BAG4 Rabbit Pab

Total Page:16

File Type:pdf, Size:1020Kb

BAG4 Rabbit Pab Leader in Biomolecular Solutions for Life Science BAG4 Rabbit pAb Catalog No.: A17052 Basic Information Background Catalog No. The protein encoded by this gene is a member of the BAG1-related protein family. BAG1 A17052 is an anti-apoptotic protein that functions through interactions with a variety of cell apoptosis and growth related proteins including BCL-2, Raf-protein kinase, steroid Observed MW hormone receptors, growth factor receptors and members of the heat shock protein 70 Refer to figures kDa family. This protein contains a BAG domain near the C-terminus, which could bind and inhibit the chaperone activity of Hsc70/Hsp70. This protein was found to be Calculated MW associated with the death domain of tumor necrosis factor receptor type 1 (TNF-R1) and 45kDa/49kDa death receptor-3 (DR3), and thereby negatively regulates downstream cell death signaling. The regulatory role of this protein in cell death was demonstrated in epithelial Category cells which undergo apoptosis while integrin mediated matrix contacts are lost. Alternatively spliced transcript variants encoding distinct isoforms have been identified. Primary antibody Applications WB, IHC Cross-Reactivity Human, Mouse, Rat Recommended Dilutions Immunogen Information WB 1:500 - 1:2000 Gene ID Swiss Prot 9530 O95429 IHC 1:100 - 1:200 Immunogen A synthetic peptide corresponding to a sequence within amino acids 1-100 of human BAG4 (NP_001191807.1). Synonyms BAG4;BAG-4;SODD Contact Product Information www.abclonal.com Source Isotype Purification Rabbit IgG Affinity purification Storage Store at -20℃. Avoid freeze / thaw cycles. Buffer: PBS with 0.02% sodium azide,50% glycerol,pH7.3. Validation Data Western blot analysis of extracts of various cell lines,using BAG4 antibody (A17052) at 1:1000 dilution. Secondary antibody: HRP Goat Anti-Rabbit IgG (H+L) (AS014) at 1:10000 dilution. Lysates/proteins: 25ug per lane. Blocking buffer: 3% nonfat dry milk in TBST. Detection: ECL Enhanced Kit (RM00021). Exposure time: 90s. Antibody | Protein | ELISA Kits | Enzyme | NGS | Service For research use only. Not for therapeutic or diagnostic purposes. Please visit http://abclonal.com for a complete listing of recommended products..
Recommended publications
  • The Role of RNA Editing in Cancer Development and Metabolic Disorders
    Washington University School of Medicine Digital Commons@Becker Open Access Publications 2018 The oler of RNA editing in cancer development and metabolic disorders Che-Pei Kung Washington University School of Medicine in St. Louis Leonard B. Maggi Jr. Washington University School of Medicine in St. Louis Jason D. Weber Washington University School of Medicine in St. Louis Follow this and additional works at: https://digitalcommons.wustl.edu/open_access_pubs Recommended Citation Kung, Che-Pei; Maggi, Leonard B. Jr.; and Weber, Jason D., ,"The or le of RNA editing in cancer development and metabolic disorders." Frontiers in endocrinology.9,. 762. (2018). https://digitalcommons.wustl.edu/open_access_pubs/7400 This Open Access Publication is brought to you for free and open access by Digital Commons@Becker. It has been accepted for inclusion in Open Access Publications by an authorized administrator of Digital Commons@Becker. For more information, please contact [email protected]. REVIEW published: 18 December 2018 doi: 10.3389/fendo.2018.00762 The Role of RNA Editing in Cancer Development and Metabolic Disorders Che-Pei Kung 1,2*, Leonard B. Maggi Jr. 1,2 and Jason D. Weber 1,2,3* 1 ICCE Institute, Washington University School of Medicine, Saint Louis, MO, United States, 2 Division of Molecular Oncology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, United States, 3 Siteman Cancer Center, Department of Cell Biology and Physiology, Washington University School of Medicine, Saint Louis, MO, United States Numerous human diseases arise from alterations of genetic information, most notably DNA mutations. Thought to be merely the intermediate between DNA and protein, changes in RNA sequence were an afterthought until the discovery of RNA editing 30 years ago.
    [Show full text]
  • Learning Protein Constitutive Motifs from Sequence Data Je´ Roˆ Me Tubiana, Simona Cocco, Re´ Mi Monasson*
    TOOLS AND RESOURCES Learning protein constitutive motifs from sequence data Je´ roˆ me Tubiana, Simona Cocco, Re´ mi Monasson* Laboratory of Physics of the Ecole Normale Supe´rieure, CNRS UMR 8023 & PSL Research, Paris, France Abstract Statistical analysis of evolutionary-related protein sequences provides information about their structure, function, and history. We show that Restricted Boltzmann Machines (RBM), designed to learn complex high-dimensional data and their statistical features, can efficiently model protein families from sequence information. We here apply RBM to 20 protein families, and present detailed results for two short protein domains (Kunitz and WW), one long chaperone protein (Hsp70), and synthetic lattice proteins for benchmarking. The features inferred by the RBM are biologically interpretable: they are related to structure (residue-residue tertiary contacts, extended secondary motifs (a-helixes and b-sheets) and intrinsically disordered regions), to function (activity and ligand specificity), or to phylogenetic identity. In addition, we use RBM to design new protein sequences with putative properties by composing and ’turning up’ or ’turning down’ the different modes at will. Our work therefore shows that RBM are versatile and practical tools that can be used to unveil and exploit the genotype–phenotype relationship for protein families. DOI: https://doi.org/10.7554/eLife.39397.001 Introduction In recent years, the sequencing of many organisms’ genomes has led to the collection of a huge number of protein sequences, which are catalogued in databases such as UniProt or PFAM Finn et al., 2014). Sequences that share a common ancestral origin, defining a family (Figure 1A), *For correspondence: are likely to code for proteins with similar functions and structures, providing a unique window into [email protected] the relationship between genotype (sequence content) and phenotype (biological features).
    [Show full text]
  • Mohammad Karbaschi Thesis
    STRUCTURAL, PHYSIOLOGICAL AND MOLECULAR CHARACTERISATION OF THE AUSTRALIAN NATIVE RESURRECTION GRASS TRIPOGON LOLIIFORMIS (F.MUELL.) C.E.HUBB. DURING DEHYDRATION AND REHYDRATION Mohammad Reza Karbaschi Submitted in fulfilment of the requirements for the degree of Doctor of Philosophy Centre for Tropical Crops and Biocommodities Science and Engineering Faculty Queensland University of Technology November 2015 Keywords Arabidopsis thaliana; Agrobacterium-mediated transformation; Anatomy; Anti-apoptotic proteins; BAG4; Escherichia coli; Bulliform cells; C4 photosynthesis; Cell wall folding; Cell membrane integrity; Chaperone-mediated autophagy; Chlorophyll fluorescence; Hsc70/Hsp70; Desiccation tolerance, Dehydration; Drought; Electrolyte leakage; Freehand sectioning; Homoiochlorophyllous; Leaf structure; Leaf folding; Reactive oxygen species (ROS); Resurrection plant; Morphology; Monocotyledon; Nicotiana benthamiana; Photosynthesis; Physiology; Plant tissue; Programed cell death (PCD); Propidium iodide staining; Protein microarray chip; Sclerenchymatous tissue; Stress; Structure; Tripogon loliiformis; Ubiquitin; Vacuole fragmentation; Kranz anatomy; XyMS+; Structural, physiological and molecular characterisation of the Australian native resurrection grass Tripogon loliiformis (F.Muell.) C.E.Hubb. during dehydration and rehydration i Abstract Plants, as sessile organisms must continually adapt to environmental changes. Water deficit is one of the major environmental stresses that affects plants. While most plants can tolerate moderate dehydration
    [Show full text]
  • Supplementary Table 2 Supplementary Table 1
    Supplementary table 1 Rai/ Binet IGHV Cytogenetic Relative viability Fludarabine- Sex Outcome CD38 (%) IGHV gene ZAP70 (%) Treatment (s) Stage identity (%) abnormalities* increase refractory 1 M 0/A Progressive 14,90 IGHV3-64*05 99,65 28,20 Del17p 18.0% 62,58322819 FCR n.a. 2 F 0/A Progressive 78,77 IGHV3-48*03 100,00 51,90 Del17p 24.8% 77,88052021 FCR n.a. 3 M 0/A Progressive 29,81 IGHV4-b*01 100,00 9,10 Del17p 12.0% 36,48 Len, Chl n.a. 4 M 1/A Stable 97,04 IGHV3-21*01 97,22 18,11 Normal 85,4191657 n.a. n.a. Chl+O, PCR, 5 F 0/A Progressive 87,00 IGHV4-39*07 100,00 43,20 Del13q 68.3% 35,23314039 n.a. HDMP+R 6 M 0/A Progressive 1,81 IGHV3-43*01 100,00 20,90 Del13q 77.7% 57,52490626 Chl n.a. Chl, FR, R-CHOP, 7 M 0/A Progressive 97,80 IGHV1-3*01 100,00 9,80 Del17p 88.5% 48,57389901 n.a. HDMP+R 8 F 2/B Progressive 69,07 IGHV5-a*03 100,00 16,50 Del17p 77.2% 107,9656878 FCR, BA No R-CHOP, FCR, 9 M 1/A Progressive 2,13 IGHV3-23*01 97,22 29,80 Del11q 16.3% 134,5866919 Yes Flavopiridol, BA 10 M 2/A Progressive 0,36 IGHV3-30*02 92,01 0,38 Del13q 81.9% 78,91844953 Unknown n.a. 11 M 2/B Progressive 15,17 IGHV3-20*01 100,00 13,20 Del11q 95.3% 75,52880995 FCR, R-CHOP, BR No 12 M 0/A Stable 0,14 IGHV3-30*02 90,62 7,40 Del13q 13.0% 13,0939004 n.a.
    [Show full text]
  • Co-Chaperone Potentiation of Vitamin D Receptor-Mediated Transactivation
    81 Co-chaperone potentiation of vitamin D receptor-mediated transactivation: a role for Bcl2-associated athanogene-1 as an intracellular-binding protein for 1,25-dihydroxyvitamin D3 R F Chun, M Gacad, L Nguyen, M Hewison and J S Adams Division of Endocrinology, Diabetes and Metabolism, Burns and Allen Research Institute, Cedars-Sinai Medical Center, Room D-3088, 8700 Beverly Boulevard, Los Angeles, California 90048, USA (Requests for offprints should be addressed to M Hewison; Email: [email protected]) Abstract The constitutively expressed member of the heat shock protein-70 family (hsc70) is a chaperone with multiple functions in cellular homeostasis. Previously, we demonstrated the ability of hsc70 to bind 25-hydroxyvitamin D3 (25-OHD3) and 1,25- dihydroxyvitamin D3 (1,25(OH)2D3). Hsc70 also recruits and interacts with the co-chaperone Bcl2-associated athanogene (BAG)-1 via the ATP-binding domain that resides on hsc70. Competitive ligand-binding assays showed that, like hsc70, recombinant BAG-1 is able to bind 25-OHD3 (KdZ0.71G0.25 nM, BmaxZ69.9G16.1 fmoles/mg protein) and 1,25(OH)2D3 (KdZ0.16G0.07 nM, BmaxZ38.1G3.5 fmoles/mg protein; both nZ3 separate binding assays, P!0.001 for Kd and Bmax). To investigate the functional significance of this, we transiently overexpressed the S, M, and L variants of BAG-1 into human kidney HKC-8 cells stably transfected with a 1,25(OH)2D3-responsive 24-hydroxylase (CYP24) promoter–reporter construct. As HKC-8 cells also express the enzyme 1a-hydroxylase, both 25-OHD3 (200 nM) and 1,25(OH)2D3 (5 nM) were able to induce CYP24 promoter activity.
    [Show full text]
  • Bag6 Complex Contains a Minimal Tail-Anchor–Targeting Module and a Mock BAG Domain
    Bag6 complex contains a minimal tail-anchor–targeting module and a mock BAG domain Jee-Young Mocka, Justin William Chartrona,Ma’ayan Zaslavera,YueXub,YihongYeb, and William Melvon Clemons Jr.a,1 aDivision of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125; and bLaboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892 Edited by Gregory A. Petsko, Weill Cornell Medical College, New York, NY, and approved December 1, 2014 (received for review February 12, 2014) BCL2-associated athanogene cochaperone 6 (Bag6) plays a central analogous yeast complex contains two proteins, Get4 and Get5/ role in cellular homeostasis in a diverse array of processes and is Mdy2, which are homologs of the mammalian proteins TRC35 part of the heterotrimeric Bag6 complex, which also includes and Ubl4A, respectively. In yeast, these two proteins form ubiquitin-like 4A (Ubl4A) and transmembrane domain recognition a heterotetramer that regulates the handoff of the TA protein complex 35 (TRC35). This complex recently has been shown to be from the cochaperone small, glutamine-rich, tetratricopeptide important in the TRC pathway, the mislocalized protein degrada- repeat protein 2 (Sgt2) [small glutamine-rich tetratricopeptide tion pathway, and the endoplasmic reticulum-associated degrada- repeat-containing protein (SGTA) in mammals] to the delivery tion pathway. Here we define the architecture of the Bag6 factor Get3 (TRC40 in mammals) (19–22). It is expected that the complex, demonstrating that both TRC35 and Ubl4A have distinct mammalian homologs, along with Bag6, play a similar role (23– C-terminal binding sites on Bag6 defining a minimal Bag6 complex.
    [Show full text]
  • Apiap2 Transcription Factor Restricts Development of the Toxoplasma Tissue Cyst
    ApiAP2 transcription factor restricts development of the Toxoplasma tissue cyst Joshua B. Radkea,1, Olivier Lucasa,1,2, Erandi K. De Silvab, YanFen Mac, William J. Sullivan, Jr.d, Louis M. Weissc, Manuel Llinasb, and Michael W. Whitea,3 aDepartments of Molecular Medicine and Global Health, University of South Florida, Tampa, FL 33612; bDepartment of Molecular Biology and Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544; cDepartments of Medicine and Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461; and dDepartment of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202 Edited* by Jitender P. Dubey, US Department of Agriculture, Beltsville, MD, and approved March 14, 2013 (received for review January 3, 2013) Cellular differentiation leading to formation of the bradyzoite tissue the cell cycle transcriptome of Plasmodium falciparum and Toxo- cyst stage is the underlying cause of chronic toxoplasmosis. Con- plasma asexual stages are progressive with little understanding yet sequently, mechanisms responsible for controlling development in as to how these serial patterns are controlled (8, 9). In Toxoplasma, the Toxoplasma intermediate life cycle have long been sought. Here, conversion between developmental stages is also linked to signif- we identified 15 Toxoplasma mRNAs induced in early bradyzoite icant changes in gene expression (5). Data mining of genome development that encode proteins with apicomplexan AP2 (ApiAP2) sequences has recently identified a family of plant-related AP2 DNA binding domains. Of these 15 mRNAs, the AP2IX-9 mRNA dem- domain (DNA binding) containing proteins in the Apicomplexa onstrated the largest expression increase during alkaline-induced [apicomplexan AP2 (ApiAP2) proteins] (10).
    [Show full text]
  • Senescence Inhibits the Chaperone Response to Thermal Stress
    SUPPLEMENTAL INFORMATION Senescence inhibits the chaperone response to thermal stress Jack Llewellyn1, 2, Venkatesh Mallikarjun1, 2, 3, Ellen Appleton1, 2, Maria Osipova1, 2, Hamish TJ Gilbert1, 2, Stephen M Richardson2, Simon J Hubbard4, 5 and Joe Swift1, 2, 5 (1) Wellcome Centre for Cell-Matrix Research, Oxford Road, Manchester, M13 9PT, UK. (2) Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, M13 9PL, UK. (3) Current address: Department of Biomedical Engineering, University of Virginia, Box 800759, Health System, Charlottesville, VA, 22903, USA. (4) Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, M13 9PL, UK. (5) Correspondence to SJH ([email protected]) or JS ([email protected]). Page 1 of 11 Supplemental Information: Llewellyn et al. Chaperone stress response in senescence CONTENTS Supplemental figures S1 – S5 … … … … … … … … 3 Supplemental table S6 … … … … … … … … 10 Supplemental references … … … … … … … … 11 Page 2 of 11 Supplemental Information: Llewellyn et al. Chaperone stress response in senescence SUPPLEMENTAL FIGURES Figure S1. A EP (passage 3) LP (passage 16) 200 µm 200 µm 1.5 3 B Mass spectrometry proteomics (n = 4) C mRNA (n = 4) D 100k EP 1.0 2 p < 0.0001 p < 0.0001 LP p < 0.0001 p < 0.0001 ) 0.5 1 2 p < 0.0001 p < 0.0001 10k 0.0 0 -0.5 -1 Cell area (µm Cell area fold change vs. EP fold change vs.
    [Show full text]
  • Silencer of Death Domain (BAG4) (NM 004874) Human Recombinant Protein Product Data
    OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for TP306235 Silencer of Death Domain (BAG4) (NM_004874) Human Recombinant Protein Product data: Product Type: Recombinant Proteins Description: Recombinant protein of human BCL2-associated athanogene 4 (BAG4) Species: Human Expression Host: HEK293T Tag: C-Myc/DDK Predicted MW: 49.4 kDa Concentration: >50 ug/mL as determined by microplate BCA method Purity: > 80% as determined by SDS-PAGE and Coomassie blue staining Buffer: 25 mM Tris.HCl, pH 7.3, 100 mM glycine, 10% glycerol Preparation: Recombinant protein was captured through anti-DDK affinity column followed by conventional chromatography steps. Storage: Store at -80°C. Stability: Stable for 12 months from the date of receipt of the product under proper storage and handling conditions. Avoid repeated freeze-thaw cycles. RefSeq: NP_004865 Locus ID: 9530 UniProt ID: O95429 RefSeq Size: 4478 Cytogenetics: 8p11.23 RefSeq ORF: 1371 Synonyms: BAG-4; SODD This product is to be used for laboratory only. Not for diagnostic or therapeutic use. View online » ©2021 OriGene Technologies, Inc., 9620 Medical Center Drive, Ste 200, Rockville, MD 20850, US 1 / 2 Silencer of Death Domain (BAG4) (NM_004874) Human Recombinant Protein – TP306235 Summary: The protein encoded by this gene is a member of the BAG1-related protein family. BAG1 is an anti-apoptotic protein that functions through interactions with a variety of cell apoptosis and growth related proteins including BCL-2, Raf-protein kinase, steroid hormone receptors, growth factor receptors and members of the heat shock protein 70 kDa family.
    [Show full text]
  • Short Peptides Derived from the BAG-1 C-Terminus Inhibit the Interaction Between BAG-1 and HSC70 and Decrease Breast Cancer Cell Growth
    FEBS Letters 583 (2009) 3405–3411 journal homepage: www.FEBSLetters.org Short peptides derived from the BAG-1 C-terminus inhibit the interaction between BAG-1 and HSC70 and decrease breast cancer cell growth Adam Sharp a, Ramsey I. Cutress a, Peter W.M. Johnson a, Graham Packham a, Paul A. Townsend b,* a Cancer Research UK Centre, Cancer Sciences Division, University of Southampton, School of Medicine, Southampton General Hospital, Southampton S016 6YD, UK b Human Genetics Division, University of Southampton, School of Medicine, Southampton General Hospital, Southampton S016 6YD, UK article info abstract Article history: BAG-1, a multifunctional protein, interacts with a plethora of cellular targets where the interaction Received 8 July 2009 with HSC70 and HSP70, is considered vital. Structural studies have demonstrated the C-terminal of Revised 21 September 2009 BAG-1 forms a bundle of three alpha-helices of which helices 2 and 3 are directly involved in binding Accepted 24 September 2009 to the chaperones. Here we found peptides derived from helices 2 and 3 of BAG-1 interfered with Available online 1 October 2009 BAG-1:HSC70 binding. We confirmed that a 12 amino-acid peptide from helix 2 directly interacted Edited by Lukas Huber with HSC70 and when introduced into MCF-7 and ZR-75-1 cells, these peptides inhibited their growth. In conclusion, we have identified a small domain within BAG-1 which appears to play a crit- ical role in the interaction with HSC70. Keywords: BAG-1 HSC70 Structured summary: HSP70 MINT-7265269, MINT-7265296, MINT-7265324, MINT-7265339, MINT-7265351, MINT-7265364, MINT- Interaction 7265483, MINT-7265464, MINT-7265310: HSC70 (uniprotkb:P11142) binds (MI:0407) to BAG1 (uni- Binding protkb:Q99933) by peptide array (MI:0081) MINT-7265281: peptide 15L (uniprotkb:Q99933) binds (MI:0407) to HSC70 (uniprotkb:P11142) by surface plasmon resonance (MI:0107) Ó 2009 Federation of European Biochemical Societies.
    [Show full text]
  • A High-Throughput Approach to Uncover Novel Roles of APOBEC2, a Functional Orphan of the AID/APOBEC Family
    Rockefeller University Digital Commons @ RU Student Theses and Dissertations 2018 A High-Throughput Approach to Uncover Novel Roles of APOBEC2, a Functional Orphan of the AID/APOBEC Family Linda Molla Follow this and additional works at: https://digitalcommons.rockefeller.edu/ student_theses_and_dissertations Part of the Life Sciences Commons A HIGH-THROUGHPUT APPROACH TO UNCOVER NOVEL ROLES OF APOBEC2, A FUNCTIONAL ORPHAN OF THE AID/APOBEC FAMILY A Thesis Presented to the Faculty of The Rockefeller University in Partial Fulfillment of the Requirements for the degree of Doctor of Philosophy by Linda Molla June 2018 © Copyright by Linda Molla 2018 A HIGH-THROUGHPUT APPROACH TO UNCOVER NOVEL ROLES OF APOBEC2, A FUNCTIONAL ORPHAN OF THE AID/APOBEC FAMILY Linda Molla, Ph.D. The Rockefeller University 2018 APOBEC2 is a member of the AID/APOBEC cytidine deaminase family of proteins. Unlike most of AID/APOBEC, however, APOBEC2’s function remains elusive. Previous research has implicated APOBEC2 in diverse organisms and cellular processes such as muscle biology (in Mus musculus), regeneration (in Danio rerio), and development (in Xenopus laevis). APOBEC2 has also been implicated in cancer. However the enzymatic activity, substrate or physiological target(s) of APOBEC2 are unknown. For this thesis, I have combined Next Generation Sequencing (NGS) techniques with state-of-the-art molecular biology to determine the physiological targets of APOBEC2. Using a cell culture muscle differentiation system, and RNA sequencing (RNA-Seq) by polyA capture, I demonstrated that unlike the AID/APOBEC family member APOBEC1, APOBEC2 is not an RNA editor. Using the same system combined with enhanced Reduced Representation Bisulfite Sequencing (eRRBS) analyses I showed that, unlike the AID/APOBEC family member AID, APOBEC2 does not act as a 5-methyl-C deaminase.
    [Show full text]
  • Bcl‑2 Associated Athanogene 4 Promotes Proliferation, Migration and Invasion of Gastric Cancer Cells
    MOLECULAR MEDICINE REPORTS 16: 3753-3760, 2017 Bcl‑2 associated athanogene 4 promotes proliferation, migration and invasion of gastric cancer cells LIZHI YI1*, ZHENBING LV2,3*, JIANMEI WANG4 and XIANFEI ZHONG1 1Department of Gastroenterology, Leshan People's Hospital, Leshan, Sichuan 614000; 2Department of General Surgery Two, Nanchong Central Hospital; 3The Second Clinical School of North Sichuan Medical College, Nanchong, Sichuan 637000; 4Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, P.R. China Received May 22, 2016; Accepted April 4, 2017 DOI: 10.3892/mmr.2017.7073 Abstract. Currently, with the increase of morbidity and the rate of GC mortality has been decreased (4). It is necessary mortality rate, gastric cancer (GC) is attracting increasing to identify the biomarkers that can distinguish between GC attention in China. Bcl-2-associated athanogene 4 (BAG4) patients with poor or good prognosis. has been identified as a tumor promoter in several tumors, Bcl-2 associated athanogene 4 [BAG4, also known as but its role in GC remains unknown. The present study Silencer of Death Domains (SODD)] is a member of the aimed to detect the expression of BAG4 and determine its BAG1‑related protein family (5). The BAG proteins are located function in the progression of GC. The results from reverse in both cytoplasmic and nuclear in cells (6), although the func- transcription‑quantitative polymerase chain reaction and tional importance of this remains unclear. BAG proteins have a western blotting revealed that BAG4 was markedly upregu- conserved BAG domain (BD) that binds to the ATPase domain lated in highly metastatic cell lines (SGC7901 and MGC803), of Hsp70/Hsc70, and regulates the activity of these molecular compared with the lower‑metastatic cell lines (AGS and chaperones (7-9).
    [Show full text]