Optical Response and Control of Molecular Systems

Total Page:16

File Type:pdf, Size:1020Kb

Optical Response and Control of Molecular Systems Optical Response and Control of Molecular Systems by Porscha Louise McRobbie A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Physics) in The University of Michigan 2010 Doctoral Committee: Professor Eitan Geva, Co-Chair Professor Roseanne J. Sension, Co-Chair Associate Professor Luming Duan Assistant Professor Kevin J. Kubarych Assistant Professor Jennifer P. Ogilvie Porscha Louise McRobbie c 2010 ! All Rights Reserved This work is dedicated to my parents, who taught me to dream big and refuse to give up. ii ACKNOWLEDGEMENTS I would like to acknowledge the help of many individuals whom I have been fortu- nate enough to know during both my undergraduate and graduate studies. Without them, this thesis would not exist. I would like to thank my undergraduate mentors at Seattle University: Dr. John Meany for his sense of humor and for being the first to nudge me toward gradu- ate studies; Dr. David Boness, for his attempts to explain the precise difference between physical chemistry and chemical physics, and for his generous advice re- garding academia and job searches long after I had graduated; and Dr. Michael Morgan who served as my primary undergraduate research advisor, for showing me the beauty of classical mechanics and mathematics, and whose infectious passion for knowledge is unforgettable. I would like to thank Dr. Jose Alvarez for serving as my surrogate adviser and spending countless hours with me during my first summer of graduate research, and Sung-Kwan Mo for his kindness and cheery disposition, which made our shared of- fice environment quiet and pleasant. I would also like to thank my classmates Kevin Landmark and Damian Khan for keeping it all light while suffering through electro- dynamics and condensed matter courses. I would especially like to thank Stephen Reed, who assured me that the world wouldn’t crumble if I stopped calculating and ate cookies once in a while, and who became one of my best friends. A special thanks to Anson Cheung, for all of the late night laughs and whose encouragement iii and support over the years were much appreciated. I would like to thank members of the Geva group, past and present, who made the office environment both a colorful and pleasant place to be: Frank Vazquez, Gabriel Hanna, Irina Navrotskaya, and Henry Boateng. I also thank Anne Vazquez for her inspiring teaching insights, and overall positive attitude. Finally, I consider myself unbelievably fortunate to have crossed paths with my thesis adviser, Prof. Eitan Geva. His willingness to offer guidance and advice in matters of research, teaching, and career advancement are truly unparalleled. I will miss the morning espresso tradition, and am grateful for having been taught to argue about phase factors and tensor algebra “Israeli style”. I leave his group after five years transformed and inspired both scientifically and personally. In terms of computing, I am indebted to Todd Raeker and David Braun for their abilities to make computing as painless as possible. An additional thanks to my fellow Ann Arbor Ashtangis, who have inspired me beyond words both on and offthe mat, and who contributed greatly to my overall sanity and peace of mind. Namaste! And lastly, a special thanks goes to Atsushi Yagi for his endless support at all stages of my graduate tenure. I have learned much from his calm and level-headed approach to both studies and life, and for his patience and kindness toward me I am truly grateful. iv TABLE OF CONTENTS DEDICATION .......................................... ii ACKNOWLEDGEMENTS .................................. iii LIST OF FIGURES ...................................... vii LIST OF APPENDICES ................................... x ABSTRACT ........................................... xi CHAPTER I. Prologue .......................................... 1 1.1 Introduction . 1 1.1.1 Coherent Control . 2 1.1.2 Multidimensional Spectroscopy . 5 1.2 Model Systems . 6 1.2.1 Two-State Model for Electronic Spectroscopy . 7 1.2.2 Multistate Model for Vibrational Spectroscopy . 10 1.3 Overview . 12 II. Coherent Control of Population Transfer in the Presence of Dephasing .. 15 2.1 Introduction . 15 2.2 Chirped Laser Pulses and Control Parameters . 17 2.3 Two-State Model in a Rotating Frame and the RWA . 19 2.4 Quantum Mechanical Calculations for Population Transfer . 22 2.4.1 Wavepacket Propagation via Fourier Grid Methods . 24 2.4.2 Energy Representation . 29 2.5 Dephasing Effects . 32 2.5.1 Stochastic model for fluctuating energy levels . 33 2.5.2 Solving the Stochastic Schr¨odingerEquation . 35 2.6 Results and Discussion . 36 2.6.1 Dephasing-Free Population Transfer . 36 2.6.2 The Limit of Slow Fluctuations . 43 2.6.3 The Limit of Fast Fluctuations . 47 2.7 Summary and Future Outlook . 50 III. Methods for Calculating One- and Two-Dimensional Optical Spectra ... 52 3.1 Introduction . 52 3.2 Theory of Optical Response for a Two-State System . 54 3.2.1 Linear Response . 54 v 3.2.2 Nonlinear Response . 55 3.3 Benchmark Model and Exact Solutions . 57 3.4 Forward-Backward Initial-Value Representation Method (FB-IVR) . 63 3.5 Linearized Semiclassical Method (LSC) . 69 3.6 Standard Second Order Cumulant Method (2OC) . 75 3.7 Alternative Second Order Cumulant Method (2OCa) . 78 3.8 Results and Discussion . 82 3.8.1 Linear Spectra . 83 3.8.2 Nonlinear Spectra . 87 3.9 Summary and Future Outlook . 92 IV. Two-dimensional Infrared Spectra for Multistate Systems .......... 94 4.1 Introduction . 94 4.2 Polarization-Selective Response: Optical Response Tensors . 97 4.2.1 Orientational Averaging . 98 4.2.2 Optical Response Tensors for a Multistate Vibrational System . 100 4.3 ab initio 2DIR Spectra . 104 4.3.1 Field-free Anharmonic Hamiltonian in Normal Coordinates . 104 4.3.2 Field-Matter Interaction: Polarized Transition Dipoles . 109 4.3.3 Electronic Structure Inputs . 112 4.4 Application to Metal Carbonyl Compound Mn(CO)5 .............113 4.4.1 Preliminary Results and Discussion . 114 V. Summary ......................................... 117 APPENDICES .......................................... 121 BIBLIOGRAPHY ........................................ 148 vi LIST OF FIGURES Figure 1.1 A 2D experiment with pulse sequence E1,E2 and E3, which stimulates the emission (3) of the third-order signal field Esig. The signal is a function of three time delays, (t1,t2,t3), where t1 is the time delay between the first and second pulses (evolution), t2 is the delay between the second and third pulses (evolution), and t3 is the time delay between the third pulse and detection. 6 1.2 Schematic of the two-state model. ω0 and ω are the 0 0 and vertical transition eg ver − frequencies, respectively. Ve/g is the Born-Oppenheimer potential associated with the e/g electronic state, and Qd is displacement between the minima. Each surface has associated vibrational states labeled by n, g/e for n =0, 1, 2,.......... 9 {| #} 1.3 Schematic energy level diagram for a multi-state system with eigenstates and en- ergy levels mj ,εmj . The index m =0, 1, 2,... labels the band, where m =0 corresponds{| to the# ground} state, and j =0, 1, 2,... labels the state within a given band. 11 2.1 Energy fluctuation statistics for σ = 1. Sample noise trajectories for correlation 3 times (a) τc = 10 τ0 and (b) τc = 10 τ0, corresponding histogram (c) with FWHM is 2√2 log 2σ×, and (d) the noise correlation× function C(t)= ξ(t)ξ(0) from (2.38). .& . .# . 35 2.2 Final excited state population contour as a function of the frequency domain field amplitude E˜0 and the linear spectral chirp α!, for an isolated molecule at 0K. 38 2.3 Franck-Condon overlap factors (absolute value) for horizontal displacement (a) Qd = 1 used for the population maps presented in this chapter, and (b) Qd =2 for comparison. Integers jg and je label the ten lowest vibrational eigenstates of the ground and excited electronic states, respectively, and the height of the bar corresponds to the absolute value of the overlap. 39 2.4 Intrapulse “pump-dump” mechanism between two electronic states Vg and Ve. The top part of the figure represents a negatively chirped pulse, where the high frequency components arrive earlier in time than the low frequency ones. Population is first transferred upward by the blue edge of the pulse, followed by time evolution of the wavepacket for a time on the order of the pulse duration tf tqi, and finally population is tranferred downward by the red edge of the pulse.∼ − . 41 vii 2.5 Ground and excited state populations and wave function probability densities for zero chirp α! = 0. Left panels: The pulse envelope E(t) (black dashed), ground | | state population pg(t) (blue) and excited state population pe(t) (red). Right panels: Probability densities of the ground state before the pulse (black), the ground state after the pulse at tf (blue) and the excited state after the pulse at tf (red). Lower intensity E˜0 =3.7 is shown in (a) and (b), while higher intensity E˜0 =4.8 is shown in| (c)| and (d). .| . .| . 43 2.6 Population maps showing the approach to the inhomogeneously broadened limit. 4 The correlation time is τc = 10 τ0, where τ0 =0.79 is the transform limited pulse duration, and increasing values× of the fluctuation amplitude are shown in subfigures (a)-(f). All maps were averaged over 2000 realizations of the stochastic process to ensure convergence. 45 2.7 Population maps showing the approach to the homogeneously broadened (motional narrowing) limit. The fluctuation amplitude is σ = 2, and decreasing values of the solvent correlation time are shown in subfigures (a)-(f). All maps were averaged over 2000 realizations of the stochastic process to ensure convergence. 49 3.1 Propagation pathway for classical trajectories of R2 in the FB-IVR method.
Recommended publications
  • Chapter 4 Introduction to Molecular QM
    Chapter 4 Introduction to Molecular QM Contents 4.1 Born-Oppenheimer approximation ....................76 4.2 Molecular orbitals .................................. ..77 + 4.3 Hydrogen molecular ion H2 ..........................78 4.4 The structures of diatomic molecules ..................83 Basic Questions A. What is Born-Oppenheimer approximation? B. What are molecular orbitals? C. Is He2 a stable molecule? 75 76 CHAPTER 4. INTRODUCTION TO MOLECULAR QM 4.1 Born-Oppenheimer approximation and electron terms Consider a general many-body Hamiltonian of a molecule Hˆ = Hˆe + Hˆn + Hˆen, where Hˆe is the Hamiltonian of many-electrons in the molecule, Hˆn is that of nuclei, and Hˆen describes the interaction potential between the two subsystems. As nuclear mass is much larger (about 2000 times larger) than electron mass, it is a good ap- proximation to ignore nuclear’s motion and focus on the dynamics of electrons for given nuclear configuration. We use general coordinate x =(x1, x2, ...) for all electrons (spatial and spin coor- dinates) and X = (X1,X2, ...) for all nuclei’s. The total wavefunction of a molecule is separatable as Ψ(x, X)=Ψe(x, X)Ψn(X) . If we approximate HˆnΨe(x, X) Ψe(x, X)Hˆn (the noncommuting kinetic part is proportional to 1/M , where M ≈is nuclear mass), we have separatable Schr¨odinger equations, namely (Hˆe + Hˆen)Ψe(x, X)= EΨe(x, X), E = E(X) for electrons motion with nuclei’s coordinates X as parameters, and [Hˆn + E(X)]Ψn(X)= EnΨn(X) for the nuclei motion. This is called Born-Oppenheimer approximation. Notice that E = E(X) plays a role of potential in the nuclei Schr¨odinger equation.
    [Show full text]
  • Chapter 10 Theories of Electronic Molecular Structure
    Chapter 10 Theories of Electronic Molecular Structure Solving the Schrödinger equation for a molecule first requires specifying the Hamiltonian and then finding the wavefunctions that satisfy the equation. The wavefunctions involve the coordinates of all the nuclei and electrons that comprise the molecule. The complete molecular Hamiltonian consists of several terms. The nuclear and electronic kinetic energy operators account for the motion of all of the nuclei and electrons. The Coulomb potential energy terms account for the interactions between the nuclei, the electrons, and the nuclei and electrons. Other terms account for the interactions between all the magnetic dipole moments and the interactions with any external electric or magnetic fields. The charge distribution of an atomic nucleus is not always spherical and, when appropriate, this asymmetry must be taken into account as well as the relativistic effect that a moving electron experiences as a change in mass. This complete Hamiltonian is too complicated and is not needed for many situations. In practice, only the terms that are essential for the purpose at hand are included. Consequently in the absence of external fields, interest in spin- spin and spin-orbit interactions, and in electron and nuclear magnetic resonance spectroscopy (ESR and NMR), the molecular Hamiltonian usually is considered to consist only of the kinetic and potential energy terms, and the Born- Oppenheimer approximation is made in order to separate the nuclear and electronic motion. In general, electronic wavefunctions for molecules are constructed from approximate one-electron wavefunctions. These one-electron functions are called molecular orbitals. The expectation value expression for the energy is used to optimize these functions, i.e.
    [Show full text]
  • Eliminating Ground-State Dipole Moments in Quantum Optics
    Eliminating ground-state dipole moments in quantum optics via canonical transformation Gediminas Juzeliunas* Luciana Dávila Romero† and David L. Andrews† *Institute of Theoretical Physics and Astronomy, Vilnius University, A. Goštauto 12, 2600 Vilnius, Lithuania †School of Chemical Sciences and Pharmacy, University of East Anglia, Norwich NR4 7TJ, United Kingdom Abstract By means of a canonical transformation it is shown how it is possible to recast the equations for molecular nonlinear optics to completely eliminate ground-state static dipole coupling terms. Such dipoles can certainly play a highly important role in nonlinear optical response – but equations derived by standard methods, in which these dipoles emerge only as special cases of transition moments, prove unnecessarily complex. It has been shown that the elimination of ground-state static dipoles in favor of dipole shifts results in a considerable simplification in form of the nonlinear optical susceptibilities. In a fully quantum theoretical treatment the validity of such a procedure has previously been verified using an expedient algorithm, whose defense was afforded only by a highly intricate proof. In this paper it is shown how a canonical transformation method entirely circumvents such an approach; it also affords new insights into the formulation of quantum field interactions. 2 1. Introduction In recent years it has become increasingly evident that permanent (static) electric dipoles play a highly important role in the nonlinear optical response of molecular systems [1, 2]. Most molecules are intrinsically polar by nature, and calculation of their optical susceptibilities with regard only to transition dipole moments can produce results that are significantly in error [3, 4].
    [Show full text]
  • Geometrical Terms in the Effective Hamiltonian for Rotor Molecules
    Geometrical terms in the effective Hamiltonian for rotor molecules Ian G. Moss∗ School of Mathematics and Statistics, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK (Dated: September 21, 2021) An analogy between asymmetric rotor molecules and anisotropic cosmology can be used to calcu- late new centrifugal distortion terms in the effective potential of asymmetric rotor molecules which have no internal 3-fold symmetry. The torsional potential picks up extra cos α and cos 2α contri- butions, which are comparable to corrections to the momentum terms in methanol and other rotor molecules with isotope replacements. arXiv:1303.6111v1 [physics.chem-ph] 25 Mar 2013 ∗ [email protected] 2 Geometrical ideas can often be used to find underlying order in complex systems. In this paper we shall examine some of the geometry associated with molecular systems with an internal rotational degree of freedom, and make use of a mathematical analogy between these rotor molecules and a class of anisotropic cosmological models to evaluate new torsional potential terms in the effective molecular Hamiltonian. An effective Hamiltonian can be constructed for any dynamical system in which the internal forces can be divided into a strong constraining forces and weaker non-constraining forces. The surface of constraint inherits a natural geometry induced by the kinetic energy functional. This geometry can be described in generalised coordinates qa by a metric gab . The energy levels of the corresponding quantum system divide into energy bands separated by energy gaps. A generalisation of the Born-oppenheimer approximation gives an effective Hamiltonian for an individual energy band. Working up to order ¯h2, the effective quantum Hamiltonian for the reduced theory has a simple form [1{4] 1 H = jgj−1=2p jgj1=2gabp + V + V + V ; (1) eff 2 a b GBO R a ab where pa = −i¯h@=@q , g is the inverse of the metric, jgj its determinant and V is the restriction of the potential of the original system to the constraint surface.
    [Show full text]
  • Solving the Schrödinger Equation of Atoms and Molecules
    Solving the Schrödinger equation of atoms and molecules: Chemical-formula theory, free-complement chemical-formula theory, and intermediate variational theory Hiroshi Nakatsuji, Hiroyuki Nakashima, and Yusaku I. Kurokawa Citation: The Journal of Chemical Physics 149, 114105 (2018); doi: 10.1063/1.5040376 View online: https://doi.org/10.1063/1.5040376 View Table of Contents: http://aip.scitation.org/toc/jcp/149/11 Published by the American Institute of Physics THE JOURNAL OF CHEMICAL PHYSICS 149, 114105 (2018) Solving the Schrodinger¨ equation of atoms and molecules: Chemical-formula theory, free-complement chemical-formula theory, and intermediate variational theory Hiroshi Nakatsuji,a) Hiroyuki Nakashima, and Yusaku I. Kurokawa Quantum Chemistry Research Institute, Kyoto Technoscience Center 16, 14 Yoshida Kawaramachi, Sakyo-ku, Kyoto 606-8305, Japan (Received 16 May 2018; accepted 28 August 2018; published online 20 September 2018) Chemistry is governed by the principle of quantum mechanics as expressed by the Schrodinger¨ equation (SE) and Dirac equation (DE). The exact general theory for solving these fundamental equations is therefore a key for formulating accurately predictive theory in chemical science. The free-complement (FC) theory for solving the SE of atoms and molecules proposed by one of the authors is such a general theory. On the other hand, the working theory most widely used in chemistry is the chemical formula that refers to the molecular structural formula and chemical reaction formula, collectively. There, the central concepts are the local atomic concept, transferability, and from-atoms- to-molecule concept. Since the chemical formula is the most successful working theory in chemistry ever existed, we formulate our FC theory to have the structure reflecting the chemical formula.
    [Show full text]
  • Effective Hamiltonians: Theory and Application
    Autumn School on Correlated Electrons Effective Hamiltonians: Theory and Application Frank Neese, Vijay Chilkuri, Lucas Lang MPI für Kohlenforschung Kaiser-Wilhelm Platz 1 Mülheim an der Ruhr What is and why care about effective Hamiltonians? Hamiltonians and Eigensystems ★ Let us assume that we have a Hamiltonian that works on a set of variables x1 .. xN. H ,..., (x1 xN ) ★ Then its eigenfunctions (time-independent) are also functions of x1 ... xN. H x ,..., x Ψ x ,..., x = E Ψ x ,..., x ( 1 N ) I ( 1 N ) I I ( 1 N ) ★ The eigenvalues of the Hamiltonian form a „spectrum“ of eigenstates that is characteristic for the Hamiltonian E7 There may be multiple E6 systematic or accidental E4 E5 degeneracies among E3 the eigenvalues E0 E1 E2 Effective Hamiltonians ★ An „effective Hamiltonian“ is a Hamiltonian that acts in a reduced space and only describes a part of the eigenvalue spectrum of the true (more complete) Hamiltonian E7 E6 Part that we want to E4 E5 describe E3 E0 E1 E2 TRUE H x ,..., x Ψ x ,..., x = E Ψ x ,..., x (I=0...infinity) ( 1 N ) I ( 1 N ) I I ( 1 N ) (nearly) identical eigenvalues wanted! EFFECTIVE H Φ = E Φ eff I I I (I=0...3) Examples of Effective Hamiltonians treated here 1. The Self-Consistent Size-Consistent CI Method to treat electron correlation ‣ Pure ab initio method. ‣ Work in the basis of singly- and doubly-excited determinants ‣ Describes the effect of higher excitations 2. The Spin-Hamiltonian in EPR and NMR Spectroscopy. ‣ Leads to empirical parameters ‣ Works on fictitous effective electron (S) and nuclear (I) spins ‣ Describe the (2S+1)(2I+1) ,magnetic sublevels‘ of the electronic ground state 3.
    [Show full text]
  • Variational Solutions for Resonances by a Finite-Difference Grid Method
    molecules Article Variational Solutions for Resonances by a Finite-Difference Grid Method Roie Dann 1,*,† , Guy Elbaz 2,†, Jonathan Berkheim 3, Alan Muhafra 2, Omri Nitecki 4, Daniel Wilczynski 2 and Nimrod Moiseyev 4,5,* 1 The Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel 2 Faculty of Mechanical Engineering, Technion—Israel Institute of Technology, Haifa 3200003, Israel; [email protected] (G.E.); [email protected] (A.M.); [email protected] (D.W.) 3 School of Chemistry, Tel Aviv University, Tel Aviv 6997801, Israel; [email protected] 4 Schulich Faculty of Chemistry, Solid State Institute and Faculty of Physics, Technion—Israel Institute of Technology, Haifa 3200003, Israel; [email protected] 5 Solid State Institute and Faculty of Physics, Technion—Israel Institute of Technology, Haifa 3200003, Israel * Correspondence: [email protected] (R.D.); [email protected] (N.M.) † These authors contributed equally to this work. Abstract: We demonstrate that the finite difference grid method (FDM) can be simply modified to satisfy the variational principle and enable calculations of both real and complex poles of the scattering matrix. These complex poles are known as resonances and provide the energies and inverse lifetimes of the system under study (e.g., molecules) in metastable states. This approach allows incorporating finite grid methods in the study of resonance phenomena in chemistry. Possible applications include the calculation of electronic autoionization resonances which occur when ionization takes place as the bond lengths of the molecule are varied. Alternatively, the method can be applied to calculate nuclear predissociation resonances which are associated with activated Citation: Dann, R.; Elbaz, G.; complexes with finite lifetimes.
    [Show full text]
  • Molecules in Magnetic Fields
    Molecules in Magnetic Fields Trygve Helgaker Hylleraas Centre, Department of Chemistry, University of Oslo, Norway and Centre for Advanced Study at the Norwegian Academy of Science and Letters, Oslo, Norway European Summer School in Quantum Chemistry (ESQC) 2019 Torre Normanna, Sicily, Italy September 8{21, 2019 Trygve Helgaker (University of Oslo) Molecules in Magnetic Fields ESQC 2019 1 / 25 Sections 1 Electronic Hamiltonian 2 London Orbitals 3 Paramagnetism and diamagnetism Trygve Helgaker (University of Oslo) Molecules in Magnetic Fields ESQC 2019 2 / 25 Electronic Hamiltonian Section 1 Electronic Hamiltonian Trygve Helgaker (University of Oslo) Molecules in Magnetic Fields ESQC 2019 3 / 25 Electronic Hamiltonian Particle in a Conservative Force Field Hamiltonian Mechanics I In classical Hamiltonian mechanics, a system of particles is described in terms their positions qi and conjugate momenta pi . I For each system, there exists a scalar Hamiltonian function H(qi ; pi ) such that the classical equations of motion are given by: @H @H q_i = ; p_i = (Hamilton's equations) @pi − @qi I note: the Hamiltonian H is not unique! I Example: a single particle of mass m in a conservative force field F (q) I the Hamiltonian is constructed from the corresponding scalar potential: p2 @V (q) H(q; p) = + V (q); F (q) = 2m − @q I Hamilton's equations of motion are equivalent to Newton's equations: @H(q;p) ) q_ = = p @p m = mq¨ = F (q) (Newton's equations) p_ = @H(q;p) = @V (q) ) − @q − @q I Hamilton's equations are first-order differential equations {
    [Show full text]
  • Optical Activity of Electronically Delocalized
    Optical activity of electronically delocalized molecular aggregates: Nonlocal response formulation Thomas Wagersreiter and Shaul Mukamel Department of Chemistry, University of Rochester, Rochester, New York 14627 ~Received 14 June 1996; accepted 26 July 1996! A unified description of circular dichroism and optical rotation in small optically active molecules, larger conjugated molecules, and molecular aggregates is developed using spatially nonlocal electric and magnetic optical response tensors x(r,r8,v). Making use of the time dependent Hartree Fock equations, we express these tensors in terms of delocalized electronic oscillators. We avoid the commonly-used long wavelength ~dipole! approximation k–r!1 and include the full multipolar form of the molecule–field interaction. The response of molecular aggregates is expressed in terms of monomer response functions. Intermolecular Coulomb interactions are rigorously taken into account thus eliminating the necessity to resort to the local field approximation or to a perturbative calculation of the aggregate wave functions. Applications to naphthalene dimers and trimers show significant corrections to the standard interacting point dipoles treatment. © 1996 American Institute of Physics. @S0021-9606~96!01541-3# I. INTRODUCTION ing the local field approximation ~LFA! which accounts for intermolecular electrostatic interactions via a local field Circular dichroism ~CD!, i.e., the difference in absorp- which—at a point like molecule in an aggregate—is the su- tion of right and left circularly polarized light has long been perposition of the external field and the field induced by the used in the investigation of structural properties of extended surrounding molecules modeled as point dipoles. He thus chiral molecules or aggregates.
    [Show full text]
  • Lecture 2 Hamiltonian Operators for Molecules CHEM6085: Density
    CHEM6085: Density Functional Theory Lecture 2 Hamiltonian operators for molecules C.-K. Skylaris CHEM6085 Density Functional Theory 1 The (time-independent) Schrödinger equation is an eigenvalue equation operator for eigenfunction eigenvalue property A Energy operator wavefunction Energy (Hamiltonian) eigenvalue CHEM6085 Density Functional Theory 2 Constructing operators in Quantum Mechanics Quantum mechanical operators are the same as their corresponding classical mechanical quantities Classical Quantum quantity operator position Potential energy (e.g. energy of attraction of an electron by an atomic nucleus) With one exception! The momentum operator is completely different: CHEM6085 Density Functional Theory 3 Building Hamiltonians The Hamiltonian operator (=total energy operator) is a sum of two operators: the kinetic energy operator and the potential energy operator Kinetic energy requires taking into account the momentum operator The potential energy operator is straightforward The Hamiltonian becomes: CHEM6085 Density Functional Theory 4 Expectation values of operators • Experimental measurements of physical properties are average values • Quantum mechanics postulates that we can calculate the result of any such measurement by “averaging” the appropriate operator and the wavefunction as follows: The above example provides the expectation value (average value) of the position along the x-axis. CHEM6085 Density Functional Theory 5 Force between two charges: Coulomb’s Law r Energy of two charges CHEM6085 Density Functional Theory 6
    [Show full text]
  • Eliminating Ground-State Dipole Moments in Quantum Optics Via Canonical Transformation
    PHYSICAL REVIEW A 68, 043811 ͑2003͒ Eliminating ground-state dipole moments in quantum optics via canonical transformation Gediminas Juzeliu¯nas,1 Luciana C. Da´vila Romero,2 and David L. Andrews2 1Institute of Theoretical Physics and Astronomy, Vilnius University, A. Gosˇtauto 12, 2600 Vilnius, Lithuania 2School of Chemical Sciences and Pharmacy, University of East Anglia, Norwich NR4 7TJ, United Kingdom ͑Received 29 April 2003; published 9 October 2003͒ By means of a canonical transformation it is shown how it is possible to recast the equations for molecular nonlinear optics to completely eliminate ground-state static dipole coupling terms. Such dipoles can certainly play a highly important role in nonlinear optical response—but equations derived by standard methods, in which these dipoles emerge only as special cases of transition moments, prove unnecessarily complex. It has been shown that the elimination of ground-state static dipoles in favor of dipole shifts results in a considerable simplification in form of the nonlinear optical susceptibilities. In a fully quantum theoretical treatment the validity of such a procedure has previously been verified using an expedient algorithm, whose defense was afforded only by a highly intricate proof. In this paper it is shown how a canonical transformation method entirely circumvents such an approach; it also affords insights into the formulation of quantum field interac- tions. DOI: 10.1103/PhysRevA.68.043811 PACS number͑s͒: 42.65.An, 33.15.Kr, 42.50.Ct I. INTRODUCTION mentation of a suitable canonical transformation on the mul- tipolar form of the quantum optical Hamiltonian. Elucidating In recent years it has become increasingly evident that the quantum electrodynamical treatment in this way throws permanent ͑static͒ electric dipoles play a highly important light on a number of issues skirted over in the semiclassical role in the nonlinear optical response of molecular systems treatment, and it offers clear scope for extension to higher orders of multipole interaction.
    [Show full text]
  • A New Application of the Modal-Hamiltonian Interpretation of Quantum Mechanics: the Problem of Optical Isomerism
    A new application of the modal-Hamiltonian interpretation of quantum mechanics: the problem of optical isomerism ∗ Sebastian Fortin – Olimpia Lombardi – Juan Camilo Martínez González ∗∗ CONICET – Universidad de Buenos Aires 1.- Introduction The modal interpretations of quantum mechanics found their roots in the works of van Fraassen (1972, 1974), who claimed that the quantum state always evolves unitarily (with no collapse) and determines what may be the case: which physical properties the system may possess, and which properties the system may have at later times. On this basis, in the 1980s several authors presented realist interpretations that can be viewed as belonging to a “modal family”: realist, non-collapse interpretations of the standard formalism of the theory, according to which any quantum system possesses definite properties at all times, and the quantum state assigns probabilities to the possible properties of the system. Given the contextuality of quantum mechanics (Kochen and Specker 1967), the members of the family differ to each other in its rule of definite-value ascription, which picks out, from the set of all observables of a quantum system, the subset of definite-valued properties, that is, the preferred context (see Lombardi and Dieks 2014 and references therein). The traditional modal interpretations, based on the biorthogonal decomposition or on the spectral-decomposition of the quantum state (Kochen 1985, Dieks 1988, 1989, Vermaas and Dieks 1995) faced some difficulties. On the one hand, given the multiple factorizability of a given Hilbert space, their rules of definite-value ascription may lead to contradictions of the Kochen-Specker variety (Bacciagaluppi 1995, Vermaas 1997).
    [Show full text]