Understanding Common Vision Problems
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Iol Calculations for Patients with Keratoconus
s THE LITERATURE IOL CALCULATIONS FOR PATIENTS WITH KERATOCONUS Work continues to improve refractive accuracy in this patient population. BY ALICE ROTHWELL, MBCHB, AND ANDREW M.J. TURNBULL, BM, PGCERTMEDED, PGDIPCRS, FRCOPHTH INTRAOCULAR LENS POWER CALCULATION TABLE 1. CLASSIFICATION OF KERATOCONUS SEVERITY IN EYES WITH KERATOCONUS Stage Keratometry Reading Savini G, Abbate R, Hoffer KJ, et al1 1 ≤ 48.00 D Industry support: K.J.H. licenses 2 > 48.00 D registered trademark name Hoffer to various companies 3 > 53.00 D ABSTRACT SUMMARY spherical equivalent. Myopic and stage 1 disease. Accuracy decreased Savini and colleagues compared hyperopic surprises were indicated by with more advanced keratoconus, with the prediction errors (PEs) of negative and positive PEs, respectively. a MedAE of greater than 2.50 D in all five standard formulas: Barrett Mean error (ME), median absolute stage 3 eyes. Universal II (BUII), Haigis, Hoffer Q, error (MedAE), mean absolute error, Holladay 1, and SRK/T. The study and percentage of eyes achieving within DISCUSSION included 41 consecutive keratoconic ±0.50 D, ±0.75 D, and ±1.00 D of the Keratoconus presents multiple eyes undergoing phacoemulsification refractive target were also calculated. challenges to IOL selection. First, and IOL implantation. Eyes were A hyperopic ME was found across all the standard keratometric index classified by disease severity (Table 1). five formulas. Across the whole dataset, cannot reliably be applied to these A subjective refraction was obtained the lowest ME (0.91 D) and MedAE eyes because this index depends on for each eye at 1 month postoperatively. (0.62 D) and the highest percentage a normal ratio between the anterior The PE for each eye was calculated by (36%) of eyes within ±0.50 D of target and posterior corneal surfaces, but subtracting the predicted spherical were achieved with the SRK/T formula. -
Fact Sheet: Refractive Errors
Fact Sheet: Refractive Errors More than 11 million Americans have common vision problems that can be corrected with the use of prescriptive eyewear such as glasses or contact lenses.1 These conditions are known as refractive errors and they occur when the eye doesn’t correctly bend, or ―refract,‖ light as it enters the eye. Common refractive errors include the following: o Nearsightedness (also called myopia)—A condition where objects up close appear clearly, while objects far away appear blurry. With nearsightedness, light comes to focus in front of the retina instead of on the retina. o Farsightedness (also called hyperopia)—A common type of refractive error where distant objects may be seen more clearly than objects that are near. However, people experience farsightedness differently. Some people may not notice any problems with their vision, especially when they are young. For people with significant farsightedness, vision can be blurry for objects at any distance, near or far. o Astigmatism—A condition in which the eye does not focus light evenly onto the retina, the light-sensitive tissue at the back of the eye. This can cause images to appear blurry and stretched out. o Presbyopia—An age-related condition in which the ability to focus up close becomes more difficult. As the eye ages, the lens can no longer change shape enough to allow the eye to focus close objects clearly. Refractive errors are one of the most common—and correctable—causes of visual impairment in the United States. According to a recent study led by the National Eye Institute (NEI), approximately half of all American adults don’t have the 20/20 vision physicians consider optimal due to refractive errors.2 Women experience refractive error more frequently than men: Twenty-six percent more women aged 12 and older have uncorrected visual impairment due to refractive error compared with men aged 12 and older. -
Analysis of Human Corneal Igg by Isoelectric Focusing
Investigative Ophthalmology & Visual Science, Vol. 29, No. 10, October 1988 Copyright © Association for Research in Vision and Ophthalmology Analysis of Human Corneal IgG by Isoelectric Focusing J. Clifford Woldrep,* Robin L. Noe,f and R. Doyle Stulringf Parameters which regulate the localization and retention of IgG within the corneal stroma are complex and poorly understood. Although multiple factors are involved, electrostatic interactions between IgG and anionic corneal tissue components, ie, proteoglycans (PG) and glycosaminoglycans (GAG) may regulate the distribution of antibodies within the corneal stroma. Isoelectric focusing (IEF) and blotting analysis of IgG revealed a restricted pi profile for both central and peripheral regions of the normal cornea. Similar analysis of pathological corneas from keratoplasty specimens in Fuchs' dys- trophy and keratoconus reveal a variable IEF profile. In the majority of keratoplasty specimens from patients with corneal edema or graft rejection, there was generally little or no IgG detectable. These results suggest that in edematous corneas where there is altered PG/GAG in the stroma and modified fluid dynamics, there is a concomitant loss of IgG. These findings may have implications for immuno- logic surveillance and protection of the avascular cornea. Invest Ophthalmol Vis Sci 29:1538-1543, 1988 The humoral immune system plays an important the soluble plasma proteins through ionic interac- role in mediating immunologic surveillance and pro- tions. The PGs and GAGs have long been known to -
Management Modalities for Keratoconus an Overview of Noninterventional and Interventional Treatments
REFRACTIVE SURGERY FEATURE STORY EXCLUSIVE ONLINE CONTENT AVAILABLE Management Modalities for Keratoconus An overview of noninterventional and interventional treatments. BY MAZEN M. SINJAB, MD, PHD anagement of keratoconus has advanced TAKE-HOME MESSAGE during the past few years, and surgeons can • When evaluating patients with keratoconus, ask now choose among numerous traditional and them to stop using RGP contact lenses at least 2 modern treatments. Traditional modalities weeks before evaluation to achieve correct Msuch as spectacle correction, contact lenses, penetrating measurement of the corneal shape. keratoplasty (PKP), and conductive keratoplasty (CK) • Interventional management modalities include CK, are still effective; however, demand for the last two has PKP, DALK, ICRSs, CXL, phakic IOLs, or some decreased with the advent of modern alternatives, specifi- combination of these treatments. cally intrastromal corneal ring segments (ICRSs) and cor- • Making the right management decision depends neal collagen crosslinking (CXL). Caution should be used on the patient’s corneal transparency and stress when considering these newer treatment modalities, and lines, age, progression, contact lens tolerance, surgeons should be aware of their indications, contraindi- refractive error, UCVA and BCVA, K-max, corneal cations, conditions, and complications before proceeding thickness, and sex. with treatment. Keratoconus treatments can be divided into two cate- Some patients achieve good vision correction and comfort gories, interventional and noninterventional. In this article, with this strategy. particular attention is given to ICRSs and CXL, as they are Advances in lens designs and materials have increased the the most popular emerging interventional management proportion of keratoconus patients who can be fitted with modalities for keratoconus. -
Managing a Patient with Post-Radial Keratotomy and Sjogren's Syndrome with Scleral Contact Lenses
Managing a patient with Post-Radial Keratotomy and Sjogren's Syndrome with Scleral Contact Lenses Case Report 1 Candidate #123 Abstract: Surgeons used radial keratotomy (RK) in the past as an attempt to flatten the corneal shape and reduce refractive myopia in a patient. In the present day, many post-RK patients suffer from poor, fluctuating vision due to an irregular corneal shape induced from this procedure. Rigid gas permeable lenses, such as scleral lenses, are an excellent solution to improve and stabilize vision. Scleral lenses help recreate an optimal refractive surface to enhance vision for the patient. Patients with specific dry eye symptoms can receive a therapeutic benefit from scleral lens use as the lens acts as a protective barrier for corneal hydration. This is a case report on a patient suffering from both ocular and systemic conditions resulting in decreased vision and discomfort from severe dry eye. She has been successfully fit with scleral lenses to improve signs and symptoms. Key Words: Radial keratotomy (RK), dry eye, Sjogren's syndrome, scleral lens 2300 East Campbell Avenue, Unit 316 Phoenix, AZ 85016 [email protected] (480) 815-4135 1 Introduction: Patients may present to their eye care provider with multiple conditions impacting 2 both their ocular and systemic health. Ocular comorbidities frequently lead to visual impairment 3 and decreased quality of life. To suitably manage these coinciding ailments, it is essential to 4 obtain an early and proper diagnosis. [1] In some instances, similar approaches can help alleviate 5 patient symptoms in managing these comorbidities. 6 7 The goal of refractive surgery is to eliminate the dependency on glasses and contact lenses. -
Scleral Lenses and Eye Health
Scleral Lenses and Eye Health Anatomy and Function of the Human Eye How Scleral Lenses Interact with the Ocular Surface Just as the skin protects the human body, the ocular surface protects the human Scleral lenses are large-diameter lenses designed to vault the cornea and rest on the conjunctival tissue sitting on eye. The ocular surface is made up of the cornea, the conjunctiva, the tear film, top of the sclera. The space between the back surface of the lens and the cornea acts as a fluid reservoir. Scleral and the glands that produce tears, oils, and mucus in the tear film. lenses can range in size from 13mm to 19mm, although larger diameter lenses may be designed for patients with more severe eye conditions. Due to their size, scleral lenses consist SCLERA: The sclera is the white outer wall of the eye. It is SCLERAL LENS made of collagen fibers that are arranged for strength rather of at least two zones: than transmission of light. OPTIC ZONE The optic zone vaults over the cornea CORNEA: The cornea is the front center portion of the outer Cross section of FLUID RESERVOIR wall of the eye. It is made of collagen fibers that are arranged in the eye shows The haptic zone rests on the conjunctiva such a way so that the cornea is clear. The cornea bends light the cornea, overlying the sclera as it enters the eye so that the light is focused on the retina. conjunctiva, and sclera as CORNEA The cornea has a protective surface layer called the epithelium. -
Scleral Lenses to Manage Dry Eye Symptoms
Contact us today Scleral Lens for Management of to learn how scleral lenses Dry Eye Symptoms can make a difference in your life. Affix your practice address label here. Scleral lens vaulting the cornea, maintaining a cushion of tears. Blanchard Contact Lenses supplies the specialty GP lens industry with leading lens designs of the highest quality. Our mission is to consistently design and develop innovative specialty GP lenses utilizing cutting edge manufacturing methods, while maintaining unique partnerships with eye care professionals to improve all aspects of the contact lens wearer experience. Scleral Lenses for the Management of Dry Eye Symptoms Chronic Dry Eye Disorders Dry eye can occur or be caused by How msd™ and Onefit™ Scleral Lenses Work According to a consumer survey1, many conditions. Some are: 48% of adults report dry eye msd™ and Onefit™ scleral lenses are • Age related symptoms. Of those, 42% have made of materials that let oXygen pass • Gender (occurs more with women) trouble reading print as a result of dry through the lens promoting long term eye. Nineteen percent report using • Medications and/or medical conditions cornel health and comfort. The lens over the counter drops to help with • Environmental conditions design provides a thin cushion of fluid the condition, but two thirds of those • Post Refractive Surgery (LASIK and that stays between the lens and eye who use drops find that they are not msd™ Mini-Scleral Lens RK), post-surgery, or post-injury providing immediate relief of dry eye comfortably fit to eye. effective. symptoms and long term wearing Patients with dry eye symptoms may comfort. -
Refractive Status and Optical Components of Premature Babies with Or Without Retinopathy of Prematurity at 7 Years Old
116 Original Article Refractive status and optical components of premature babies with or without retinopathy of prematurity at 7 years old Yang Wang, Lian-Hong Pi, Ru-Lian Zhao, Xiao-Hui Zhu, Ning Ke Department of Ophthalmology, Children’s Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China Contributions: (I) Conception and design: Y Wang, LH Pi, N Ke; (II) Administrative support: LH Pi; (III) Provision of study materials or patients: LH Pi, N Ke; (IV) Collection and assembly of data: Y Wang, RL Zhao, XH Zhu; (V) Data analysis and interpretation: Y Wang; (VI) Manuscript writing: All authors; (VII) Final approval of manuscript: All authors. Correspondence to: Ning Ke. Department of Ophthalmology, Children’s Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders (Chongqing), China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China. Email: [email protected]. Background: This study aimed to investigate the refractive status and optical components of premature babies with or without retinopathy of prematurity (ROP) at 7 years old and to explore the influence of prematurity and ROP on the refractive status and optical components. Methods: From January 2009 to February 2011, premature babies receiving fundus photographic screening (FPS) were recruited and divided into non-ROP group and ROP group. -
Clinical Findings and Management of Posterior Vitreous Detachment
American Academy of Optometry: Case Report 5 Clinical Findings and Management of Posterior Vitreous Detachment Candidate’s Name, O.D. Candidate’s Address Candidate’s Phone number Candidate’s email Abstract: A posterior vitreous detachment is a degenerative process associated with aging that affects the vitreous when the posterior vitreous cortex separates from the internal limiting membrane of the retina. The composition of the vitreous gel can degenerate two collective ways, including synchysis or liquefaction, and syneresis or shrinking. Commonly, this process of separation occurs with the posterior hyaloid resulting in a Weiss ring overlying the optic nerve. Complications of a posterior vitreous detachment may include retinal breaks or detachments, retinal or vitreous hemorrhages, or vitreomacular traction. This case presentation summarizes the etiology of this ocular condition as well as treatment and management approaches. Key Words: Posterior Vitreous Detachment, Weiss Ring, Vitreous Degeneration, Scleral Depression, Nd:YAG Laser 1 Introduction The vitreous humor encompasses the posterior segment of the eye and fills approximately three quarters of the ocular space.1 The vitreous is a transparent, hydrophilic, “gel-like” substance that is described as a dilute solution of collagen, and hyaluronic acid.2,3,4 It is composed of 98% to 99.7% water.4 As the eye matures, changes may occur regarding the structure and composition of the vitreous. The vitreous functions to provide support to the retina against the choroid, to store nutrients and metabolites for the retina and lens, to protect the retinal tissue by acting as a “shock absorber,” to transmit and refract light, and to help regulate eye growth during fetal development.3,4 Case Report Initial Visit (03/23/2018) A 59-year-old Asian female presented as a new patient for examination with a complaint of a new onset of floaters and flashes of light in her right eye. -
Association Between Visual Field Damage and Corneal Structural
www.nature.com/scientificreports OPEN Association between visual feld damage and corneal structural parameters Alexandru Lavric1*, Valentin Popa1, Hidenori Takahashi2, Rossen M. Hazarbassanov3 & Siamak Yousef4,5 The main goal of this study is to identify the association between corneal shape, elevation, and thickness parameters and visual feld damage using machine learning. A total of 676 eyes from 568 patients from the Jichi Medical University in Japan were included in this study. Corneal topography, pachymetry, and elevation images were obtained using anterior segment optical coherence tomography (OCT) and visual feld tests were collected using standard automated perimetry with 24-2 Swedish Interactive Threshold Algorithm. The association between corneal structural parameters and visual feld damage was investigated using machine learning and evaluated through tenfold cross-validation of the area under the receiver operating characteristic curves (AUC). The average mean deviation was − 8.0 dB and the average central corneal thickness (CCT) was 513.1 µm. Using ensemble machine learning bagged trees classifers, we detected visual feld abnormality from corneal parameters with an AUC of 0.83. Using a tree-based machine learning classifer, we detected four visual feld severity levels from corneal parameters with an AUC of 0.74. Although CCT and corneal hysteresis have long been accepted as predictors of glaucoma development and future visual feld loss, corneal shape and elevation parameters may also predict glaucoma-induced visual functional loss. While intraocular pressure (IOP), age, disc hemorrhage, and optic cup characteristics have been long identifed as classic risk factors for development of primary open-angle glaucoma (POAG)1,2, the Ocular Hypertension Treatment Study (OHTS) suggested central corneal thickness (CCT) as a new risk factor for development of POAG3. -
Refractive Errors a Closer Look
2011-2012 refractive errors a closer look WHAT ARE REFRACTIVE ERRORS? WHAT ARE THE DIFFERENT TYPES OF REFRACTIVE ERRORS? In order for our eyes to be able to see, light rays must be bent or refracted by the cornea and the lens MYOPIA (NEARSIGHTEDNESS) so they can focus on the retina, the layer of light- sensitive cells lining the back of the eye. A myopic eye is longer than normal or has a cornea that is too steep. As a result, light rays focus in front of The retina receives the picture formed by these light the retina instead of on it. Close objects look clear but rays and sends the image to the brain through the distant objects appear blurred. optic nerve. Myopia is inherited and is often discovered in children A refractive error means that due to its shape, your when they are between ages eight and 12 years old. eye doesn’t refract the light properly, so the image you During the teenage years, when the body grows see is blurred. Although refractive errors are called rapidly, myopia may become worse. Between the eye disorders, they are not diseases. ages of 20 and 40, there is usually little change. If the myopia is mild, it is called low myopia. Severe myopia is known as high myopia. Lens Retina Cornea Lens Retina Cornea Light rays Light is focused onto the retina Light rays Light is focused In a normal eye, the cornea and lens focus light rays on in front of the retina the retina. In myopia, the eye is too long or the cornea is too steep. -
Treatment of Stable Keratoconus by Cataract Surgery with Toric IOL Implantation
10.5005/jp-journals-10025-1024 JaimeCASE Levy REPORT et al Treatment of Stable Keratoconus by Cataract Surgery with Toric IOL Implantation Jaime Levy, Anry Pitchkhadze, Tova Lifshitz ABSTRACT implantation in the right eye. On presentation, uncorrected We present the case of a 73-year-old patient who underwent visual acuity (UCVA) was 6/60 OU. Refraction was –0.75 successful phacoemulsification and toric intraocular lens (IOL) –5.0 × 65° OD and –3.25 –4.0 × 98° OS. Nuclear sclerosis implantation to correct high stable astigmatism due to and posterior subcapsular cataract +2 was observed in the keratoconus and cataract. Preoperative refraction was –3.25 – left eye. The posterior segments were unremarkable. 4.0 × 98°. A toric IOL (Acrysof SN60T6) with a spherical power of 16.5 D and a cylinder power of 3.75 D at the IOL plane and Corneal topography performed with Orbscan (Bausch 2.57 D at the corneal plane was implanted and aligned at an and Lomb, Rochester, NY) showed central thinning of 457 axis of 0°. Uncorrected visual acuity improved from 6/60 to microns and positive islands of elevation typical for 6/10. Postoperative best corrected visual acuity was 6/6, 6 months after the operation. In conclusion, phacoemulsification keratoconus in the right eye (Fig. 1). In the left eye a less with toric IOL implantation can be performed in eyes with pronounced inferior cone was observed (Fig. 2), without keratoconus and cataract. any area of significant thinning near the limbus typical for Keywords: Intraocular lens, Toric IOL, Keratoconus, Cataract pellucid marginal degeneration.2 Keratometry (K)-values surgery.