Galaxies and Active Galactic Nuclei
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Morphology of Minor Axis Gaseous Outflows in Edge-On Seyfert Galaxies
A&A 464, 541–552 (2007) Astronomy DOI: 10.1051/0004-6361:20065454 & c ESO 2007 Astrophysics The morphology of minor axis gaseous outflows in edge-on Seyfert galaxies, T. P. Robitaille1,, J. Rossa2,3,D.J.Bomans4,andR.P.vanderMarel2 1 SUPA, School of Physics and Astronomy, University of St. Andrews, North Haugh, KY16 9SS St. Andrews, UK e-mail: [email protected] 2 Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA e-mail: [email protected] 3 Department of Astronomy, University of Florida, 211 Bryant Space Science Center, PO Box 112055, Gainesville, FL 32611, USA e-mail: [email protected] 4 Astronomisches Institut, Ruhr-Universität Bochum, Universitätsstrasse 150/NA7, 44780 Bochum, Germany e-mail: [email protected] Received 18 April 2006 / Accepted 20 December 2006 ABSTRACT Context. Spiral galaxies often have extended outflows that permeate beyond the region of the disk. Such outflows have been seen both in starburst galaxies, actively star forming galaxies and galaxies with an AGN. In the latter galaxies it is unknown whether the large-scale outflows are driven by star formation activity or purely by the active nucleus. Aims. The aim of our investigation is to study the frequency of extended minor-axis outflows in edge-on Seyfert galaxies to investigate the role of the AGN, the circumnuclear environment and star formation activity within the disk regions, and their importance for IGM enrichment on large scales. Methods. We obtained optical narrowband imaging observations of a distance limited, northern hemisphere sample of 14 edge-on Seyfert spiral galaxies. -
X-Ray Jets Aneta Siemiginowska
Chandra News Issue 21 Spring 2014 Published by the Chandra X-ray Center (CXC) X-ray Jets Aneta Siemiginowska The Active Galaxy 4C+29.30 Credit: X-ray: NASA/CXC/SAO/A.Siemiginowska et al; Optical: NASA/STScI; Radio: NSF/NRAO/VLA Contents X-ray Jets HETG 3 Aneta Siemiginowska 18 David Huenemoerder (for the HETG team) 10 Project Scientist’s Report 20 LETG Martin Weisskopf Jeremy Drake 11 Project Manager’s Report 23 Chandra Calibration Roger Brissenden Larry David Message of Thanks to Useful Web Addresses 12 Harvey Tananbaum 23 The Chandra Team Belinda Wilkes Appointed as CIAO 4.6 13 Director of the CXC 24 Antonella Fruscione, for the CIAO Team Of Programs and Papers: Einstein Postdoctoral Fellowship 13 Making the Chandra Connection 29 Program Sherry Winkelman & Arnold Rots Andrea Prestwich Chandra Related Meetings Cycle 14 Peer Review Results 14 and Important Dates 30 Belinda Wilkes ACIS Chandra Users’ Committee 14 Paul Plucinsky, Royce Buehler, 34 Membership List Gregg Germain, & Richard Edgar HRC CXC 2013 Science Press 15 Ralph Kraft, Hans Moritz Guenther 35 Releases (SAO), and Wolfgang Pietsch (MPE) Megan Watzke The Chandra Newsletter appears once a year and is edited by Paul J. Green, with editorial assistance and layout by Evan Tingle. We welcome contributions from readers. Comments on the newsletter, or corrections and additions to the hardcopy mailing list should be sent to: [email protected]. Spring, 2014 3 X-ray Jets many unanswered questions, including the nature of relativistic jets, jet energetics, particle content, parti- Aneta Siemiginowska cle acceleration and emission processes. Both statis- tical studies of large samples of jets across the entire The first recorded observation of an extragalac- electromagnetic spectrum and deep broad-band imag- tic jet was made almost a century ago. -
INTEGRAL View Of
INTEGRAL view of AGN Angela Maliziaa,∗, Sergey Sazonovb, Loredana Bassania, Elena Piana, Volker Beckmannc, Manuela Molinaa, Ilya Mereminskiyb, Guillaume Belangerd aOAS-INAF, Via P. Gobetti 101, 40129 Bologna, Italy bSpace Research Institute, Russian Academy of Sciences, Profsoyuznaya 84/32, 117997 Moscow, Russia cInstitut National de Physique Nuclaire et de Physique des Particules (IN2P3) CNRS, Paris, France dESA/ESAC, Camino Bajo del Castillo, 28692 Villanueva de la Canada, Madrid, Spain Abstract AGN are among the most energetic phenomena in the Universe and in the last two decades INTEGRAL’s contribution in their study has had a significant impact. Thanks to the INTEGRAL extragalactic sky surveys, all classes of soft X-ray detected (in the 2-10 keV band) AGN have been observed at higher energies as well. Up to now, around 450 AGN have been catalogued and a conspicuous part of them are either objects observed at high-energies for the first time or newly discovered AGN. The high-energy domain (20-200 keV) represents an important window for spectral studies of AGN and it is also the most appropriate for AGN population studies, since it is almost unbiased against obscuration and therefore free of the limitations which affect surveys at other frequencies. Over the years, INTEGRAL data have allowed to characterise AGN spectra at high energies, to investigate their absorption properties, to test the AGN unification scheme and to perform population studies. In this review the main results are reported and INTEGRAL’s contribution to AGN science is highlighted for each class of AGN. Finally, new perspectives are provided, connecting INTEGRAL’s science with that at other wavelengths and in particular to the GeV/TeV regime which is still poorly explored. -
Galaxies: Outstanding Problems and Instrumental Prospects for the Coming Decade (A Review)* T (Cosmology/History of Astronomy/Quasars/Space) JEREMIAH P
Proc. Natl. Acad. Sci. USA Vol. 74, No. 5, pp. 1767-1774, May 1977 Astronomy Galaxies: Outstanding problems and instrumental prospects for the coming decade (A Review)* t (cosmology/history of astronomy/quasars/space) JEREMIAH P. OSTRIKER Princeton University Observatory, Peyton Hall, Princeton, New Jersey 08540 Contributed by Jeremiah P. Ostriker, February 3, 1977 ABSTRACT After a review of the discovery of external It is more than a little astonishing that in the early part of this galaxies and the early classification of these enormous aggre- century it was the prevailing scientific view that man lived in gates of stars into visually recognizable types, a new classifi- a universe centered about himself; by 1920 the sun's newly cation scheme is suggested based on a measurable physical quantity, the luminosity of the spheroidal component. It is ar- discovered, slightly off-center position was still controversial. gued that the new one-parameter scheme may correlate well The discovery was, ironically, due to Shapley. both with existing descriptive labels and with underlying A little background to this debate may be useful. The Island physical reality. Universe hypothesis was not new, having been proposed 170 Two particular problems in extragalactic research are isolated years previously by the English astronomer, Thomas Wright as currently most fundamental. (i) A significant fraction of the (2), and developed with remarkably prescience by Emmanuel energy emitted by active galaxies (approximately 1% of all galaxies) is emitted by very small central regions largely in parts Kant, who wrote (see refs. 10 and 23 in ref. 3) in 1755 (in a of the spectrum (microwave, infrared, ultraviolet and x-ray translation from Edwin Hubble). -
Monthly Newsletter of the Durban Centre - March 2018
Page 1 Monthly Newsletter of the Durban Centre - March 2018 Page 2 Table of Contents Chairman’s Chatter …...…………………….……….………..….…… 3 Andrew Gray …………………………………………...………………. 5 The Hyades Star Cluster …...………………………….…….……….. 6 At the Eye Piece …………………………………………….….…….... 9 The Cover Image - Antennae Nebula …….……………………….. 11 Galaxy - Part 2 ….………………………………..………………….... 13 Self-Taught Astronomer …………………………………..………… 21 The Month Ahead …..…………………...….…….……………..…… 24 Minutes of the Previous Meeting …………………………….……. 25 Public Viewing Roster …………………………….……….…..……. 26 Pre-loved Telescope Equipment …………………………...……… 28 ASSA Symposium 2018 ………………………...……….…......…… 29 Member Submissions Disclaimer: The views expressed in ‘nDaba are solely those of the writer and are not necessarily the views of the Durban Centre, nor the Editor. All images and content is the work of the respective copyright owner Page 3 Chairman’s Chatter By Mike Hadlow Dear Members, The third month of the year is upon us and already the viewing conditions have been more favourable over the last few nights. Let’s hope it continues and we have clear skies and good viewing for the next five or six months. Our February meeting was well attended, with our main speaker being Dr Matt Hilton from the Astrophysics and Cosmology Research Unit at UKZN who gave us an excellent presentation on gravity waves. We really have to be thankful to Dr Hilton from ACRU UKZN for giving us his time to give us presentations and hope that we can maintain our relationship with ACRU and that we can draw other speakers from his colleagues and other research students! Thanks must also go to Debbie Abel and Piet Strauss for their monthly presentations on NASA and the sky for the following month, respectively. -
Galaxy Classification Questions of the Day
Galaxy classification Questions of the Day • What are elliptical, spiral, lenticular and dwarf galaxies? • What is the Hubble sequence? • What determines the colors of galaxies? Top View of the Milky Way The MW is a “spiral” galaxy, or a “late type” galaxy. The different components have different colors, motions, and chemical compositions different origins! Other Late Type Spiral Galaxies • More disk than bulge (if any!). • High current star formation. These are also “late-type” galaxies. Apparent shape depends on orientation Other Types: “Early type galaxies” • More bulge than disk. • Low current star formation. “Sombrero Galaxy” And even earlier type galaxies: • Elliptical Galaxies (or just “ellipticals”) – No disk! All bulge! Have evolved to the point – Very little gas where no gas is left for – Probably old! making new stars! “spheroidals” And in between, “lenticulars” • Just a hint of a disk. • Low current star formation. “S0” galaxies: Like ellipticals, but usually a bit flatter. Many galaxies have “bars” – linear arrangements of stars (The Milky Way has a bar!) All of these different types of galaxy fit nicely into a sequence. Ellipticals Unbarred and Barred Spirals Lenticulars Number indicates how flat the elliptical is Lowercase “a”, “b”, “c” indicates how unlike the spiral is to an elliptical Things that vary along the Hubble Sequence: 1. “Bulge-to-Disk Ratio” 2. Lumpiness of the spiral arms 3. How tightly the spiral arms are wound E Sa Sb Sc “early type” “late type” Things that vary along the Hubble Sequence: 1. “Bulge-to-Disk Ratio” 2. Lumpiness of the spiral arms 3. How tightly the spiral arms are wound E Sa Sb Sc Note: These are not exact trends! Galaxies are much more complex than stars! 1. -
Active Galactic Nuclei - Suzy Collin, Bożena Czerny
ASTRONOMY AND ASTROPHYSICS - Active Galactic Nuclei - Suzy Collin, Bożena Czerny ACTIVE GALACTIC NUCLEI Suzy Collin LUTH, Observatoire de Paris, CNRS, Université Paris Diderot; 5 Place Jules Janssen, 92190 Meudon, France Bożena Czerny N. Copernicus Astronomical Centre, Bartycka 18, 00-716 Warsaw, Poland Keywords: quasars, Active Galactic Nuclei, Black holes, galaxies, evolution Content 1. Historical aspects 1.1. Prehistory 1.2. After the Discovery of Quasars 1.3. Accretion Onto Supermassive Black Holes: Why It Works So Well? 2. The emission properties of radio-quiet quasars and AGN 2.1. The Broad Band Spectrum: The “Accretion Emission" 2.2. Optical, Ultraviolet, and X-Ray Emission Lines 2.3. Ultraviolet and X-Ray Absorption Lines: The Wind 2.4. Variability 3. Related objects and Unification Scheme 3.1. The “zoo" of AGN 3.2. The “Line of View" Unification: Radio Galaxies and Radio-Loud Quasars, Blazars, Seyfert 1 and 2 3.2.1. Radio Loud Quasars and AGN: The Jet and the Gamma Ray Emission 3.3. Towards Unification of Radio-Loud and Radio-Quiet Objects? 3.4. The “Accretion Rate" Unification: Low and High Luminosity AGN 4. Evolution of black holes 4.1. Supermassive Black Holes in Quasars and AGN 4.2. Supermassive Black Holes in Quiescent Galaxies 5. Linking the growth of black holes to galaxy evolution 6. Conclusions Acknowledgements GlossaryUNESCO – EOLSS Bibliography Biographical Sketches SAMPLE CHAPTERS Summary We recall the discovery of quasars and the long time it took (about 15 years) to build a theoretical framework for these objects, as well as for their local less luminous counterparts, Active Galactic Nuclei (AGN). -
The Evolution of Galaxy Morphology
The Morphological Evolution of Galaxies Roberto G. Abraham Sidney van den Bergh Dept. of Astronomy & Dominion Astrophysical Observatory Astrophysics Herzberg Institute of Astrophysics University of Toronto National Research Council of Canada 60 St. George Street Victoria, British Columbia Toronto, Ontario M5S 3H8, V9E 2E7, Canada Canada ABSTRACT Many galaxies appear to have taken on their familiar appearance relatively recently. In the distant Universe, galaxy morphology started to deviate significantly (and systematically) from that of nearby galaxies at redshifts, z, as low as z = 0.3. This corresponds to a time ~3.5 Gyr in the past, which is only ~25% of the present age of the Universe. Beyond z = 0.5 (5 Gyr in the past) spiral arms are less well-developed and more chaotic, and barred spiral galaxies may become rarer. By z = 1, around 30% of the galaxy population is sufficiently peculiar that classification on Hubble’s traditional “tuning fork” system is meaningless. On the other hand, some characteristics of galaxies do not seem to have changed much over time. The co-moving space density of luminous disk galaxies has not changed significantly since z = 1, indicating that while the general appearance of these objects has continuously changed with cosmic epoch, their overall numbers have been conserved. Attempts to explain these results with hierarchical models for the formation of galaxies have met with mixed success. denoted Sa, Sb, and Sc (SBa, SBb, SBc in of Hubble’s classification system are Introduction the case of barred spirals). A final “catch- based on the idea that most matter in the all” category for irregular galaxies is also Universe is not in stellar or gaseous form, Nearby galaxies are usually classified on included. -
Two Emission Line Objects with Z > 0.2 in the Optical Filament Apparently
Astronomy & Astrophysics manuscript no. (will be inserted by hand later) Two emission line objects with z > 0.2 in the optical filament apparently connecting the Seyfert galaxy NGC 7603 to its companion M. L´opez-Corredoira1,2 and Carlos M. Guti´errez1 1 Instituto de Astrof´ısica de Canarias, E-38200 La Laguna, Tenerife, Spain 2 Astronomisches Institut der Universit¨at Basel, Venusstrasse 7, CH-4102 Binningen, Switzerland Received xxxx / Accepted xxxx Abstract. We present new spectroscopic observations of an old case of anomalous redshift—NGC 7603 and its companion. The redshifts of the two galaxies which are apparently connected by a luminous filament are z = 0.029 and z = 0.057 respectively. We show that in the luminous filament there are two compact emission line objects with z = 0.243 and z = 0.391. They lie exactly on the line traced by the filament connecting the galaxies. As far as we are aware, this is the most impressive case of a system of anomalous redshifts discovered so far. Key words. Galaxies: individual: NGC 7603 — quasars: general — Galaxies: statistics — Galaxies: peculiar — distance scale 1. Introduction mine the redshifts of the two observed knots (Arp 1971) (objects 2 and 3) in the filament. For some time after the Thirty years ago it was shown that NGC 7603 (Mrk 530, discovery of the system, attempts were made to obtain Arp 92) is a remarkable example of an anomalous redshift spectra of the objects in the bridge, but because of limi- association (Arp 1971). NGC 7603 is a Seyfert 1 galaxy tations of the equipment available in the 1970s, none was with strong spectral variability (Kollatschny et al. -
High Velocity Dispersion in a Rare Grand Design Spiral Galaxy at Redshift Z =2.18
High Velocity Dispersion in a Rare Grand Design Spiral Galaxy at Redshift z =2.18 Nature, in press (July 19 2012) 1 2 3 4 David R. Law , Alice E. Shapley , Charles C. Steidel , Naveen A. Reddy , Charlotte R. 5 6 Christensen , Dawn K. Erb 1 Dunlap Institute for Astronomy & Astrophysics, University of Toronto, 50 St. George Street, Toronto M5S 3H4, Ontario, Canada 2 Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 3 California Institute of Technology, MS 249-17, Pasadena, CA 91125 4 Department of Physics and Astronomy, University of California, Riverside, CA 92521 5 Steward Observatory, 933 North Cherry Ave, Tucson, AZ 85721 6 Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, WI 53211 Although relatively common in the local Universe, only one grand-design spiral galaxy has been spectroscopically confirmed1 to lie at z>2 (HDFX 28; z=2.011), and may prove to be a major merger that simply resembles a spiral in projection. The rarity of spirals has been explained as a result of disks being dynamically ‘hot’ at z>2 2,3,4,5 which may instead favor the formation of commonly-observed clumpy structures 6,7,8,9,10. Alternatively, current instrumentation may simply not be sensitive enough to detect spiral structures comparable to those in the modern Universe11. At redshifts <2, the velocity dispersion of disks decreases12, and spiral galaxies are more numerous by z~1 7,13,14,15. Here we report observations of the grand design spiral galaxy Q2343-BX442 at z=2.18. Spectroscopy of ionized gas shows that the disk is dynamically hot, implying an uncertain origin for the spiral structure. -
A Galaxy Classification Grid That Better Recognises Early-Type Galaxy
MNRAS 000,1– ?? (2019) Preprint 24 July 2019 Compiled using MNRAS LATEX style file v3.0 A galaxy classification grid that better recognises early-type galaxy morphology Alister W. Graham? Centre for Astrophysics and Supercomputing, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia. Accepted 2019 June 7. Received 2019 June 7; in original form 2019 April 26 ABSTRACT A modified galaxy classification scheme for local galaxies is presented. It builds upon the Aitken-Jeans nebula sequence, by expanding the Jeans-Hubble tuning fork diagram, which it- self contained key ingredients from Curtis and Reynolds. The two-dimensional grid of galaxy morphological types presented here, with elements from de Vaucouleurs’ three-dimensional classification volume, has an increased emphasis on the often overlooked bars and continua of disc sizes in early-type galaxies — features not fully captured by past tuning forks, tridents, or combs. The grid encompasses nuclear discs in elliptical (E) galaxies, intermediate-scale discs in ellicular (ES) galaxies, and large-scale discs in lenticular (S0) galaxies, while the E4-E7 class is made redundant given that these galaxies are lenticular galaxies. Today, these struc- tures continue to be neglected, or surprise researchers, perhaps partly due to our indoctrination to galaxy morphology through the tuning fork diagram. To better understand the current and proposed classification schemes — whose origins reside in solar/planetary formation models — a holistic overview is given. This provides due credit to some of the lesser known pioneers, presents some rationale for the grid, and reveals the incremental nature of, and some of the lesser known connections in, the field of galaxy morphology. -
Turbulent Formation of Protogalaxies at the End of the Plasma Epoch: Theory and Observations
Turbulent formation of protogalaxies …, Nova Book, Galaxies: Dynamics, Formation and Evolution 1 Turbulent formation of protogalaxies at the end of the plasma epoch: theory and observations Rudolph E. Schild1,2 1 Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA 2 [email protected] and Carl H. Gibson 3,4 3 University of California San Diego, La Jolla, CA 92093-0411, USA [email protected], http://sdcc3.ucsd.edu/~ir118 ABSTRACT The standard model of gravitational structure formation is based on the Jeans 1902 acoustic theory, neglecting nonlinear instabilities controlled by viscosity, turbulence and diffusion. A linear insta- bility length scale equal to the sound speed times the gravitational freefall time emerges. Because the Jeans scale LJ for the hot primordial plasma is always slightly larger than the scale of causal connection ct, where c is the speed of light and t is the time after the big bang, it has been assumed that no plasma structures could form without guidance from a cold (so LJ CDM is small) collisionless cold-dark-matter CDM fluid to give condensations that gravitationally collect the plasma. Galaxies by this CDM model are therefore produced by gradual hierarchical-clustering of CDM halos to gal- axy mass over billions of years, contrary to observations showing that well formed galaxies existed much earlier. No observations exist of CDM halos. However, Gravitational instability is non- linear and absolute, controlled by viscous and turbulent forces or by diffusivity at Schwarz length scales smaller than ct. Because the universe during the plasma epoch is rapidly expanding, the first structures formed were at density minima by fragmentation when the viscous-gravitional scale LSV first matched ct at 30,000 years to produce protosupercluster voids and protosuperclusters.