The Next 700 Programming Languages
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Introduction to Programming in Lisp
Introduction to Programming in Lisp Supplementary handout for 4th Year AI lectures · D W Murray · Hilary 1991 1 Background There are two widely used languages for AI, viz. Lisp and Prolog. The latter is the language for Logic Programming, but much of the remainder of the work is programmed in Lisp. Lisp is the general language for AI because it allows us to manipulate symbols and ideas in a commonsense manner. Lisp is an acronym for List Processing, a reference to the basic syntax of the language and aim of the language. The earliest list processing language was in fact IPL developed in the mid 1950’s by Simon, Newell and Shaw. Lisp itself was conceived by John McCarthy and students in the late 1950’s for use in the newly-named field of artificial intelligence. It caught on quickly in MIT’s AI Project, was implemented on the IBM 704 and by 1962 to spread through other AI groups. AI is still the largest application area for the language, but the removal of many of the flaws of early versions of the language have resulted in its gaining somewhat wider acceptance. One snag with Lisp is that although it started out as a very pure language based on mathematic logic, practical pressures mean that it has grown. There were many dialects which threaten the unity of the language, but recently there was a concerted effort to develop a more standard Lisp, viz. Common Lisp. Other Lisps you may hear of are FranzLisp, MacLisp, InterLisp, Cambridge Lisp, Le Lisp, ... Some good things about Lisp are: • Lisp is an early example of an interpreted language (though it can be compiled). -
Ironpython in Action
IronPytho IN ACTION Michael J. Foord Christian Muirhead FOREWORD BY JIM HUGUNIN MANNING IronPython in Action Download at Boykma.Com Licensed to Deborah Christiansen <[email protected]> Download at Boykma.Com Licensed to Deborah Christiansen <[email protected]> IronPython in Action MICHAEL J. FOORD CHRISTIAN MUIRHEAD MANNING Greenwich (74° w. long.) Download at Boykma.Com Licensed to Deborah Christiansen <[email protected]> For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact Special Sales Department Manning Publications Co. Sound View Court 3B fax: (609) 877-8256 Greenwich, CT 06830 email: [email protected] ©2009 by Manning Publications Co. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher. Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps. Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at least 15% recycled and processed without the use of elemental chlorine. -
Functional Programming Is Style of Programming in Which the Basic Method of Computation Is the Application of Functions to Arguments;
PROGRAMMING IN HASKELL Chapter 1 - Introduction 0 What is a Functional Language? Opinions differ, and it is difficult to give a precise definition, but generally speaking: • Functional programming is style of programming in which the basic method of computation is the application of functions to arguments; • A functional language is one that supports and encourages the functional style. 1 Example Summing the integers 1 to 10 in Java: int total = 0; for (int i = 1; i 10; i++) total = total + i; The computation method is variable assignment. 2 Example Summing the integers 1 to 10 in Haskell: sum [1..10] The computation method is function application. 3 Historical Background 1930s: Alonzo Church develops the lambda calculus, a simple but powerful theory of functions. 4 Historical Background 1950s: John McCarthy develops Lisp, the first functional language, with some influences from the lambda calculus, but retaining variable assignments. 5 Historical Background 1960s: Peter Landin develops ISWIM, the first pure functional language, based strongly on the lambda calculus, with no assignments. 6 Historical Background 1970s: John Backus develops FP, a functional language that emphasizes higher-order functions and reasoning about programs. 7 Historical Background 1970s: Robin Milner and others develop ML, the first modern functional language, which introduced type inference and polymorphic types. 8 Historical Background 1970s - 1980s: David Turner develops a number of lazy functional languages, culminating in the Miranda system. 9 Historical Background 1987: An international committee starts the development of Haskell, a standard lazy functional language. 10 Historical Background 1990s: Phil Wadler and others develop type classes and monads, two of the main innovations of Haskell. -
A Universal Modular ACTOR Formalism for Artificial
Artificial Intelligence A Universal Modular ACTOR Formalism for Artificial Intelligence Carl Hewitt Peter Bishop Richard Steiger Abstract This paper proposes a modular ACTOR architecture and definitional method for artificial intelligence that is conceptually based on a single kind of object: actors [or, if you will, virtual processors, activation frames, or streams]. The formalism makes no presuppositions about the representation of primitive data structures and control structures. Such structures can be programmed, micro-coded, or hard wired 1n a uniform modular fashion. In fact it is impossible to determine whether a given object is "really" represented as a list, a vector, a hash table, a function, or a process. The architecture will efficiently run the coming generation of PLANNER-like artificial intelligence languages including those requiring a high degree of parallelism. The efficiency is gained without loss of programming generality because it only makes certain actors more efficient; it does not change their behavioral characteristics. The architecture is general with respect to control structure and does not have or need goto, interrupt, or semaphore primitives. The formalism achieves the goals that the disallowed constructs are intended to achieve by other more structured methods. PLANNER Progress "Programs should not only work, but they should appear to work as well." PDP-1X Dogma The PLANNER project is continuing research in natural and effective means for embedding knowledge in procedures. In the course of this work we have succeeded in unifying the formalism around one fundamental concept: the ACTOR. Intuitively, an ACTOR is an active agent which plays a role on cue according to a script" we" use the ACTOR metaphor to emphasize the inseparability of control and data flow in our model. -
Thriving in a Crowded and Changing World: C++ 2006–2020
Thriving in a Crowded and Changing World: C++ 2006–2020 BJARNE STROUSTRUP, Morgan Stanley and Columbia University, USA Shepherd: Yannis Smaragdakis, University of Athens, Greece By 2006, C++ had been in widespread industrial use for 20 years. It contained parts that had survived unchanged since introduced into C in the early 1970s as well as features that were novel in the early 2000s. From 2006 to 2020, the C++ developer community grew from about 3 million to about 4.5 million. It was a period where new programming models emerged, hardware architectures evolved, new application domains gained massive importance, and quite a few well-financed and professionally marketed languages fought for dominance. How did C++ ś an older language without serious commercial backing ś manage to thrive in the face of all that? This paper focuses on the major changes to the ISO C++ standard for the 2011, 2014, 2017, and 2020 revisions. The standard library is about 3/4 of the C++20 standard, but this paper’s primary focus is on language features and the programming techniques they support. The paper contains long lists of features documenting the growth of C++. Significant technical points are discussed and illustrated with short code fragments. In addition, it presents some failed proposals and the discussions that led to their failure. It offers a perspective on the bewildering flow of facts and features across the years. The emphasis is on the ideas, people, and processes that shaped the language. Themes include efforts to preserve the essence of C++ through evolutionary changes, to simplify itsuse,to improve support for generic programming, to better support compile-time programming, to extend support for concurrency and parallel programming, and to maintain stable support for decades’ old code. -
Cornell CS6480 Lecture 3 Dafny Robbert Van Renesse Review All States
Cornell CS6480 Lecture 3 Dafny Robbert van Renesse Review All states Reachable Ini2al states states Target states Review • Behavior: infinite sequence of states • Specificaon: characterizes all possible/desired behaviors • Consists of conjunc2on of • State predicate for the inial states • Acon predicate characterizing steps • Fairness formula for liveness • TLA+ formulas are temporal formulas invariant to stuering • Allows TLA+ specs to be part of an overall system Introduction to Dafny What’s Dafny? • An imperave programming language • A (mostly funconal) specificaon language • A compiler • A verifier Dafny programs rule out • Run2me errors: • Divide by zero • Array index out of bounds • Null reference • Infinite loops or recursion • Implementa2ons that do not sa2sfy the specifica2ons • But it’s up to you to get the laFer correct Example 1a: Abs() method Abs(x: int) returns (x': int) ensures x' >= 0 { x' := if x < 0 then -x else x; } method Main() { var x := Abs(-3); assert x >= 0; print x, "\n"; } Example 1b: Abs() method Abs(x: int) returns (x': int) ensures x' >= 0 { x' := 10; } method Main() { var x := Abs(-3); assert x >= 0; print x, "\n"; } Example 1c: Abs() method Abs(x: int) returns (x': int) ensures x' >= 0 ensures if x < 0 then x' == -x else x' == x { x' := 10; } method Main() { var x := Abs(-3); print x, "\n"; } Example 1d: Abs() method Abs(x: int) returns (x': int) ensures x' >= 0 ensures if x < 0 then x' == -x else x' == x { if x < 0 { x' := -x; } else { x' := x; } } Example 1e: Abs() method Abs(x: int) returns (x': int) ensures -
Neufuzz: Efficient Fuzzing with Deep Neural Network
Received January 15, 2019, accepted February 6, 2019, date of current version April 2, 2019. Digital Object Identifier 10.1109/ACCESS.2019.2903291 NeuFuzz: Efficient Fuzzing With Deep Neural Network YUNCHAO WANG , ZEHUI WU, QIANG WEI, AND QINGXIAN WANG China National Digital Switching System Engineering and Technological Research Center, Zhengzhou 450000, China Corresponding author: Qiang Wei ([email protected]) This work was supported by National Key R&D Program of China under Grant 2017YFB0802901. ABSTRACT Coverage-guided graybox fuzzing is one of the most popular and effective techniques for discovering vulnerabilities due to its nature of high speed and scalability. However, the existing techniques generally focus on code coverage but not on vulnerable code. These techniques aim to cover as many paths as possible rather than to explore paths that are more likely to be vulnerable. When selecting the seeds to test, the existing fuzzers usually treat all seed inputs equally, ignoring the fact that paths exercised by different seed inputs are not equally vulnerable. This results in wasting time testing uninteresting paths rather than vulnerable paths, thus reducing the efficiency of vulnerability detection. In this paper, we present a solution, NeuFuzz, using the deep neural network to guide intelligent seed selection during graybox fuzzing to alleviate the aforementioned limitation. In particular, the deep neural network is used to learn the hidden vulnerability pattern from a large number of vulnerable and clean program paths to train a prediction model to classify whether paths are vulnerable. The fuzzer then prioritizes seed inputs that are capable of covering the likely to be vulnerable paths and assigns more mutation energy (i.e., the number of inputs to be generated) to these seeds. -
PUB DAM Oct 67 CONTRACT N00014-83-6-0148; N00014-83-K-0655 NOTE 63P
DOCUMENT RESUME ED 290 438 IR 012 986 AUTHOR Cunningham, Robert E.; And Others TITLE Chips: A Tool for Developing Software Interfaces Interactively. INSTITUTION Pittsburgh Univ., Pa. Learning Research and Development Center. SPANS AGENCY Office of Naval Research, Arlington, Va. REPORT NO TR-LEP-4 PUB DAM Oct 67 CONTRACT N00014-83-6-0148; N00014-83-K-0655 NOTE 63p. PUB TYPE Reports - Research/Technical (143) EDRS PRICE MF01/PC03 Plus Postage. DESCRIPTORS *Computer Graphics; *Man Machine Systems; Menu Driven Software; Programing; *Programing Languages IDENTIF7ERS Direct Manipulation Interface' Interface Design Theory; *Learning Research and Development Center; LISP Programing Language; Object Oriented Programing ABSTRACT This report provides a detailed description of Chips, an interactive tool for developing software employing graphical/computer interfaces on Xerox Lisp machines. It is noted that Chips, which is implemented as a collection of customizable classes, provides the programmer with a rich graphical interface for the creation of rich graphical interfaces, and the end-user with classes for modeling the graphical relationships of objects on the screen and maintaining constraints between them. This description of the system is divided into five main sections: () the introduction, which provides background material and a general description of the system; (2) a brief overview of the report; (3) detailed explanations of the major features of Chips;(4) an in-depth discussion of the interactive aspects of the Chips development environment; and (5) an example session using Chips to develop and modify a small portion of an interface. Appended materials include descriptions of four programming techniques that have been sound useful in the development of Chips; descriptions of several systems developed at the Learning Research and Development Centel tsing Chips; and a glossary of key terms used in the report. -
Allegro CL User Guide
Allegro CL User Guide Volume 1 (of 2) version 4.3 March, 1996 Copyright and other notices: This is revision 6 of this manual. This manual has Franz Inc. document number D-U-00-000-01-60320-1-6. Copyright 1985-1996 by Franz Inc. All rights reserved. No part of this pub- lication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means electronic, mechanical, by photocopying or recording, or otherwise, without the prior and explicit written permission of Franz incorpo- rated. Restricted rights legend: Use, duplication, and disclosure by the United States Government are subject to Restricted Rights for Commercial Software devel- oped at private expense as specified in DOD FAR 52.227-7013 (c) (1) (ii). Allegro CL and Allegro Composer are registered trademarks of Franz Inc. Allegro Common Windows, Allegro Presto, Allegro Runtime, and Allegro Matrix are trademarks of Franz inc. Unix is a trademark of AT&T. The Allegro CL software as provided may contain material copyright Xerox Corp. and the Open Systems Foundation. All such material is used and distrib- uted with permission. Other, uncopyrighted material originally developed at MIT and at CMU is also included. Appendix B is a reproduction of chapters 5 and 6 of The Art of the Metaobject Protocol by G. Kiczales, J. des Rivieres, and D. Bobrow. All this material is used with permission and we thank the authors and their publishers for letting us reproduce their material. Contents Volume 1 Preface 1 Introduction 1.1 The language 1-1 1.2 History 1-1 1.3 Format -
Comparative Studies of Programming Languages; Course Lecture Notes
Comparative Studies of Programming Languages, COMP6411 Lecture Notes, Revision 1.9 Joey Paquet Serguei A. Mokhov (Eds.) August 5, 2010 arXiv:1007.2123v6 [cs.PL] 4 Aug 2010 2 Preface Lecture notes for the Comparative Studies of Programming Languages course, COMP6411, taught at the Department of Computer Science and Software Engineering, Faculty of Engineering and Computer Science, Concordia University, Montreal, QC, Canada. These notes include a compiled book of primarily related articles from the Wikipedia, the Free Encyclopedia [24], as well as Comparative Programming Languages book [7] and other resources, including our own. The original notes were compiled by Dr. Paquet [14] 3 4 Contents 1 Brief History and Genealogy of Programming Languages 7 1.1 Introduction . 7 1.1.1 Subreferences . 7 1.2 History . 7 1.2.1 Pre-computer era . 7 1.2.2 Subreferences . 8 1.2.3 Early computer era . 8 1.2.4 Subreferences . 8 1.2.5 Modern/Structured programming languages . 9 1.3 References . 19 2 Programming Paradigms 21 2.1 Introduction . 21 2.2 History . 21 2.2.1 Low-level: binary, assembly . 21 2.2.2 Procedural programming . 22 2.2.3 Object-oriented programming . 23 2.2.4 Declarative programming . 27 3 Program Evaluation 33 3.1 Program analysis and translation phases . 33 3.1.1 Front end . 33 3.1.2 Back end . 34 3.2 Compilation vs. interpretation . 34 3.2.1 Compilation . 34 3.2.2 Interpretation . 36 3.2.3 Subreferences . 37 3.3 Type System . 38 3.3.1 Type checking . 38 3.4 Memory management . -
Fiendish Designs
Fiendish Designs A Software Engineering Odyssey © Tim Denvir 2011 1 Preface These are notes, incomplete but extensive, for a book which I hope will give a personal view of the first forty years or so of Software Engineering. Whether the book will ever see the light of day, I am not sure. These notes have come, I realise, to be a memoir of my working life in SE. I want to capture not only the evolution of the technical discipline which is software engineering, but also the climate of social practice in the industry, which has changed hugely over time. To what extent, if at all, others will find this interesting, I have very little idea. I mention other, real people by name here and there. If anyone prefers me not to refer to them, or wishes to offer corrections on any item, they can email me (see Contact on Home Page). Introduction Everybody today encounters computers. There are computers inside petrol pumps, in cash tills, behind the dashboard instruments in modern cars, and in libraries, doctors’ surgeries and beside the dentist’s chair. A large proportion of people have personal computers in their homes and may use them at work, without having to be specialists in computing. Most people have at least some idea that computers contain software, lists of instructions which drive the computer and enable it to perform different tasks. The term “software engineering” wasn’t coined until 1968, at a NATO-funded conference, but the activity that it stands for had been carried out for at least ten years before that. -
S Allegro Common Lisp Foreign Function Interface
Please do not remove this page Extensions to the Franz, Inc.'s Allegro Common Lisp foreign function interface Keane, John https://scholarship.libraries.rutgers.edu/discovery/delivery/01RUT_INST:ResearchRepository/12643408560004646?l#13643533500004646 Keane, J. (1996). Extensions to the Franz, Inc.’s Allegro Common Lisp foreign function interface. Rutgers University. https://doi.org/10.7282/t3-pqns-7h57 This work is protected by copyright. You are free to use this resource, with proper attribution, for research and educational purposes. Other uses, such as reproduction or publication, may require the permission of the copyright holder. Downloaded On 2021/09/29 22:58:32 -0400 Extensions to the Franz Incs Allegro Common Lisp Foreign Function Interface John Keane Department of Computer Science Rutgers University New Brunswick NJ keanecsrutgersedu January Abstract As provided by Franz Inc the foreign function interface of Allegro Com mon Lisp has a number of limitations This pap er describ es extensions to the interface that facilitate the inclusion of C and Fortran co de into Common Lisp systems In particular these extensions make it easy to utilize libraries of numerical subroutines such as those from Numerical Recip es in C from within ACL including those routines that take functions as arguments A mechanism for creating Lisplike dynamic runtime closures for C routines is also describ ed Acknowledgments The research presented in this do cument is supp orted in part by NASA grants NCC and NAG This research is also part of the Rutgers based