 2 INIFAP-Campo Experimental Santiago Ixcuintla, Apdo. Postal 100, Santiago Ixcuintla 63300, Mexico; [email protected] * Correspondence: [email protected]; Tel.: +39-025-033-4582 Received: 15 June 2020; Accepted: 28 July 2020; Published: 30 July 2020 Simple Summary: In this study we investigate the genomic differentiation of traditional Mexican turkey breeds and commercial hybrid strains. The analysis aimed to identify the effects of different types of selection on the birds’ genome structure. Mexican turkeys are characterized by an adaptive selection to their specific original environment; on the other hand, commercial hybrid strains are directionally selected to maximize productive traits and to reduce production costs. The Mexican turkeys were grouped in two geographic subpopulations, while high genomic homogeneity was found in hybrid birds. Traditional breeds and commercial strains are clearly differentiated from a genetic point of view. Inbreeding coefficients were here calculated with different approaches. A clear effect of selection for productive traits was recorded. Abstract: The Mexican turkey population is considered to be the descendant of the original domesticated wild turkey and it is distinct from hybrid strains obtained by the intense artificial selection activity that has occurred during the last 40 years. In this study 30 Mexican turkeys were genomically compared to 38 commercial hybrids using 327,342 SNP markers in order to elucidate the differences in genome variability resulting from different types of selection, i.e., only adaptive for Mexican turkey, and strongly directional for hybrids. -
Genome-Wide CRISPR-Cas9 Screens Reveal Loss of Redundancy Between PKMYT1 and WEE1 in Glioblastoma Stem-Like Cells
Article Genome-wide CRISPR-Cas9 Screens Reveal Loss of Redundancy between PKMYT1 and WEE1 in Glioblastoma Stem-like Cells Graphical Abstract Authors Chad M. Toledo, Yu Ding, Pia Hoellerbauer, ..., Bruce E. Clurman, James M. Olson, Patrick J. Paddison Correspondence [email protected] (J.M.O.), [email protected] (P.J.P.) In Brief Patient-derived glioblastoma stem-like cells (GSCs) can be grown in conditions that preserve patient tumor signatures and their tumor initiating capacity. Toledo et al. use these conditions to perform genome-wide CRISPR-Cas9 lethality screens in both GSCs and non- transformed NSCs, revealing PKMYT1 as a candidate GSC-lethal gene. Highlights d CRISPR-Cas9 lethality screens performed in patient brain- tumor stem-like cells d PKMYT1 is identified in GSCs, but not NSCs, as essential for facilitating mitosis d PKMYT1 and WEE1 act redundantly in NSCs, where their inhibition is synthetic lethal d PKMYT1 and WEE1 redundancy can be broken by over- activation of EGFR and AKT Toledo et al., 2015, Cell Reports 13, 2425–2439 December 22, 2015 ª2015 The Authors http://dx.doi.org/10.1016/j.celrep.2015.11.021 Cell Reports Article Genome-wide CRISPR-Cas9 Screens Reveal Loss of Redundancy between PKMYT1 and WEE1 in Glioblastoma Stem-like Cells Chad M. Toledo,1,2,14 Yu Ding,1,14 Pia Hoellerbauer,1,2 Ryan J. Davis,1,2,3 Ryan Basom,4 Emily J. Girard,3 Eunjee Lee,5 Philip Corrin,1 Traver Hart,6,7 Hamid Bolouri,1 Jerry Davison,4 Qing Zhang,4 Justin Hardcastle,1 Bruce J. Aronow,8 Christopher L. -
Primate Skeletal Epigenetics
Primate Skeletal Epigenetics: Evolutionary Implications of DNA Methylation Patterns in the Skeletal Tissues of Human and Nonhuman Primates by Genevieve Housman A Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy Approved April 2017 by the Graduate Supervisory Committee: Anne Stone, Chair Ellen Quillen Kenro Kusumi Christopher Stojanowski ARIZONA STATE UNIVERSITY May 2017 ABSTRACT Within the primate lineage, skeletal traits that contribute to inter-specific anatomical variation and enable varied niche occupations and forms of locomotion are often described as the result of environmental adaptations. However, skeletal phenotypes are more accurately defined as complex traits, and environmental, genetic, and epigenetic mechanisms, such as DNA methylation which regulates gene expression, all contribute to these phenotypes. Nevertheless, skeletal complexity in relation to epigenetic variation has not been assessed across the primate order. In order to gain a complete understanding of the evolution of skeletal phenotypes across primates, it is necessary to study skeletal epigenetics in primates. This study attempts to fill this gap by identifying intra- and inter- specific variation in primate skeletal tissue methylation in order to test whether specific features of skeletal form are related to specific variations in methylation. Specifically, methylation arrays and gene-specific methylation sequencing are used to identify DNA methylation patterns in femoral trabecular bone and cartilage of several nonhuman primate species. Samples include baboons (Papio spp.), macaques (Macaca mulatta), vervets (Chlorocebus aethiops), chimpanzees (Pan troglodytes), and marmosets (Callithrix jacchus), and the efficiencies of these methods are validated in each taxon. Within one nonhuman primate species (baboons), intra-specific variations in methylation patterns are identified across a range of comparative levels, including skeletal tissue differences (bone vs. -
Variation in the TLR10/TLR1/TLR6 Locus Is the Major Genetic Determinant of Interindividual Difference in TLR1/2-Mediated Responses
Genes and Immunity (2013) 14, 52–57 & 2013 Macmillan Publishers Limited All rights reserved 1466-4879/13 www.nature.com/gene ORIGINAL ARTICLE Variation in the TLR10/TLR1/TLR6 locus is the major genetic determinant of interindividual difference in TLR1/2-mediated responses C Mikacenic1, AP Reiner2, TD Holden1, DA Nickerson3 and MM Wurfel1 Toll-like receptor (TLR)-mediated innate immune responses are important in early host defense. Using a candidate gene approach, we previously identified genetic variation within TLR1 that is associated with hyper-responsiveness to a TLR1/2 agonist in vitro and with death and organ dysfunction in patients with sepsis. Here we report a genome-wide association study (GWAS) designed to identify genetic loci controlling whole blood cytokine responses to the TLR1/2 lipopeptide agonist, Pam3CSK4 (N-palmitoyl-S- À 27 dipalmitoylglyceryl Cys-Ser-(Lys)4) ex vivo. We identified a very strong association (Po1 Â 10 ) between genetic variation within the TLR10/1/6 locus on chromosome 4, and Pam3CSK4-induced cytokine responses. This was the predominant association explaining over 35% of the population variance for this phenotype. Notably, strong associations were observed within TLR10, suggesting that genetic variation in TLR10 may influence bacterial lipoprotein-induced responses. These findings establish the TLR10/1/6 locus as the dominant common genetic factor controlling interindividual variability in Pam3CSK4-induced whole blood responses in the healthy population. Genes and Immunity (2013) 14, 52–57; doi:10.1038/gene.2012.53; published online 15 November 2012 Keywords: TLR; polymorphism; genomics; innate immunity INTRODUCTION variability is attributable to common genetic variants. -
A Rare Variant of ANK3 Is Associated with Intracranial Aneurysm
ORIGINAL RESEARCH published: 25 June 2021 doi: 10.3389/fneur.2021.672570 A Rare Variant of ANK3 Is Associated With Intracranial Aneurysm Junyu Liu 1, Xin Liao 2,3, Jilin Zhou 1, Bingyang Li 2, Lu Xu 1, Songlin Liu 1, Yifeng Li 1, Dun Yuan 1, Chongyu Hu 4, Weixi Jiang 1* and Junxia Yan 2,5* 1 Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China, 2 Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China, 3 The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China, 4 Department of Neurology, Hunan People’s Hospital, Changsha, China, 5 Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, China Intracranial aneurysm (IA) is a cerebrovascular disorder in which abnormal dilation of a blood vessel results from weakening of the blood vessel wall. The aneurysm may rupture, leading to subarachnoid hemorrhage with severe outcomes. This study was conducted to identify the genetic factors involved in the etiology of IA. Whole-exome sequencing was performed in three IA-aggregate families to identify candidate variants. Further association studies of candidate variants were performed among sporadic cases Edited by: and controls. Bioinformatic analysis was used to predict the functions of candidate Osama O. Zaidat, genes and variants. Twenty variants were identified after whole-exome sequencing, Northeast Ohio Medical University, among which eight were selected for replicative association studies. ANK3 c.4403G>A United States (p.R1468H) was significantly associated with IA (odds ratio 4.77; 95% confidence interval Reviewed by: Basil Erwin Grüter, 1.94–11.67; p-value = 0.00019). -
The Binding Sites of Mir-619-5P in the Mrnas Of
Atambayeva et al. BMC Genomics (2017) 18:428 DOI 10.1186/s12864-017-3811-6 RESEARCH ARTICLE Open Access The Binding Sites of miR-619-5p in the mRNAs of Human and Orthologous Genes Shara Atambayeva1*, Raigul Niyazova1, Anatoliy Ivashchenko1, Anna Pyrkova1, Ilya Pinsky1, Aigul Akimniyazova1 and Siegfried Labeit2 Abstract Background: Normally, one miRNA interacts with the mRNA of one gene. However, there are miRNAs that can bind to many mRNAs, and one mRNA can be the target of many miRNAs. This significantly complicates the study of the properties of miRNAs and their diagnostic and medical applications. Results: The search of 2,750 human microRNAs (miRNAs) binding sites in 12,175 mRNAs of human genes using the MirTarget program has been completed. For the binding sites of the miR-619-5p the hybridization free energy of the bonds was equal to 100% of the maximum potential free energy. The mRNAs of 201 human genes have complete complementary binding sites of miR-619-5p in the 3’UTR (214 sites), CDS (3 sites), and 5’UTR (4 sites). The mRNAs of CATAD1, ICA1L, GK5, POLH, and PRR11 genes have six miR-619-5p binding sites, and the mRNAs of OPA3 and CYP20A1 genes have eight and ten binding sites, respectively. All of these miR-619-5p binding sites are located in the 3’UTRs. The miR-619-5p binding site in the 5’UTR of mRNA of human USP29 gene is found in the mRNAs of orthologous genes of primates. Binding sites of miR-619-5p in the coding regions of mRNAs of C8H8orf44, C8orf44, and ISY1 genes encode the WLMPVIP oligopeptide, which is present in the orthologous proteins.