Homing and Straying by Anadromous Salmonids: a Review of Mechanisms and Rates
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
2012 PSMFC Annual Report
Golden Gate Bridge, California 65th AnnuAl RepoRt of the pAcific StAteS MARine fiSheRieS coMMiSSion To the Congress of the United States, and to the Governors and Legislatures of the Five Compacting States — Washington, Oregon, California, Alaska and Idaho — 2012 Presented by the Commissioners of the Pacific States Marine Fisheries Commission in compliance with the State enabling acts creating the Commission and Public Laws 232; 766; and 315 of the 80th; 87th; and 91st Congresses of the United States assenting thereto. Respectfully submitted, PACIFIC STATES MARINE FISHERIES COMMISSION Randy Fisher, Executive Director Headquarters 205 SE Spokane Street, Suite 100 Portland, Oregon 97202-6413 2 | Pacific States Marine Fisheries Commission, 2012 Annual Report coMMiSSioneRS, ADViSoRS AnD cooRDinAtoRS 2012 State Commissioners Advisors Coordinator Alaska Bryce Edgmon Terry L. Johnson Karla Bush (ADFG) Eric A. Olson Don Lane Sue Aspelund Matthew Moir Gabe Sam Herman Savikko c California Charlton H. Bonham Jim Caito Marija Vojkovich (CDFG) o Thomas Harman Robert Fletcher MM Barbara Emley Donald K. Hansen i Mike McCorkle SS Aaron Newman ione Roger Thomas Kate Wing RS , A Idaho Virgil Moore Sharon Kiefer Pete Hassemer (IDFG) DV Eric Anderson Ed Schriever i S Fred Trevey Joe Stegner o RS Oregon Ed Bowles Wayne Butler Gway Kirchner (ODFW) A n Betsy Johnson Steve Fick D Jeff Feldner Liz Hamilton c Paul Heikkila oo Rod Moore RD Brad Pettinger Frank Warrens in A to Washington Phil Anderson Robert Alverson Heather Reed (WDFW) RS Brian Blake Mark Cedergreen Harriet A. Spanel Robert Jones Marion Larkin Irene Martin Bill Robinson Pacific States Marine Fisheries Commission, 2012 Annual Report | 3 MeSSAGe fRoM the eXecutiVe DiRectoR Randy Fisher, Executive Director It is a pleasure to provide the 2012 Annual Report of the Pacific States Marine Fisheries Commission. -
AI, Robots, and Swarms: Issues, Questions, and Recommended Studies
AI, Robots, and Swarms Issues, Questions, and Recommended Studies Andrew Ilachinski January 2017 Approved for Public Release; Distribution Unlimited. This document contains the best opinion of CNA at the time of issue. It does not necessarily represent the opinion of the sponsor. Distribution Approved for Public Release; Distribution Unlimited. Specific authority: N00014-11-D-0323. Copies of this document can be obtained through the Defense Technical Information Center at www.dtic.mil or contact CNA Document Control and Distribution Section at 703-824-2123. Photography Credits: http://www.darpa.mil/DDM_Gallery/Small_Gremlins_Web.jpg; http://4810-presscdn-0-38.pagely.netdna-cdn.com/wp-content/uploads/2015/01/ Robotics.jpg; http://i.kinja-img.com/gawker-edia/image/upload/18kxb5jw3e01ujpg.jpg Approved by: January 2017 Dr. David A. Broyles Special Activities and Innovation Operations Evaluation Group Copyright © 2017 CNA Abstract The military is on the cusp of a major technological revolution, in which warfare is conducted by unmanned and increasingly autonomous weapon systems. However, unlike the last “sea change,” during the Cold War, when advanced technologies were developed primarily by the Department of Defense (DoD), the key technology enablers today are being developed mostly in the commercial world. This study looks at the state-of-the-art of AI, machine-learning, and robot technologies, and their potential future military implications for autonomous (and semi-autonomous) weapon systems. While no one can predict how AI will evolve or predict its impact on the development of military autonomous systems, it is possible to anticipate many of the conceptual, technical, and operational challenges that DoD will face as it increasingly turns to AI-based technologies. -
Intensively Monitored Watersheds: 2008 Fish Population Studies in the Hood Canal and Lower Columbia Stream Complexes
STATE OF WASHINGTON December 2009 Intensively Monitored Watersheds: 2008 Fish Population Studies in the Hood Canal and Lower Columbia Stream Complexes by Clayton Kinsel, Pat Hanratty, Mara Zimmerman, and Bryce Glaser, Steven Gray, Todd Hillson, Dan Rawding, Steven VanderPloeg Washington Department of FISH AND WILDLIFE Fish Program Science Division FPA 09-12 Intensively Monitored Watersheds: 2008 Fish Population Studies in the Hood Canal and Lower Columbia Stream Complexes Clayton Kinsel, Pat Hanratty, Mara Zimmerman and Bryce Glaser, Steven Gray, Todd Hillson, Dan Rawding, Steven VanderPloeg Fish Program Washington Department of Fish and Wildlife December 2009 Acknowledgements This work was funded by the Salmon Recovery Funding Board. Hood Canal Data for the Hood Canal IMW project were collected by an experienced crew of technicians led by Mat Gillum. Eric Kummerow, Scott Walker, and Karen Shields each brought their individual expertise, commitment, and enthusiasm to this project. They responded to the whim of the weather, tides, and fishing schedules and have intimate knowledge of the watersheds, the fish, and fishing seasons. All field staff put in long hours, often at night during inclement weather, to ensure that traps continued to fish and that fish were handled and sampled in a gentle and timely fashion. Pete Topping and Mike Ackley provided logistical support related to trap installation and removal and expertise in trap design and function. Kelly Kiyohara edited earlier versions of this report. Biologists from Weyerhauser and Washington Department of Ecology worked collaboratively to sample and mark coho parr. University of Washington has continuously provided access to the Big Beef property and research station since our long-term monitoring project began in 1978. -
A Salmon-Like Approach to MANET Routing
SRA: A Salmon-Like Approach to MANET Routing Filomena de Santis and Daniele Mastrangelo Dipartimento di Informatica e Applicazioni, University of Salerno Via Ponte don Melillo, I-84084, Fisciano (SA), Italy [email protected], [email protected] Abstract. Wireless mobile ad-hoc networks are characterized by the lack of physical connections. Due to the mobility of nodes, interferences, multipath propagations and path losses, they do not exhibit a fixed topology; hence, dynamic routing protocols are required. In recent years, new approaches inspired by nature have been tried: among them, particular interest has been raised by ants and bees colonies. The characteristics inherited by the collective behaviors of social insects empower algorithms with features such autonomy, self-organization, adaptivity, robustness, and scalability. Here, we propose a salmon-based approach, that, although different since salmons do not show evidence of social behaviors, suggests interesting cues to solve the routing problem when observing salmons in their way from the birth river to the sea, and back at the spawning time. Keywords: Wireless communications, mobile ad-hoc networks, routing algorithms, bio-inspired paradigms of computation. 1 Introduction Advances in wireless communication technology have strongly encouraged the use of low-cost and powerful wireless transceivers in mobile applications. As compared with wired networks, mobile networks exhibit unique features: recurrent network topology changes, link capacity fluctuations, critical bounds to their performances. Mobile networks can be classified into infrastructure networks and mobile ad hoc networks [1]. In an infrastructure mobile network, mobile nodes communicate through wired access points that work in the node transmission range and create the backbone of the network. -
Individual Versus Collective Cognition in Social Insects
Individual versus collective cognition in social insects Ofer Feinermanᴥ, Amos Kormanˠ ᴥ Department of Physics of Complex Systems, Weizmann Institute of Science, 7610001, Rehovot, Israel. Email: [email protected] ˠ Institut de Recherche en Informatique Fondamentale (IRIF), CNRS and University Paris Diderot, 75013, Paris, France. Email: [email protected] Abstract The concerted responses of eusocial insects to environmental stimuli are often referred to as collective cognition on the level of the colony.To achieve collective cognitiona group can draw on two different sources: individual cognitionand the connectivity between individuals.Computation in neural-networks, for example,is attributedmore tosophisticated communication schemes than to the complexity of individual neurons. The case of social insects, however, can be expected to differ. This is since individual insects are cognitively capable units that are often able to process information that is directly relevant at the level of the colony.Furthermore, involved communication patterns seem difficult to implement in a group of insects since these lack clear network structure.This review discusses links between the cognition of an individual insect and that of the colony. We provide examples for collective cognition whose sources span the full spectrum between amplification of individual insect cognition and emergent group-level processes. Introduction The individuals that make up a social insect colony are so tightly knit that they are often regarded as a single super-organism(Wilson and Hölldobler, 2009). This point of view seems to go far beyond a simple metaphor(Gillooly et al., 2010)and encompasses aspects of the colony that are analogous to cell differentiation(Emerson, 1939), metabolic rates(Hou et al., 2010; Waters et al., 2010), nutrient regulation(Behmer, 2009),thermoregulation(Jones, 2004; Starks et al., 2000), gas exchange(King et al., 2015), and more. -
Social Relationships in a Small Habitat-Dependent Coral Reef Fish: an Ecological, Behavioural and Genetic Analysis
ResearchOnline@JCU This file is part of the following reference: Rueger, Theresa (2016) Social relationships in a small habitat-dependent coral reef fish: an ecological, behavioural and genetic analysis. PhD thesis, James Cook University. Access to this file is available from: http://researchonline.jcu.edu.au/46690/ The author has certified to JCU that they have made a reasonable effort to gain permission and acknowledge the owner of any third party copyright material included in this document. If you believe that this is not the case, please contact [email protected] and quote http://researchonline.jcu.edu.au/46690/ Social relationships in a small habitat- dependent coral reef fish: an ecological, behavioural and genetic analysis Thesis submitted by Theresa Rueger, March 2016 for the degree of Doctor of Philosophy College of Marine and Environmental Science & ARC Centre of Excellence for Coral Reef Studies James Cook University Declaration of Ethics This research presented and reported in this thesis was conducted in compliance with the National Health and Medical Research Council (NHMRC) Australian Code of Practice for the Care and Use of Animals for Scientific Purposes, 7th Edition, 2004 and the Qld Animal Care and Protection Act, 2001. The proposed research study received animal ethics approval from the JCU Animal Ethics Committee Approval Number #A1847. Signature ___31/3/2016___ Date i Acknowledgement This thesis was no one-woman show. There is a huge number of people who contributed, directly or indirectly, to its existence. I had amazing support during my field work, by fellow students and good friends Tiffany Sih, James White, Patrick Smallhorn-West, and Mariana Alvarez-Noriega. -
Stigmergic Landmark Foraging
Stigmergic Landmark Foraging Nyree Lemmens Karl Tuyls Faculty of Humanities and Sciences, MICC, Faculty of Industrial Design, Eindhoven Maastricht University University of Technology P.O. Box 616, 6200 MD P.O. Box 513, 5600 MB Maastricht, The Netherlands Eindhoven, The Netherlands [email protected] [email protected] ABSTRACT through unfamiliar worlds. Instead, for navigation, they use a strat- In this paper, we describe a nature-inspired optimization algorithm egy named Path Integration (PI). Bees are able to compute their based on bee foraging behavior. This algorithm combines the high present location from their past trajectory continuously and, as a performance of bee path-integration navigation with ant-like stig- consequence, can return to their starting point by choosing the di- mergic behavior in the form of landmarks. More precisely, each rect route rather than retracing their outbound trajectory [15, 21]. individual landmark can be created at any walkable state in the For recruitment, bees employ a direct strategy by dancing in the environment and contains a collection of direction markers with nest. Their dance communicates distance and direction towards a which visiting agents can find their way in an unknown environ- destination [27]. ment. A landmark can either be represented by an agent or any In previous research, we introduced a foraging algorithm in- other information distributing object (e.g., a RFID). Essentially, we spired by bees and compared it to an Ant System [17]. Our compar- implement ant recruitment behavior based on pheromone. How- ison showed that the bee-inspired, non-pheromone-based algorithm ever, instead of using attracting or repelling pheromone in every clearly outperformed the ant-inspired, pheromone-based algorithm state of the environment, we only update directional information at in relatively unobstructed environments; more precisely, the bee al- key locations in the environment. -
Natal Fidelity: a Literature Review in Relation to the Management of the New Zealand Hoki (Macruronus Novaezelandiae) Stocks
New Zealand Fisheries Assessment Report 2011/34 September 2011 ISSN 1175-1584 (print) ISSN 1179-5352 (online) Natal fidelity: a literature review in relation to the management of the New Zealand hoki (Macruronus novaezelandiae) stocks P.L. Horn Natal fidelity: a literature review in relation to the management of the New Zealand hoki (Macruronus novaezelandiae) stocks P.L. Horn NIWA Private Bag 14901 Wellington 6241 New Zealand Fisheries Assessment Report 2011/34 September 2011 Published by Ministry of Fisheries Wellington 2011 ISSN 1175-1584 (print) ISSN 1179-5352 (online) © Ministry of Fisheries 2011 Horn, P.L. (2011). Natal fidelity: a literature review in relation to the management of the New Zealand hoki (Macruronus novaezelandiae) stocks. New Zealand Fisheries Assessment Report 2011/34 This series continues the informal New Zealand Fisheries Assessment Research Document series which ceased at the end of 1999. EXECUTIVE SUMMARY Horn, P.L. (2011). Natal fidelity: a literature review in relation to the management of the New Zealand hoki (Macruronus novaezelandiae) stocks. New Zealand Fisheries Assessment Report 2011/34 A review of published literature on natal fidelity (a behaviour whereby a fish always returns to spawn on the spawning ground where it originated) is presented here. The aim of the review was to determine which species exhibit natal fidelity, and what methods were used to determine this characteristic. The likely applicability of any of the methods as a means to investigate natal fidelity in hoki was evaluated. Currently, two possible life history model structures for hoki are considered. One assumes natal fidelity; the other assumes that fish "choose" a spawning ground at random for their first spawning and always return to it in following years. -
Biological Opinion on U.S. Navy SURTASS LFA Sonar Activities 2019
Biological Opinion on U.S. Navy SURTASS LFA Sonar Activities Consultation No. OPR-2019-00120 TABLE OF CONTENTS Page 1 Introduction ........................................................................................................................... 1 1.1 Background ...................................................................................................................... 2 1.2 Consultation History ........................................................................................................ 3 2 The Assessment Framework ................................................................................................ 5 2.1 Evidence Available for the Consultation ......................................................................... 8 2.1.1 Approach to Assessing Effects to Marine Mammals ................................................ 9 2.1.2 Approach to Assessing Effects to Sea Turtles ........................................................ 24 3 Description of the Proposed Action ................................................................................... 25 3.1 The Navy’s Proposed Action ......................................................................................... 26 3.2 Description of the Surveillance Towed Array Sensor System (SURTASS) Low Frequency Active (LFA) Sonar System ................................................................................... 28 3.2.1 Passive Sonar System Components ........................................................................ 29 3.2.2 Active -
Marine Ecology Progress Series 548:181
Vol. 548: 181–196, 2016 MARINE ECOLOGY PROGRESS SERIES Published April 21 doi: 10.3354/meps11623 Mar Ecol Prog Ser OPEN ACCESS Isotopes and genes reveal freshwater origins of Chinook salmon Oncorhynchus tshawytscha aggregations in California’s coastal ocean Rachel C. Johnson1,2,*, John Carlos Garza1,3, R. Bruce MacFarlane1,4, Churchill B. Grimes1,4, Corey C. Phillis5,8, Paul L. Koch6, Peter K. Weber7, Mark H. Carr2 1Fisheries Ecology Division, Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 110 Shaffer Road, Santa Cruz, CA 95060, USA 2Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, 110 Shaffer Road, Santa Cruz, CA 95060, USA 3Department of Ocean Sciences, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95060, USA 4Institute of Marine Sciences, University of California, Santa Cruz, 110 Shaffer Road, Santa Cruz, CA 95060, USA 5Department of Earth and Planetary Science, University of California, Berkeley, 307 McCone Hall, Berkeley, CA 94720, USA 6Department of Earth and Planetary Science, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95060, USA 7Glenn T. Seaborg Institute, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550, USA 8Present address: Metropolitan Water District of Southern California, 1121 L St. Suite 900, Sacramento, CA 95814, USA ABSTRACT: The ability of salmon to navigate from the ocean back to their river of origin to spawn acts to reinforce local adaptation and maintenance of unique and heritable traits among salmon populations. Here, the extent to which Chinook salmon Oncorhynchus tshawytscha from the same freshwater breeding groups associate together in the ocean at regional and smaller-scale aggre- gations prior to homeward migration is evaluated. -
Geomagnetic Imprinting: a Unifying Hypothesis of Long-Distance Natal Homing in Salmon and Sea Turtles Kenneth J
Geomagnetic imprinting: A unifying hypothesis of long-distance natal homing in salmon and sea turtles Kenneth J. Lohmann1, Nathan F. Putman, and Catherine M. F. Lohmann Department of Biology, University of North Carolina, Chapel Hill, NC 27599 Edited by Ran Nathan, The Hebrew University of Jerusalem, Jerusalem, Israel, and accepted by the Editorial Board July 1, 2008 (received for review February 25, 2008) Several marine animals, including salmon and sea turtles, disperse movement ecology linkage between an environmental factor across vast expanses of ocean before returning as adults to their (the Earth’s magnetic field) and navigational capacity, also natal areas to reproduce. How animals accomplish such feats of suggests the surprising possibility that rapid, naturally occurring natal homing has remained an enduring mystery. Salmon are changes in the Earth’s field occasionally exert a strong influence known to use chemical cues to identify their home rivers at the end on ecological processes by altering animal movements. of spawning migrations. Such cues, however, do not extend far enough into the ocean to guide migratory movements that begin Migrations of Salmon and Sea Turtles in open-sea locations hundreds or thousands of kilometers away. Tremendous variation exists in the life history and migratory Similarly, how sea turtles reach their nesting areas from distant patterns of different species and populations of both salmon and sites is unknown. However, both salmon and sea turtles detect the sea turtles (4–6). For our purposes, we -
Hatchery Update
Hatchery Update Carson National Fish Hatchery Spring Chinook salmon production began to take precedence over other production until 1976, when the last fall Chinook salmon were released into the Wind River. Carson NFH currently produces spring Chinook salmon exclusively. Support for the hatchery is through Mitchell Act funds, which are administered by the Department of Commerce. Facilities at Carson NFH include 46 raceways, two earthen rearing ponds, two adult holding ponds, an egg incubation building, and several administrative and support buildings. Four residences provide on station housing for staff. Staff residence provides for emergency and security support for the fish resources and physical facility. The primary water supply at CNFH is Tyee Springs, and secondarily the Wind River. Introduction Hatchery Purpose / Goal Carson National Fish Hatchery (CNFH) is one of CNFH operates as part of the Columbia River 12 National Fish Hatcheries operated by the U.S. Fish Fisheries Development Program under the 2008–2017 and Wildlife Service (USFWS) in the Columbia River United States v Oregon Management agreement. The basin. CNFH works closely with a USFWS Fish Health primary purpose of CNFH under this agreement is to Center (FHC) Fish Technology release 1.14 million healthy spring Chinook salmon Center (FTC) and Fisheries Program Office (FPO) smolts directly into the Wind River from the hatchery also located within the Columbia River basin. site. These releases help mitigate for fish losses in the The Columbia River Fisheries Program Office (CRFPO) Columbia River basin due to the impacts of main stem works with 6 of these hatcheries as part of a Hatchery hydropower, and other basin development.