Phospholipase D Transduces Force to TREK-1 Channels in a Biological Membrane E
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Increased O-Glcnacylation Rapidly Decreases GABAAR Currents in Hippocampus but Depresses Neuronal Output L
www.nature.com/scientificreports OPEN Increased O-GlcNAcylation rapidly decreases GABAAR currents in hippocampus but depresses neuronal output L. T. Stewart1,3, K. Abiraman1,3, J. C. Chatham2 & L. L. McMahon1 ✉ O-GlcNAcylation, a post-translational modifcation involving O-linkage of β-N-acetylglucosamine to Ser/Thr residues on target proteins, is increasingly recognized as a critical regulator of synaptic function. Enzymes that catalyze O-GlcNAcylation are found at both presynaptic and postsynaptic sites, and O-GlcNAcylated proteins localize to synaptosomes. An acute increase in O-GlcNAcylation can afect neuronal communication by inducing long-term depression (LTD) of excitatory transmission at hippocampal CA3-CA1 synapses, as well as suppressing hyperexcitable circuits in vitro and in vivo. Despite these fndings, to date, no studies have directly examined how O-GlcNAcylation modulates the efcacy of inhibitory neurotransmission. Here we show an acute increase in O-GlcNAc dampens GABAergic currents onto principal cells in rodent hippocampus likely through a postsynaptic mechanism, and has a variable efect on the excitation/inhibition balance. The overall efect of increased O-GlcNAc is reduced synaptically-driven spike probability via synaptic depression and decreased intrinsic excitability. Our results position O-GlcNAcylation as a novel regulator of the overall excitation/inhibition balance and neuronal output. Synaptic integration and spike initiation in neurons is controlled by synaptic inhibition, which strongly infu- ences neuronal output and information processing1. Importantly, the balance of excitation to inhibition (E/I) is crucial to the proper functioning of circuits, and E/I imbalances have been implicated in a number of neurode- velopmental disorders and neurodegenerative diseases including schizophrenia, autism spectrum disorders, and Alzheimer’s disease2–5. -
Identification and Dynamics of the Human ZDHHC16-ZDHHC6 Palmitoylation Cascade
RESEARCH ARTICLE Identification and dynamics of the human ZDHHC16-ZDHHC6 palmitoylation cascade Laurence Abrami1†, Tiziano Dallavilla1,2†, Patrick A Sandoz1, Mustafa Demir1, Be´ atrice Kunz1, Georgios Savoglidis2, Vassily Hatzimanikatis2*, F Gisou van der Goot1* 1Global Health Institute, Faculty of Life Sciences, Ecole Polytechnique Fe´de´rale de Lausanne, Lausanne, Switzerland; 2Laboratory of Computational Systems Biotechnology, Faculty of Basic Sciences, Ecole Polytechnique Fe´de´rale de Lausanne, Lausanne, Switzerland Abstract S-Palmitoylation is the only reversible post-translational lipid modification. Knowledge about the DHHC palmitoyltransferase family is still limited. Here we show that human ZDHHC6, which modifies key proteins of the endoplasmic reticulum, is controlled by an upstream palmitoyltransferase, ZDHHC16, revealing the first palmitoylation cascade. The combination of site specific mutagenesis of the three ZDHHC6 palmitoylation sites, experimental determination of kinetic parameters and data-driven mathematical modelling allowed us to obtain detailed information on the eight differentially palmitoylated ZDHHC6 species. We found that species rapidly interconvert through the action of ZDHHC16 and the Acyl Protein Thioesterase APT2, that each species varies in terms of turnover rate and activity, altogether allowing the cell to robustly *For correspondence: tune its ZDHHC6 activity. [email protected] DOI: https://doi.org/10.7554/eLife.27826.001 (VH); [email protected] (FGG) †These authors contributed equally to this work Introduction Cells constantly interact with and respond to their environment. This requires tight control of protein Competing interests: The function in time and in space, which largely occurs through reversible post-translational modifica- authors declare that no tions of proteins, such as phosphorylation, ubiquitination and S-palmitoylation. -
Curvature Increases Permeability of the Plasma Membrane For
bioRxiv preprint doi: https://doi.org/10.1101/602177; this version posted April 8, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Curvature increases permeability of the plasma membrane for ions, water and the anti-cancer drugs cisplatin and gemcitabine Semen Yesylevskyy 1,2*, Timothée Rivel 1, Christophe Ramseyer 1 1 Laboratoire Chrono Environnement UMR CNRS 6249, Université de Bourgogne Franche- Comté, 16 route de Gray, 25030 Besançon Cedex, France. 2 Department of Physics of Biological Systems, Institute of Physics of the National Academy of Sciences of Ukraine, Prospect Nauky 46, 03028 Kyiv, Ukraine. Corresponding Author * [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/602177; this version posted April 8, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. ABSTARCT In this work the permeability of a model asymmetric plasma membrane, for ions, water and the anti-cancer drugs cisplatin and gemcitabine is studied by means of all-atom molecular dynamics simulations. It is shown that permeability of the membranes increases from one to three orders of magnitude upon membrane bending depending on the compound and the sign of curvature. Our results show that the membrane curvature is an important factor which should be considered during evaluation of drug translocation. TOC GRAPHICS KEYWORDS Membrane curvature, membrane permeability, molecular dynamics, plasma membrane, cisplatin, gemcitabine. 2 bioRxiv preprint doi: https://doi.org/10.1101/602177; this version posted April 8, 2019. -
Modelling of Red Blood Cell Morphological and Deformability Changes During In-Vitro Storage
applied sciences Article Modelling of Red Blood Cell Morphological and Deformability Changes during In-Vitro Storage Nadeeshani Geekiyanage 1 , Emilie Sauret 1,*, Suvash Saha 2 , Robert Flower 3 and YuanTong Gu 1 1 School of Mechanical, Medical and Process Engineering, Science and Engineering Faculty, Queensland University of Technology (QUT), Brisbane City, QLD 4000, Australia; [email protected] (N.G.); [email protected] (Y.G.) 2 School of Mechanical and Mechatronic Engineering, University of Technology Sydney (UTS), Ultimo, NSW 2007, Australia; [email protected] 3 Research and Development, Australian Red Cross Lifeblood, Kelvin Grove, QLD 4059, Australia; [email protected] * Correspondence: [email protected] Received: 28 February 2020; Accepted: 27 April 2020; Published: 4 May 2020 Featured Application: Red blood cell (RBC) storage lesion is a critical issue facing transfusion treatments, and significant changes in RBC morphology and deformability are observed due to the storage lesion. RBCs require high deformability to sustain in-vivo circulation, and impaired deformability leads to several post-transfusion adverse outcomes. Therefore, improved understanding of the interrelation between the morphological and deformability changes and the quality and viability of the stored RBCs is essential to prevent or reduce the transfusion related adverse outcomes. To support this requisite, the influence on RBC deformability due to several aspects of the storage lesion, namely, the changes in cell morphology, surface area and volume, RBC membrane biomechanics, and cytoskeletal structural integrity are explored numerically in this study. Abstract: Storage lesion is a critical issue facing transfusion treatments, and it adversely affects the quality and viability of stored red blood cells (RBCs). -
B1–Proteases As Molecular Targets of Drug Development
Abstracts B1–Proteases as Molecular Targets of Drug Development B1-001 lin release from the beta cells. Furthermore, GLP-1 also stimu- DPP-IV structure and inhibitor design lates beta cell growth and insulin biosynthesis, inhibits glucagon H. B. Rasmussen1, S. Branner1, N. Wagtmann3, J. R. Bjelke1 and secretion, reduces free fatty acids and delays gastric emptying. A. B. Kanstrup2 GLP-1 has therefore been suggested as a potentially new treat- 1Protein Engineering, Novo Nordisk A/S, Bagsvaerd, Denmark, ment for type 2 diabetes. However, GLP-1 is very rapidly degra- 2Medicinal Chemistry, Novo Nordisk A/S, Maaloev, Denmark, ded in the bloodstream by the enzyme dipeptidyl peptidase IV 3Discovery Biology, Novo Nordisk A/S, Maaloev, DENMARK. (DPP-IV; EC 3.4.14.5). A very promising approach to harvest E-mail: [email protected] the beneficial effect of GLP-1 in the treatment of diabetes is to inhibit the DPP-IV enzyme, thereby enhancing the levels of The incretin hormones GLP-1 and GIP are released from the gut endogenously intact circulating GLP-1. The three dimensional during meals, and serve as enhancers of glucose stimulated insu- structure of human DPP-IV in complex with various inhibitors 138 Abstracts creates a better understanding of the specificity and selectivity of drug-like transition-state inhibitors but can be utilized for the this enzyme and allows for further exploration and design of new design of non-transition-state inhibitors that compete for sub- therapeutic inhibitors. The majority of the currently known DPP- strate binding. Besides carrying out proteolytic activity, the IV inhibitors consist of an alpha amino acid pyrrolidine core, to ectodomain of memapsin 2 also interacts with APP leading to which substituents have been added to optimize affinity, potency, the endocytosis of both proteins into the endosomes where APP enzyme selectivity, oral bioavailability, and duration of action. -
REVIEW G-Protein-Coupled Receptors, Cholesterol and Palmitoylation: Facts
371 REVIEW G-protein-coupled receptors, cholesterol and palmitoylation: facts about fats Bice Chini and Marco Parenti1 Cellular and Molecular Pharmacology Section, CNR Institute of Neuroscience, Via Vanvitelli 32, 20129 Milan, Italy 1Department of Experimental Medicine, University of Milano-Bicocca, Monza, Italy (Correspondence should be addressed to B Chini; Email: [email protected]) Abstract G-protein-coupled receptors (GPCRs) are integral membrane proteins, hence it is not surprising that a number of their structural and functional features are modulated by both proteins and lipids. The impact of interacting proteins and lipids on the assembly and signalling of GPCRs has been extensively investigated over the last 20–30 years, and a further impetus has been given by the proposal that GPCRs and/or their immediate signalling partners (G proteins) can partition within plasma membrane domains, termed rafts and caveolae, enriched in glycosphingolipids and cholesterol. The high content of these specific lipids, in particular of cholesterol, in the vicinity of GPCR transmembranes can affect GPCR structure and/or function. In addition, most GPCRs are post-translationally modified with one or more palmitic acid(s), a 16-carbon saturated fatty acid, covalently bound to cysteine(s) localised in the carboxyl-terminal cytoplasmic tail. The insertion of palmitate into the cytoplasmic leaflet of the plasma membrane can create a fourth loop, thus profoundly affecting GPCR structure and hence the interactions with intracellular partner proteins. This review briefly highlights how lipids of the membrane and the receptor themselves can influence GPCR organisation and functioning. Journal of Molecular Endocrinology (2009) 42, 371–379 G-protein-coupled receptors–cholesterol of phospholipids. -
Membrane Curvature, Trans-Membrane Area Asymmetry, Budding, Fission and Organelle Geometry
International Journal of Molecular Sciences Review Membrane Curvature, Trans-Membrane Area Asymmetry, Budding, Fission and Organelle Geometry Alexander A. Mironov 1,* , Anna Mironov 2, Jure Derganc 3 and Galina V. Beznoussenko 1,* 1 Department of Cell Biology, The FIRC Institute of Molecular Oncology, 20139 Milan, Italy 2 Imaging Facility, Universita Vita-Salute San Raffaele, 20132 Milan, Italy; [email protected] 3 Institute of Biophysics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia; [email protected] * Correspondence: [email protected] (A.A.M.); [email protected] (G.V.B.) Received: 21 September 2020; Accepted: 9 October 2020; Published: 14 October 2020 Abstract: In biology, the modern scientific fashion is to mostly study proteins. Much less attention is paid to lipids. However, lipids themselves are extremely important for the formation and functioning of cellular membrane organelles. Here, the role of the geometry of the lipid bilayer in regulation of organelle shape is analyzed. It is proposed that during rapid shape transition, the number of lipid heads and their size (i.e., due to the change in lipid head charge) inside lipid leaflets modulates the geometrical properties of organelles, in particular their membrane curvature. Insertion of proteins into a lipid bilayer and the shape of protein trans-membrane domains also affect the trans-membrane asymmetry between surface areas of luminal and cytosol leaflets of the membrane. In the cases where lipid molecules with a specific shape are not predominant, the shape of lipids (cylindrical, conical, or wedge-like) is less important for the regulation of membrane curvature, due to the flexibility of their acyl chains and their high ability to diffuse. -
Gpi-Anchored Proteins in Reconstituted Lipid Bilayers
GPI-ANCHORED PROTEINS IN RECONSTITUTED LIPID BILAYERS: STRUCTURE, FUNCTION, AND CLEAVAGE BY PI-SPECFIC PHOSPHOLIPASE C A Thesis Presented to The Faculty of Graduate Studies of The University of Guelph by MARTY T. LEHTO In partial fulfilrnent of requirements for the degree of Doctor of Philosophy August 2001 O Marty T. Lehto, 2001 National Library Bibliothèque nationale 1+1 of Canada du Canada Acquisitions and Acquisitions et Bibliographie Services services bibliographiques 395 Wellington Street 395. rue Wellington Ottawa ON Kt A ON4 Ottawa ON K1A ON4 Canada Canada Your file Votre r4f8me Our file Notre réfdrence The author has granted a non- L'auteur a accordé une licence non exclusive licence allowing the exclusive permettant a la National Library of Canada to Bibliothèque nationale du Canada de reproduce, loan, distribute or sell reproduire, prêter, distribuer ou copies of this thesis in microfonq vendre des copies de cette thèse sous paper or electronic formats. la fome de microfiche/film, de reproduction sur papier ou sur format électronique. The author retains ownership of the L'auteur conserve la propriété du copyright in this thesis. Neither the droit d'auteur qui protège cette thèse. thesis nor substantial extracts fkom it Ni la thèse ni des extraits substantiels May be printed or othenuise de celle-ci ne doivent être imprimés reproduced without the author's ou autrement reproduits sans son permission. autorisation. GPI-ANCHORED PROTEINS IN RECONSTITUTED LEPID BILAYERS: STRUCTURE, FUNCTION AND CLEAVAGE BY PI-SPECFIC PHOSPHOLPASE C Marty T. Lehto Advisor: University of Guelph, 200 1 Professor F.J. Sharom Many eukaryotic proteins are anchored to the ce11 surface by a glycosylphosphatidylinositol (GPI) moiety. -
Structure and Dynamics of the SARS-Cov-2 Envelope Protein Monomer
bioRxiv preprint doi: https://doi.org/10.1101/2021.03.10.434722; this version posted March 10, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Structure and dynamics of the SARS-CoV-2 envelope protein monomer Alexander Kuzmin1, Philipp Orekhov1,2, Roman Astashkin1,3, Valentin Gordeliy1,3,4,5, Ivan Gushchin1,* 1 Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Russia 2 Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russia 3 Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CEA, CNRS, Grenoble, France 4 Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich GmbH, Jülich, Germany 5 JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich GmbH, Jülich, Germany. E-mail for correspondence: [email protected] bioRxiv preprint doi: https://doi.org/10.1101/2021.03.10.434722; this version posted March 10, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract Coronaviruses, especially SARS-CoV-2, present an ongoing threat for human wellbeing. Consequently, elucidation of molecular determinants of their function and interaction with host is an important task. Whereas some of the coronaviral proteins are extensively characterized, others remain understudied. -
Palmitoylation and Oxidation of the Cysteine Rich Region of SNAP-25 and Their Effects on Protein Interactions
Brigham Young University BYU ScholarsArchive Theses and Dissertations 2007-07-17 Palmitoylation and Oxidation of the Cysteine Rich Region of SNAP-25 and their Effects on Protein Interactions Derek Luberli Martinez Brigham Young University - Provo Follow this and additional works at: https://scholarsarchive.byu.edu/etd Part of the Neuroscience and Neurobiology Commons BYU ScholarsArchive Citation Martinez, Derek Luberli, "Palmitoylation and Oxidation of the Cysteine Rich Region of SNAP-25 and their Effects on Protein Interactions" (2007). Theses and Dissertations. 985. https://scholarsarchive.byu.edu/etd/985 This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. by Brigham Young University in partial fulfillment of the requirements for the degree of Brigham Young University All Rights Reserved BRIGHAM YOUNG UNIVERSITY GRADUATE COMMITTEE APPROVAL and by majority vote has been found to be satisfactory. ________________________ ______________________________________ Date ________________________ ______________________________________ Date ________________________ ______________________________________ Date ________________________ ______________________________________ Date BRIGHAM YOUNG UNIVERSITY As chair of the candidate’s graduate committee, I have read the format, citations and bibliographical style are consistent -
Regulation of G Protein-Coupled Receptors by Palmitoylation and Cholesterol Alan D Goddard and Anthony Watts*
Goddard and Watts BMC Biology 2012, 10:27 http://www.biomedcentral.com/1741-7007/10/27 COMMENTARY Open Access Regulation of G protein-coupled receptors by palmitoylation and cholesterol Alan D Goddard and Anthony Watts* See research article www.biomedcentral.com/content/1471-2121/13/6 directed to elucidating GPCR crystal structures and a Abstract number of the structures obtained seem to indicate the Due to their membrane location, G protein-coupled presence of receptor dimers. Intriguingly, the β2-adrenergic receptors (GPCRs) are subject to regulation by soluble receptor (β2AR) crystalized with cholesterol molecules and integral membrane proteins as well as membrane and a post-translationally added palmitate group from components, including lipids and sterols. GPCRs also each protomer forming most of the dimer interface [3], undergo a variety of post-translational modifications, suggesting a role for lipids and sterols, in addition to including palmitoylation. A recent article by Zheng et protein-protein interactions, in GPCR dimeri zation. al. in BMC Cell Biology demonstrates cooperative roles However, it was not clear whether this accurately repre- for receptor palmitoylation and cholesterol binding in sented the conformation of the dimer within native lipid GPCR dimerization and G protein coupling, underlining bilayers. A recent study in BMC Cell Biology by Zheng et the complex regulation of these receptors. al. [4] has revealed a complex interplay between choles- terol, palmitate, receptor dimeri zation and G protein activation. Their study showed that reducing cholesterol Commentary levels or preventing palmitoylation of the μ-opioid G protein-coupled receptors (GPCRs) represent the receptor (OPRM1) reduced receptor dimerization and largest family of integral membrane proteins encoded by Gα association. -
Phospholipase D in Cell Proliferation and Cancer
Vol. 1, 789–800, September 2003 Molecular Cancer Research 789 Subject Review Phospholipase D in Cell Proliferation and Cancer David A. Foster and Lizhong Xu The Department of Biological Sciences, Hunter College of The City University of New York, New York, NY Abstract trafficking, cytoskeletal reorganization, receptor endocytosis, Phospholipase D (PLD) has emerged as a regulator of exocytosis, and cell migration (4, 5). A role for PLD in cell several critical aspects of cell physiology. PLD, which proliferation is indicated from reports showing that PLD catalyzes the hydrolysis of phosphatidylcholine (PC) to activity is elevated in response to platelet-derived growth factor phosphatidic acid (PA) and choline, is activated in (PDGF; 6), fibroblast growth factor (7, 8), epidermal growth response to stimulators of vesicle transport, endocyto- factor (EGF; 9), insulin (10), insulin-like growth factor 1 (11), sis, exocytosis, cell migration, and mitosis. Dysregula- growth hormone (12), and sphingosine 1-phosphate (13). PLD tion of these cell biological processes occurs in the activity is also elevated in cells transformed by a variety development of a variety of human tumors. It has now of transforming oncogenes including v-Src (14), v-Ras (15, 16), been observed that there are abnormalities in PLD v-Fps (17), and v-Raf (18). Thus, there is a growing body of expression and activity in many human cancers. In this evidence linking PLD activity with mitogenic signaling. While review, evidence is summarized implicating PLD as a PLD has been associated with many aspects of cell physiology critical regulator of cell proliferation, survival signaling, such as membrane trafficking and cytoskeletal organization cell transformation, and tumor progression.