Defensive Behaviour in Pit Vipers of the Genus <I>Bothrops</I

Total Page:16

File Type:pdf, Size:1020Kb

Defensive Behaviour in Pit Vipers of the Genus <I>Bothrops</I HERPETOLOGICAL JOURNAL, Vol. 16, pp. 297-303 (2006) DEFENSIVE BEHAVIOUR IN PIT VIPERS OF THE GENUS BOTHROPS (SERPENTES, VIPERIDAE) MÁRCIO S. ARAÚJO1 AND MARCIO MARTINS2 1Programa de Pós-Graduação em Ecologia, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brazil 2Departamento de Ecologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil The genus Bothrops encompasses at least six evolutionary lineages that show a great diversification in macro and microhabitat use. We studied the defensive behaviour of one species of each of five lineages within the genus Bothrops: B. alternatus, B. jararaca, B. jararacussu, B. moojeni and B. pauloensis. Specifically, we investigated if this diversification in habitat use was accompanied by a similar divergence in the characters related to defensive behaviour in the genus. Eight behavioural categories were recorded, five of which may be classified as “threatening” (strike, tail vibration, head and neck elevation, dorsoventral body compression and body thrashing); two as “escape” (locomotor escape and cocking); and one as “cryptic” (head hiding). We observed significant differences in four behavioural categories. We also detected a significant difference in the way species elevated their head and neck. Tail vibration and strikes were the most common behaviours presented, and snakes that displayed their tails struck more frequently than those that did not display. A reconstruction of characters related to defensive behaviour on a phylogeny of Bothrops indicated an increase in the use of dorsoventral body compression in the groups alternatus and neuwiedi, which may be associated with the invasion of open areas by these lineages. Key words: comparative method, Crotalinae, defensive tactics, evolution of behaviour INTRODUCTION The genus Bothrops (including Bothriopsis; e.g., Snakes are exposed to different kinds of predators in Wüster et al., 2002) includes about 45 described spe- the various habitats they occupy (Greene, 1988), and, as cies (Campbell & Lamar, 2004). The phylogenetic a result, may differ in defensive behaviour. For example, relationships within Bothrops have been explored in snakes in open habitats may suffer a more intense preda- the last few years (e.g. Salomão et al., 1997; Vidal et tion pressure from highly mobile predators than in al. 1997; Wüster et al., 2002). The genus encompasses forested habitats (Greene, 1988). Microhabitat use in at least six lineages, the groups atrox, jararacussu, snakes (e.g. terrestrial, arboreal) may also be associated jararaca, alternatus, neuwiedi and taeniatus (Wüster with defensive behaviours (Greene, 1979). For instance, et al., 2002). an association between gaping behaviour and arboreality Here we describe and compare the defensive behav- has been demonstrated in snakes (Greene, 1997). In the iour of one species of each of five lineages within the case of the genus Bothrops, the ways by which the habitat genus Bothrops, namely B. alternatus (alternatus is used by snakes are diverse (Martins et al., 2001). group), a terrestrial species which inhabits open areas; Within the genus, there are lineages of both open and B. jararaca (jararaca group), a semi-arboreal forest forested areas and with varying degrees of arboreality dweller; B. jararacussu (jararacussu group), a terres- (Martins et al., 2002). These differences in use of trial forest inhabitant; B. moojeni (atrox group), a microhabitat (terrestrial and arboreal) and macrohabitat semi-arboreal species found in open formations, but (open and forested areas) may be associated with differ- associated almost exclusively with riparian forests ences in defensive behaviour of the different lineages of within these areas; and finally B. pauloensis (neuwiedi Bothrops. In fact, with the exception of the studies on B. group), a terrestrial species exclusive to open areas jararaca by Sazima (1988, 1992), there are no detailed (Table 1). We also explore the evolution of characters studies of defensive behaviour in the genus Bothrops. related to defensive behaviour in the genus Bothrops Sazima (1992) suggested that comparative studies and speculate on possible associations between among some Bothrops species typical of forested areas changes in defensive behaviour and changes in habitat and species of open areas could reveal similarities and use. differences related to their ecology and their MATERIALS AND METHODS phylogenetic relationships. Test subjects were species of Bothrops from several localities of southeastern (B. alternatus, B. jararaca, Correspondence: M. S. Araújo, Departamento de Parasitologia, Instituto de Biologia, Universidade Estadual de B. jararacussu, B. pauloensis and B. moojeni) and cen- Campinas, CP 6109, 13084-971, Campinas, SP, Brazil. tral Brazil (B. moojeni) brought to the Instituto E-mail: [email protected] Butantan between April 1998 and February 1999. Ten 298 M. S. ARAÚJO AND M. MARTINS TABLE 1. Habitat use, sizes (mm), captivity duration (days), and number of individuals of the five species of Bothrops studied. T: terrestrial; SA: semi-arboreal; O: open areas; F: forests; SVL: snout–vent length; SD: standard deviation; CD: captivity duration; n = number of individuals. Species Habitat use Mean SVL SD Mean CD SD n B. alternatus T/O 708.6 160.35 4 4.8 10 B. jararaca SA/F 803.2 169.86 1 1.3 10 B. jararacussu T/F 611.1 187.13 8 9.6 10 B. moojeni SA/F 946.5 137.48 5 3.6 10 B. pauloensis T/O 608.0 126.23 5 2.8 10 individuals of each species were tested as they arrived at Defensive behaviour was elicited with using a stimu- the Instituto Butantan (Table 1). Upon arrival, individu- lus object, a plastic bottle (height 15 cm; diameter 10 als were housed in a large plastic container (c. 100 × 70 cm; volume 0.5 l) covered with a 0.5 cm-thick sheet of × 60 cm high) with bark mulch as a substrate. Snakes soft black rubber to which a 1.5 m plastic pipe was at- were not manipulated until they were removed from the tached at a 45° angle. The purpose of the rubber was to container, measured and individually put in small wood minimize injuries to the snakes’ fangs during strikes. containers, and taken to a temperature-controlled labo- The bottle was filled with warm water (60oC) shortly ratory (25±2oC) where the tests were conducted. The before the tests to raise the temperature of the external snakes were taken to the laboratory during daytime, ap- surface of the rubber to about 37oC (mean±SD = proximately eight hours before the initiation of the tests, 37.1±0.94oC; n=17; recorded immediately before trials and the tests were carried out on the same day, always at by a Miller & Weber Inc. quick-reading thermometer night, from 1758 hr to 0002 hr. The snakes were tested with an accuracy of 0.1oC). The stimulus object was de- 0–16 days after arrival at the Instituto Butantan, except veloped by us and was chosen, among several others, on for one individual of B. jararacussu that was kept for 33 the grounds that it immediately elicited typical defen- days at the Instituto Butantan before tests were per- sive behaviours upon its introduction into the arena. We formed. Each individual snake was tested only once. believe that the stimulus object simulated the head of a The tests were carried out in an arena set on the mammal approaching the snake horizontally and close ground of the laboratory (Fig. 1). The laboratory wall to the ground. formed one of the sides of the arena; the other three Before each test, the internal surfaces of the arena as sides were made of wood and glass. One of the sides well as the stimulus object were cleaned with ethanol. adjacent to the wall was opaque and the other two sides The snake was then put in the centre of the arena and a were transparent. During trials, we stayed behind the transparent acrylic box (30 cm on each side and 15 cm opaque side of the arena to minimize possible distur- high), with the open side facing down, was put over the bance. Two Panasonic NVRJ PR VHS cameras were snake using a hook. We used a transparent box to make used, one over the arena set on a tripod and facing the sure that the snake could see its surrounding environ- ground, and the other on the ground, lateral to the arena ment before the initiation of trials. The acrylic box was and facing the wall. The ground was covered with a also cleaned with ethanol before the tests. The arena black plastic sheet; both the plastic sheet and the wall lights were on prior to introducing snakes into the arena. had gridlines of 1 and 2 cm, respectively, for distance Snakes were left undisturbed for 10 minutes before the estimates. The light sources were two 60 W bulbs set on beginning of the tests. The 10 minute interval was se- the main axis of the arena, one at each side. Although lected arbitrarily, but we believe it was enough for the rather artificial, the light sources were necessary for the snakes to settle down before the initiation of trials. recording of the trials on tape. Cameras were turned on by remote control and re- corded at 30 frames/s. Trials began when the acrylic cover was removed with a hook and the stimulus object was introduced into the arena and moved towards the snake, parallel to the ground and about 1 cm above it, always by the same person. The stimulus object touched the snake’s body and was withdrawn repeatedly, about once every two seconds, 30 times uninterruptedly for each snake. If the snake went out of the camera’s field (time out; cf. Martin & Bateson, 1993), the stimulus ob- ject was removed from the arena and the snake was brought to its centre with a hook; this will hereafter be termed an intervention.
Recommended publications
  • Phylogenetic Diversity, Habitat Loss and Conservation in South
    Diversity and Distributions, (Diversity Distrib.) (2014) 20, 1108–1119 BIODIVERSITY Phylogenetic diversity, habitat loss and RESEARCH conservation in South American pitvipers (Crotalinae: Bothrops and Bothrocophias) Jessica Fenker1, Leonardo G. Tedeschi1, Robert Alexander Pyron2 and Cristiano de C. Nogueira1*,† 1Departamento de Zoologia, Universidade de ABSTRACT Brasılia, 70910-9004 Brasılia, Distrito Aim To analyze impacts of habitat loss on evolutionary diversity and to test Federal, Brazil, 2Department of Biological widely used biodiversity metrics as surrogates for phylogenetic diversity, we Sciences, The George Washington University, 2023 G. St. NW, Washington, DC 20052, study spatial and taxonomic patterns of phylogenetic diversity in a wide-rang- USA ing endemic Neotropical snake lineage. Location South America and the Antilles. Methods We updated distribution maps for 41 taxa, using species distribution A Journal of Conservation Biogeography models and a revised presence-records database. We estimated evolutionary dis- tinctiveness (ED) for each taxon using recent molecular and morphological phylogenies and weighted these values with two measures of extinction risk: percentages of habitat loss and IUCN threat status. We mapped phylogenetic diversity and richness levels and compared phylogenetic distances in pitviper subsets selected via endemism, richness, threat, habitat loss, biome type and the presence in biodiversity hotspots to values obtained in randomized assemblages. Results Evolutionary distinctiveness differed according to the phylogeny used, and conservation assessment ranks varied according to the chosen proxy of extinction risk. Two of the three main areas of high phylogenetic diversity were coincident with areas of high species richness. A third area was identified only by one phylogeny and was not a richness hotspot. Faunal assemblages identified by level of endemism, habitat loss, biome type or the presence in biodiversity hotspots captured phylogenetic diversity levels no better than random assem- blages.
    [Show full text]
  • The Modular Nature of Bradykinin-Potentiating Peptides
    Sciani and Pimenta Journal of Venomous Animals and Toxins including Tropical Diseases (2017) 23:45 DOI 10.1186/s40409-017-0134-7 REVIEW Open Access The modular nature of bradykinin- potentiating peptides isolated from snake venoms Juliana Mozer Sciani and Daniel Carvalho Pimenta* Abstract Bradykinin-potentiating peptides (BPPs) are molecules discovered by Sergio Ferreira – who found them in the venom of Bothrops jararaca in the 1960s – that literally potentiate the action of bradykinin in vivo by, allegedly, inhibiting the angiotensin-converting enzymes. After administration, the global physiological effect of BPP is the decrease of the blood pressure. Due to this interesting effect, one of these peptides was used by David Cushman and Miguel Ondetti to develop a hypotensive drug, the widely known captopril, vastly employed on hypertension treatment. From that time on, many studies on BPPs have been conducted, basically describing new peptides and assaying their pharmacological effects, mostly in comparison to captopryl. After compiling most of these data, we are proposing that snake BPPs are ‘modular’ peptidic molecules, in which the combination of given amino acid ‘blocks’ results in the different existing peptides (BPPs), commonly found in snake venom. We have observed that there would be mandatory modules (present in all snake BPPs), such as the N-terminal pyroglutamic acid and C-terminal QIPP, and optional modules (amino acid blocks present in some of them), such as AP or WAQ. Scattered between these modules, there might be other amino acids that would ‘complete’ the peptide, without disrupting the signature of the classical BPP. This modular arrangement would represent an important evolutionary advantage in terms of biological diversity that might have its origins either at the genomic or at the post-translational modification levels.
    [Show full text]
  • Relationship of Venom Ontogeny and Diet in Bothrops
    Herpetologica. 55(2), 1999, 200-204 @ 1999 hy The Herpetologists' League, Inc. RELATIONSHIP OF VENOM ONTOGENY AND DIET IN BOTHROPS DENIS V ANDRADE AND AUGUSTO S. ABE Departamento de Zoologia, Universidade Estadual Paulista, c. p. 199, 13506-900, Rio Claro, São Paulo, Brazil ABSTRACT: We studied ontogenetic changes in venom toxicity of the pitvipers Bothrops jararaca and B. altematus in order to evaluate the relationship between venom action and diet. Toxicity tests (LD",,) were performed for the venoms of adult and juvenile snakes on mice and bullfrog froglets, which represented endothermic and ectothermic prey respectively. The venom of juveniles of B. jararaca, but not of B. altematus, had a higher toxicity on anurans than that of adults. This finding is consistent with the feeding habits of these two species, because juveniles of B. jararaca feed mainly on small anurans and lizards, shifting to endothermic prey at maturity, whereas B. altematus preys mainly on endotherms throughout its life. Venom toxicity in endotherms was higher for adults of B. jararaca compared to juveniles, a feature not observed for B. altematus. It is proposed that prey death!immobilization is the main function of the venom of juvenile snakes. As the snake grows, the digestive role of venom may become increasingly important, because adults prey upon large and bulky prey. The importance of adult venoms in prey digestion is reflected in their higher proteolytic activity. Key words: Bothrops; Electrophoresis; Venom ontogeny; Venom specificity; Viperidae SNAKESare strictly camivorous and al- that ontogenetic variation could be related ways ingest their prey whole, and for many to differences between the feeding habits species feeding episodes occur sporadical- of juvenile and adult snakes (Gans and EI- ly on relatively large animals (Greene, liot, 1968; Sazima, 1991).
    [Show full text]
  • In-Depth Transcriptome Reveals the Potential Biotechnological Application of Bothrops Jararaca Venom Gland
    RESEARCH OPEN ACCESS ISSN 1678-9199 www.jvat.org In-depth transcriptome reveals the potential biotechnological application of Bothrops jararaca venom gland Leandro de Mattos Pereira1,2, Elisa Alves Messias1, Bruna Pereira Sorroche1, Angela das Neves Oliveira1, 1 1 3 Lidia Maria Rebolho Batista Arantes , Ana Carolina de Carvalho , Anita Mitico Tanaka-Azevedo , 3 1 1,4,5* Kathleen Fernandes Grego , André Lopes Carvalho , Matias Eliseo Melendez 1Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, SP, Brazil. 2Laboratory of Molecular Microbial Ecology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil. 3Laboratory of Herpetology, Butantan Institute, São Paulo, SP, Brazil. 4Pelé Little Prince Research Institute, Curitiba, PR, Brazil. 5Little Prince College, Curitiba, PR, Brazil. Abstract Background: Lack of complete genomic data of Bothrops jararaca impedes molecular Keywords: biology research focusing on biotechnological applications of venom gland components. Bothrops jararaca Identification of full-length coding regions of genes is crucial for the correct molecular Venom gland cloning design. Transcriptome Methods: RNA was extracted from the venom gland of one adult female specimen of Bothrops jararaca. Deep sequencing of the mRNA library was performed using Biotechnological application Illumina NextSeq 500 platform. De novo assembly of B. jararaca transcriptome was Stonustoxin done using Trinity. Annotation was performed using Blast2GO. All predicted proteins Verrucotoxin after clustering step were blasted against non-redundant protein database of NCBI using BLASTP. Metabolic pathways present in the transcriptome were annotated using the KAAS-KEGG Automatic Annotation Server. Toxins were identified in the B. jararaca predicted proteome using BLASTP against all protein sequences obtained from Animal Toxin Annotation Project from Uniprot KB/Swiss-Pro database.
    [Show full text]
  • Photoreceptors Morphology and Genetics of the Visual Pigments Of
    Vision Research 158 (2019) 72–77 Contents lists available at ScienceDirect Vision Research journal homepage: www.elsevier.com/locate/visres Photoreceptors morphology and genetics of the visual pigments of Bothrops jararaca and Crotalus durissus terrificus (Serpentes, Viperidae) T ⁎ Guido Barbieri Bittencourta, Einat Hauzmana,b, , Daniela Maria Oliveira Boncia,b, Dora Fix Venturaa,b a Departamento de Psicologia Experimental, Instituto de Psicologia, Universidade de São Paulo, São Paulo, Brazil b Instituto de Ensino e Pesquisa, Hospital Israelita Albert Einstein, São Paulo, Brazil ARTICLE INFO ABSTRACT Keywords: Snakes inhabit a great variety of habitats, whose spectral quality of light may vary a lot and influence specific Snakes adaptations of their visual system. In this study, we investigated the genetics of the visual opsins and the Viperidae morphology of retinal photoreceptors, of two nocturnal snakes from the Viperidae family, Bothrops jararaca and Retina Crotalus durissus terrificus, which inhabit preferentially the Atlantic Rain Forest and the Brazilian Savannah, Visual ecology respectively. Total RNA was extracted from homogenized retinas and converted to cDNA. The opsin genes ex- Photoreceptors pressed in snake retinas, LWS, RH1, and SWS1, were amplified by polymerase chain reactions (PCRs) and se- Opsins quenced. The absorption peak (λmax) of the opsins were estimated based on amino acids located at specific spectral tuning sites. Photoreceptor cell populations were analyzed using immunohistochemistry with anti-opsin antibodies. Results showed the same morphological cell populations and same opsins absorption peaks, in both viperid species: double and single cones with LWS photopigment and λmax at ∼555 nm; single cones with SWS1 photopigment and λmax at ∼360 nm; and rods with the rhodopsin RH1 photopigment and λmax at ∼500 nm.
    [Show full text]
  • Antimicrobial Peptides in Reptiles
    Pharmaceuticals 2014, 7, 723-753; doi:10.3390/ph7060723 OPEN ACCESS pharmaceuticals ISSN 1424-8247 www.mdpi.com/journal/pharmaceuticals Review Antimicrobial Peptides in Reptiles Monique L. van Hoek National Center for Biodefense and Infectious Diseases, and School of Systems Biology, George Mason University, MS1H8, 10910 University Blvd, Manassas, VA 20110, USA; E-Mail: [email protected]; Tel.: +1-703-993-4273; Fax: +1-703-993-7019. Received: 6 March 2014; in revised form: 9 May 2014 / Accepted: 12 May 2014 / Published: 10 June 2014 Abstract: Reptiles are among the oldest known amniotes and are highly diverse in their morphology and ecological niches. These animals have an evolutionarily ancient innate-immune system that is of great interest to scientists trying to identify new and useful antimicrobial peptides. Significant work in the last decade in the fields of biochemistry, proteomics and genomics has begun to reveal the complexity of reptilian antimicrobial peptides. Here, the current knowledge about antimicrobial peptides in reptiles is reviewed, with specific examples in each of the four orders: Testudines (turtles and tortosises), Sphenodontia (tuataras), Squamata (snakes and lizards), and Crocodilia (crocodilans). Examples are presented of the major classes of antimicrobial peptides expressed by reptiles including defensins, cathelicidins, liver-expressed peptides (hepcidin and LEAP-2), lysozyme, crotamine, and others. Some of these peptides have been identified and tested for their antibacterial or antiviral activity; others are only predicted as possible genes from genomic sequencing. Bioinformatic analysis of the reptile genomes is presented, revealing many predicted candidate antimicrobial peptides genes across this diverse class. The study of how these ancient creatures use antimicrobial peptides within their innate immune systems may reveal new understandings of our mammalian innate immune system and may also provide new and powerful antimicrobial peptides as scaffolds for potential therapeutic development.
    [Show full text]
  • Topographic Anatomy and Sexual Dimorphism of Bothrops Erythromelas Amaral , 1923 (Squamata: Serpentes: Viperidae)
    hg_PicturePortrait_gondim et al _topographical_anatomy_bothrops_erythromelas_herPetoZoA.qxd 11.02.2016 16:58 seite 1 herPetoZoA 28 (3/4): 133 - 140 133 wien, 30. Jänner 2016 topographic anatomy and sexual dimorphism of Bothrops erythromelas AMArAl , 1923 (squamata: serpentes: Viperidae) topographische Anatomie und geschlechtsdimorphismus von Bothrops erythromelas AMArAl , 1923 (squamata: serpentes: Viperidae) PAtríCiA de MeneZes gondiM & J oão FAbríCio MotA rodrigues & M AriA JuliAnA borges -l eite & d iVA MAriA borges -n oJosA KurZFAssung informationen über die innere Anatomie brasilianischer schlangen sind rar. Über Bothrops erythromelas AMArAl , 1923, eine endemische Art der Ökoregion Caatinga in nordostbrasilien, ist auch biologisch wenig bekan - nt. diese studie untersucht die topographische Anatomie und den geschlechtsdimorphismus bei dieser lanzen - otternart. die lage der inneren organe wurde in bezug auf die bauchschuppen beschrieben, indem angegeben wurde, auf höhe welcher schuppen sie beginnen und enden. Folgende Parameter der Körpergestalt wurden zur untersuchung des sexualdimorphismus ausgewertet: Anzahl der bauchschuppen, Kopf-rumpf-länge, schwanz - länge, Kopflänge, Kopfbreite, Kopfhöhe und Kopfvolumen. die topographische lage des herzens folgt dem für Viperidae typischen Muster, bei denen dieses organ vergleichsweise weit caudal positioniert ist. das Vorhandensein einer tracheallunge, ein für dieser gruppe typi - sches Merkmal, wurde bestätigt. die geschlechtsunterschiede in der Kopf-rumpf-länge waren nahezu sig - nifikant, mit höheren werten für weibchen, wahrscheinlich um Platz und nahrungsressourcen für große würfe zu gewährleisten. die werte für höhe und Volumen des Kopfes waren ebenfalls bei den weibchen größer. AbstrACt information on the internal anatomy of brazilian serpents is scarce. Bothrops erythromelas AMArAl , 1923, native to the northeast brazilian ecoregion called Caatinga, is also poorly known with regard to its biology.
    [Show full text]
  • Sexual Dimorphism in Venom of Bothrops Jararaca(Serpentes: Viperidae)
    ARTICLE IN PRESS Toxicon 48 (2006) 401–410 www.elsevier.com/locate/toxicon Sexual dimorphism in venom of Bothrops jararaca(Serpentes: Viperidae) M.F.D. FurtadoÃ, S.R. Travaglia-Cardoso, M.M.T. Rocha Laborato´rio de Herpetologia, Instituto Butantan, Av. Vital Brazil, 1500, 05503-900, Sao Paulo, SP, Brazil Received 28 December 2005; received in revised form 14 June 2006; accepted 19 June 2006 Available online 28 June 2006 Abstract Bothrops jararaca is an abundant snake in Brazil, and its venom has been studied exhaustively. The species exhibits adult size dimorphism in which female are larger. We registered the growth in Snout-Vent Length and weight of one litter (with 11 females and 12 males). We compared growth curves and venom profile between male and female of B. jararaca in order to establish the relationship of those characters and sex. Their venoms were analyzed when they were 36 months old, concerning SDS PAGE, protein content, proteolytic, hyaluronidasic, phospholipasic, blood-clotting, edematogenic, hemorrhagic, myotoxic activities, and lethality. Differences in the growth curves of the females and the males were significantly different after the 12th month of age, with the females growing faster. Females produced five times more venom than males. The electrophoretic patterns were variable: the venom from males had more protein bands than females. Venom composition varied significantly between males and females. Venom from females is more potent for hyaluronidasic, hemorrhagic, and lethality activities, whereas venom from males is more potent for coagulant, phospholipasic, and myotoxic activities. The variability of proteolytic and edematogenic activities were not significant. The important sexual dimorphism in body size and mass, amount of venom produced, and venom composition in B.
    [Show full text]
  • Effect of Bothrops Alternatus Snake Venom on Macrophage Phagocytosis Er
    The Journal of Venomous Animals and Toxins including Tropical Diseases ISSN 1678-9199 | 2011 | volume 17 | issue 4 | pages 430-441 Effect of Bothrops alternatus snake venom on macrophage phagocytosis ER P and superoxide production: participation of protein kinase C A P Setubal SS (1), Pontes AS (1), Furtado JL (1), Kayano AM (1), Stábeli RG (1, 2), Zuliani JP (1, 2) RIGINAL O (1) Laboratory of Biochemistry and Biotechnology and Laboratory of Cell Culture and Monoclonal Antibodies, Tropical Pathology Research Institute (Ipepatro), Oswaldo Cruz Foundation (Fiocruz), Porto Velho, Rondônia State, Brazil; (2) Center of Biomolecules Applied to Medicine, Department of Medicine, Federal University of Rondônia (UNIR), Porto Velho, Rondônia State, Brazil. Abstract: Envenomations caused by different species ofBothrops snakes result in severe local tissue damage, hemorrhage, pain, myonecrosis, and inflammation with a significant leukocyte accumulation at the bite site. However, the activation state of leukocytes is still unclear. According to clinical cases and experimental work, the local effects observed in envenenomation by Bothrops alternatus are mainly the appearance of edema, hemorrhage, and necrosis. In this study we investigated the ability of Bothrops alternatus crude venom to induce macrophage activation. At 6 to 100 μg/mL, BaV is not toxic to thioglycollate-elicited macrophages; at 3 and 6 μg/mL, it did not interfere in macrophage adhesion or detachment. Moreover, at concentrations of 1.5, 3, and 6 μg/mL the venom induced an increase in phagocytosis via complement receptor one hour after incubation. Pharmacological treatment of thioglycollate-elicited macrophages with staurosporine, a protein kinase (PKC) inhibitor, abolished phagocytosis, suggesting that PKC may be involved in the increase of serum-opsonized zymosan phagocytosis induced by BaV.
    [Show full text]
  • Phylogenetic Relationships Within Bothrops Neuwiedi Group
    Molecular Phylogenetics and Evolution 71 (2014) 1–14 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Phylogenetic relationships within Bothrops neuwiedi group (Serpentes, Squamata): Geographically highly-structured lineages, evidence of introgressive hybridization and Neogene/Quaternary diversification ⇑ Taís Machado a, , Vinícius X. Silva b, Maria José de J. Silva a a Laboratório de Ecologia e Evolução, Instituto Butantan, Av. Dr. Vital Brazil, 1500, São Paulo, SP 05503-000, Brazil b Coleção Herpetológica Alfred Russel Wallace, Instituto de Ciências da Natureza, Universidade Federal de Alfenas, Rua Gabriel Monteiro da Silva, 700, Alfenas, MG 37130-000, Brazil article info abstract Article history: Eight current species of snakes of the Bothrops neuwiedi group are widespread in South American open Received 8 November 2012 biomes from northeastern Brazil to southeastern Argentina. In this paper, 140 samples from 93 different Revised 3 October 2013 localities were used to investigate species boundaries and to provide a hypothesis of phylogenetic rela- Accepted 5 October 2013 tionships among the members of this group based on 1122 bp of cyt b and ND4 from mitochondrial DNA Available online 17 October 2013 and also investigate the patterns and processes occurring in the evolutionary history of the group. Com- bined data recovered the B. neuwiedi group as a highly supported monophyletic group in maximum par- Keywords: simony, maximum likelihood and Bayesian analyses, as well as four major clades (Northeast I, Northeast Mitochondrial DNA II, East–West, West-South) highly-structured geographically. Monophyly was recovered only for B. pubes- Incomplete lineage sorting Hybrid zone cens.
    [Show full text]
  • Redalyc.Morphological Variation of Philodryas Patagoniensis (Girard
    Biota Neotropica ISSN: 1676-0611 [email protected] Instituto Virtual da Biodiversidade Brasil Vallim Gouveia, Rafaella; Alves Novelli, Iara; Matos Vieira, Fabiano; de Sousa, Bernadete Maria Morphological variation of Philodryas patagoniensis (Girard, 1858) (Serpentes, Dipsadidae) from Brazil, based on the study of pholidosis, coloration and morphometric features Biota Neotropica, vol. 17, núm. 1, 2017, pp. 1-9 Instituto Virtual da Biodiversidade Campinas, Brasil Available in: http://www.redalyc.org/articulo.oa?id=199149836014 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Biota Neotropica 17(1): e20160237, 2017 ISSN 1676-0611 (online edition) article Morphological variation of Philodryas patagoniensis (Girard, 1858) (Serpentes, Dipsadidae) from Brazil, based on the study of pholidosis, coloration and morphometric features Rafaella Vallim Gouveia1*, Iara Alves Novelli2, Fabiano Matos Vieira3 & Bernadete Maria de Sousa2 1Universidade Federal de Juiz de Fora, Comportamento animal Juiz de Fora, MG, Brazil 2Universidade Federal de Juiz de Fora, Departamento de Zoologia, Juiz de Fora, MG, Brazil 3Instituto Oswaldo Cruz, Laboratório Helmintos Parasitos de Vertebrados, Rio de Janeiro, RJ, Brazil *Corresponding author: Rafaella Vallim Gouveia, e-mail: [email protected] GOUVEIA, R.V., NOVELLI, I.A., VIEIRA, F.M., SOUSA, B.M. Morphological variation of Philodryas patagoniensis (Girard, 1858) (Serpentes, Dipsadidae) from Brazil, based on the study of pholidosis, coloration and morphometric features. Biota Neotropica. 17(1): e20160237. http://dx.doi.org/10.1590/1676-0611-BN-2016-0237 Abstract: The current study aimed to verify the relationship between the patterns of coloration, the morphometrical features and pholidosis of specimens of Philodryas patagoniensis from Brazil, with the sexual dimorphism of this species.
    [Show full text]
  • Diversity of Metalloproteinases in Bothrops Neuwiedi Snake Venom
    Moura-da-Silva et al. BMC Genetics 2011, 12:94 http://www.biomedcentral.com/1471-2156/12/94 RESEARCHARTICLE Open Access Diversity of metalloproteinases in Bothrops neuwiedi snake venom transcripts: evidences for recombination between different classes of SVMPs Ana M Moura-da-Silva1*, Maria Stella Furlan1, Maria Cristina Caporrino1, Kathleen F Grego2, José Antonio Portes-Junior1, Patrícia B Clissa1, Richard H Valente3 and Geraldo S Magalhães1 Abstract Background: Snake venom metalloproteinases (SVMPs) are widely distributed in snake venoms and are versatile toxins, targeting many important elements involved in hemostasis, such as basement membrane proteins, clotting proteins, platelets, endothelial and inflammatory cells. The functional diversity of SVMPs is in part due to the structural organization of different combinations of catalytic, disintegrin, disintegrin-like and cysteine-rich domains, which categorizes SVMPs in 3 classes of precursor molecules (PI, PII and PIII) further divided in 11 subclasses, 6 of them belonging to PII group. This heterogeneity is currently correlated to genetic accelerated evolution and post- translational modifications. Results: Thirty-one SVMP cDNAs were full length cloned from a single specimen of Bothrops neuwiedi snake, sequenced and grouped in eleven distinct sequences and further analyzed by cladistic analysis. Class P-I and class P-III sequences presented the expected tree topology for fibrinolytic and hemorrhagic SVMPs, respectively. In opposition, three distinct segregations were observed for class P-II sequences. P-IIb showed the typical segregation of class P-II SVMPs. However, P-IIa grouped with class P-I cDNAs presenting a 100% identity in the 365 bp at their 5’ ends, suggesting post-transcription events for interclass recombination.
    [Show full text]