Sampling Hyperparameters in Hierarchical Models

Total Page:16

File Type:pdf, Size:1020Kb

Sampling Hyperparameters in Hierarchical Models Sampling hyperparameters in hierarchical models: improving on Gibbs for high-dimensional latent fields and large data sets. Richard A. Norton1, J. Andr´es Christen2 and Colin Fox3 1Department of Mathematics and Statistics, University of Otago, Dunedin, New Zealand, [email protected], 2Centro de Investigaci´on en Matem´aticas (CIMAT), CONACYT, Guanajuato, GT, Mexico, [email protected] 3Department of Physics, University of Otago, Dunedin, New Zealand, fox@[email protected]. 20 October 2016 Abstract We consider posterior sampling in the very common Bayesian hierarchical model in which observed data depends on high-dimensional latent variables that, in turn, depend on relatively few hyperparameters. When the full conditional over the latent variables has a known form, the marginal posterior distribution over hyperparameters is accessible and can be sampled using a Markov chain Monte Carlo (MCMC) method on arXiv:1610.06632v1 [stat.CO] 21 Oct 2016 a low-dimensional parameter space. This may improve computational efficiency over standard Gibbs sampling since computation is not over the high-dimensional space of latent variables and correlations between hyperparameters and latent variables be- come irrelevant. When the marginal posterior over hyperparameters depends on a fixed-dimensional sufficient statistic, precomputation of the sufficient statistic renders the cost of the low-dimensional MCMC independent of data size. Then, when the hyperparameters are the primary variables of interest, inference may be performed in 1 big-data settings at modest cost. Moreover, since the form of the full conditional for the latent variables does not depend on the form of the hyperprior distribution, the method imposes no restriction on the hyperprior, unlike Gibbs sampling that typi- cally requires conjugate distributions. We demonstrate these efficiency gains in four computed examples. 1 Introduction Suppose we have a hierarchical model structure in which the data model depends on a high- dimensional latent structure X, which in turn depends on a low-dimensional hyperparameter vector Θ. That is, fY X Θ( x, θ) models the data Y , and the joint prior distribution for X | , ·| and Θ is defined by the hierarchical structure fX Θ(x, θ)= fX Θ(x θ)fΘ(θ). , | | This is a very common hierarchical structure present in many statistical analyses (for exam- ple Banerjee et al., 2004; Bardsley, 2012; Gilavert et al., 2015; Papaspiliopoulos et al., 2007; Wikle et al., 2001). The posterior distribution is then fY |X,Θ(y x, θ)fX|Θ(x θ)fΘ(θ) fX,Θ|Y (x, θ y)= | | . (1) | fY (y) Indeed, in most relevant circumstances the normalizing constant f (y)= fY X Θ(y x, θ)fX Θ(x θ)fΘ(θ) dxdθ Y | , | | | Z Z is intractable and we must rely on Monte Carlo methods to explore the posterior distribution. A convenient, but restrictive, common method is to define conditional conjugate prior distribution such that all of the full conditionals are of a known form and may be sampled from, and then progress by Gibbs sampling. In the following, we require that the prior of the latent structure fX Θ(x θ) has some sort of conjugancy to make the full conditional | | fX Θ Y (x θ, y) of a known form. However, the prior for the hyperparameters fΘ(θ) may | , | have arbitrary form. 2 Let us assume then that the full conditional for the parameters X fY |X,Θ(y x, θ)fX|Θ(x θ) fX|Θ,Y (x θ, y)= | | (2) | fY Θ(y θ) | | belongs to a known family of distributions. This means that, in principle, by comparing this distribution with the numerator in (1), one can identify the θ-dependence of the normalizing constant in the denominator of (2), that is ′ ′ ′ fY Θ(y θ)= fY X Θ(y x , θ)fX Θ(x θ) dx . | | | , | | | Z Hence, if the full conditional for X belongs to a known family of distributions, we should be able to determine the marginal posterior distribution over hyperparameters fY |Θ(y θ)fΘ(θ) fΘ|Y (θ y)= | , (3) | fY (y) excepting the normalizing constant fY (y). This allows us to perform MCMC on the low- dimensional marginal posterior distribution over the hyperparameters, for which automatic MCMC methods are available, and other customized MCMCs may be designed. We discuss automatic methods in Section 2.2. In many cases this marginal posterior distribution has a sufficient statistic of fixed low dimension that can be precomputed. Consequently, the cost of evaluating fΘ Y (θ y) at each | | iteration of an MCMC may grow not at all, or only slowly, with data size. This improvement may become critical over the alternative of Gibbs sampling (or any other MCMC) on the joint posterior distribution over X, Θ Y since the cost of performing MCMC on the joint posterior | distribution grows with the dimension of X which, in many analyses, grows linearly with data size. Moreover, correlations between X and Θ that can adversely effect the computational efficiency of Gibbs sampling from the joint posterior distribution are irrelevant to MCMC on the marginal posterior distribution (Rue and Held, 2005). Note that once we have (pseudo) independent samples, after burn-in and thinning, of Θ Y , namely θ(i) for i =1, 2,...,T , if inference on the latent structure is also required then | (i) (i) (i) (i) we simply simulate x from fX Θ Y ( θ , y) and (x , θ ) for i =1, 2,...,T are (pseudo) | , ·| independent samples from the joint posterior fX Θ Y ( , y). That is, the complete results of , | · ·| the original Gibbs sampling are recovered. However, performing MCMC on the marginal posterior distribution has at least three 3 potential advantages: the improved computational efficiency for ‘big data’ just mentioned, an easier MCMC since correlations in a very high-dimensional posterior are now avoided, and greater freedom of prior choice. Rue and Held (2005) proposed a similar decomposition to give the one-block algorithm. From (2) the marginal posterior over hyperparameters is evaluated using the expression ∗ ∗ fY |X,Θ(y x , θ)fX|Θ(x θ) fY |Θ(y θ)= | | . (4) | fX Y Θ(x∗ y, θ) | , | ∗ ∗ with x suitably chosen, restricted to fX Y Θ(x y, θ) > 0. This approach was proposed | , | in Rue and Held (2005) and Simpson et al. (2012) for linear Gaussian models. Fox and Norton (2016) in the same setting canceled the terms in x on the right-hand side of (4) to give an expression that does not depend on x. ∗ Indeed, as noted above, since fX Y Θ(x y, θ) has a known form, this cancellation appears | , | to be always possible and the selection of x∗ is unnecessary. This is the procedure followed in the four examples we present in Section 3. In common with the one-block algorithm, the calculation that we use in (3) does not require any special form of the hyperprior distribution fΘ(θ), as opposed to the usual Gibbs sampling that requires conjugate distributions to be employed so that all full conditionals are available. The approach we take is also related to partially collapsed Gibbs samplers (Park and Min, 2016; van Dyk and Park, 2008; Liu et al., 1994) that perform strategic integrations and then apply Gibbs sampling on a reduced set of variables. We are proposing an extreme version of partially collapsed Gibbs sampling by “collapsing” over all latent variables and then sam- pling. However, we do not then apply Gibbs sampling to the marginal posterior distribution, so we do not fit completely under the aegis of partially collapsed Gibbs samplers. Note also that we do not actually perform any integration, but use the algebraic route implied by (3). Our first example in Section 3 is the ‘pump failure data’ analyzed by Gelfand and Smith (1990), that sparked off the widespread use of Gibbs sampling. Back then, analyzing a model with more than three parameters was in most cases prohibitive, and, consequently, Bayesian statistics had a very marginal impact until that turning point. The fact that Gelfand and Smith (1990) showed a way to analyzing and sampling, in principle, from ar- bitrarily large models and provided an example with 11 parameters was revolutionary to most statisticians. However, practically, Gibbs sampling may become arbitrarily inefficient with high correlations (Belisle, 1998) and certainly in latent structures with large data sets. We now have a range of automatic, semiautomatic, and customized algorithms that we may 4 employ to deal with an arbitrary MCMC (with no conjugancy), over 10 to 15 parameters, to sample the hyperprior parameters, and therefore the need and applicability of our approach. The next section describes a measure of computational efficiency of MCMC methods, to achieve a quantitative comparison of conventional Gibbs and our approach. This is followed by four examples of sampling from the marginal posterior distribution to demonstrate its ad- vantages over sampling from the joint posterior distribution. We finish with some discussion. Overly technical details are in the appendix. 2 Computational considerations 2.1 Statistical and Computational Efficiency The statistical efficiency of (geometrically convergent) MCMC algorithms can be measured by the integrated autocorrelation time (IACT, see Geyer, 1992) for some real-valued statistic of interest, often one component of the state, or the log target density. Let h be the statistic of interest. The IACT for h is defined by ∞ (h) τint =1+2 ρk (5) Xk=1 (h) where ρk is the autocorrelation coefficient of h at lag k. We estimate τint using twice the IACT value computed using the (Matlab) function provided by Wolff (2004) since in the physics literature IACT is defined as τint/2 (see also Sokal, 1989). IACT has units of iterations, or steps, of the MCMC. We prefer the statistics definition in (5) since it may be thought of as the length of the chain that has the same variance reducing power as one independent sample.
Recommended publications
  • The Exponential Family 1 Definition
    The Exponential Family David M. Blei Columbia University November 9, 2016 The exponential family is a class of densities (Brown, 1986). It encompasses many familiar forms of likelihoods, such as the Gaussian, Poisson, multinomial, and Bernoulli. It also encompasses their conjugate priors, such as the Gamma, Dirichlet, and beta. 1 Definition A probability density in the exponential family has this form p.x / h.x/ exp >t.x/ a./ ; (1) j D f g where is the natural parameter; t.x/ are sufficient statistics; h.x/ is the “base measure;” a./ is the log normalizer. Examples of exponential family distributions include Gaussian, gamma, Poisson, Bernoulli, multinomial, Markov models. Examples of distributions that are not in this family include student-t, mixtures, and hidden Markov models. (We are considering these families as distributions of data. The latent variables are implicitly marginalized out.) The statistic t.x/ is called sufficient because the probability as a function of only depends on x through t.x/. The exponential family has fundamental connections to the world of graphical models (Wainwright and Jordan, 2008). For our purposes, we’ll use exponential 1 families as components in directed graphical models, e.g., in the mixtures of Gaussians. The log normalizer ensures that the density integrates to 1, Z a./ log h.x/ exp >t.x/ d.x/ (2) D f g This is the negative logarithm of the normalizing constant. The function h.x/ can be a source of confusion. One way to interpret h.x/ is the (unnormalized) distribution of x when 0. It might involve statistics of x that D are not in t.x/, i.e., that do not vary with the natural parameter.
    [Show full text]
  • 1 Introduction to Bayesian Inference 2 Introduction to Gibbs Sampling
    MCMC I: July 5, 2016 1 MCMC I 8th Summer Institute in Statistics and Modeling in Infectious Diseases Course Time Plan July 13-15, 2016 Instructors: Vladimir Minin, Kari Auranen, M. Elizabeth Halloran Course Description: This module is an introduction to Markov chain Monte Carlo methods with some simple applications in infectious disease studies. The course includes an introduction to Bayesian inference, Monte Carlo, MCMC, some background theory, and convergence diagnostics. Algorithms include Gibbs sampling and Metropolis-Hastings and combinations. Programming is in R. Familiarity with the R statistical package or other computing language is needed. Course schedule: The course is composed of 10 90-minute sessions, for a total of 15 hours of instruction. 1 Introduction to Bayesian Inference • Overview of the course. • Bayesian inference: Likelihood, prior, posterior, normalizing constant • Conjugate priors; Beta-binomial; Poisson-gamma; normal-normal • Posterior summaries, mean, mode, posterior intervals • Motivating examples: Chain binomial model (Reed-Frost), General Epidemic Model, SIS model. • Lab: – Goals: Warm-up with R for simple Bayesian computation – Example: Posterior distribution of transmission probability with a binomial sampling distribution using a conjugate beta prior distribution – Summarizing posterior inference (mean, median, posterior quantiles and intervals) – Varying the amount of prior information – Writing an R function 2 Introduction to Gibbs Sampling • Chain binomial model and data augmentation • Brief introduction
    [Show full text]
  • Fast Bayesian Non-Negative Matrix Factorisation and Tri-Factorisation
    Fast Bayesian Non-Negative Matrix Factorisation and Tri-Factorisation Thomas Brouwer Jes Frellsen Pietro Lio’ Computer Laboratory Department of Engineering Computer Laboratory University of Cambridge University of Cambridge University of Cambridge United Kingdom United Kingdom United Kingdom [email protected] [email protected] [email protected] Abstract We present a fast variational Bayesian algorithm for performing non-negative matrix factorisation and tri-factorisation. We show that our approach achieves faster convergence per iteration and timestep (wall-clock) than Gibbs sampling and non-probabilistic approaches, and do not require additional samples to estimate the posterior. We show that in particular for matrix tri-factorisation convergence is difficult, but our variational Bayesian approach offers a fast solution, allowing the tri-factorisation approach to be used more effectively. 1 Introduction Non-negative matrix factorisation methods Lee and Seung [1999] have been used extensively in recent years to decompose matrices into latent factors, helping us reveal hidden structure and predict missing values. In particular we decompose a given matrix into two smaller matrices so that their product approximates the original one. The non-negativity constraint makes the resulting matrices easier to interpret, and is often inherent to the problem – such as in image processing or bioinformatics (Lee and Seung [1999], Wang et al. [2013]). Some approaches approximate a maximum likelihood (ML) or maximum a posteriori (MAP) solution that minimises the difference between the observed matrix and the decomposition of this matrix. This gives a single point estimate, which can lead to overfitting more easily and neglects uncertainty. Instead, we may wish to find a full distribution over the matrices using a Bayesian approach, where we define prior distributions over the matrices and then compute their posterior after observing the actual data.
    [Show full text]
  • Bayesian Inference in the Normal Linear Regression Model
    Bayesian Inference in the Normal Linear Regression Model () Bayesian Methods for Regression 1 / 53 Bayesian Analysis of the Normal Linear Regression Model Now see how general Bayesian theory of overview lecture works in familiar regression model Reading: textbook chapters 2, 3 and 6 Chapter 2 presents theory for simple regression model (no matrix algebra) Chapter 3 does multiple regression In lecture, I will go straight to multiple regression Begin with regression model under classical assumptions (independent errors, homoskedasticity, etc.) Chapter 6 frees up classical assumptions in several ways Lecture will cover one way: Bayesian treatment of a particular type of heteroskedasticity () Bayesian Methods for Regression 2 / 53 The Regression Model Assume k explanatory variables, xi1,..,xik for i = 1, .., N and regression model: yi = b1 + b2xi2 + ... + bk xik + #i . Note xi1 is implicitly set to 1 to allow for an intercept. Matrix notation: y1 y2 y = 2 . 3 6 . 7 6 7 6 y 7 6 N 7 4 5 # is N 1 vector stacked in same way as y () Bayesian Methods for Regression 3 / 53 b is k 1 vector X is N k matrix 1 x12 .. x1k 1 x22 .. x2k X = 2 ..... 3 6 ..... 7 6 7 6 1 x .. x 7 6 N2 Nk 7 4 5 Regression model can be written as: y = X b + #. () Bayesian Methods for Regression 4 / 53 The Likelihood Function Likelihood can be derived under the classical assumptions: 1 2 # is N(0N , h IN ) where h = s . All elements of X are either fixed (i.e. not random variables). Exercise 10.1, Bayesian Econometric Methods shows that likelihood function can be written in
    [Show full text]
  • Paradoxes and Priors in Bayesian Regression
    Paradoxes and Priors in Bayesian Regression Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Agniva Som, B. Stat., M. Stat. Graduate Program in Statistics The Ohio State University 2014 Dissertation Committee: Dr. Christopher M. Hans, Advisor Dr. Steven N. MacEachern, Co-advisor Dr. Mario Peruggia c Copyright by Agniva Som 2014 Abstract The linear model has been by far the most popular and most attractive choice of a statistical model over the past century, ubiquitous in both frequentist and Bayesian literature. The basic model has been gradually improved over the years to deal with stronger features in the data like multicollinearity, non-linear or functional data pat- terns, violation of underlying model assumptions etc. One valuable direction pursued in the enrichment of the linear model is the use of Bayesian methods, which blend information from the data likelihood and suitable prior distributions placed on the unknown model parameters to carry out inference. This dissertation studies the modeling implications of many common prior distri- butions in linear regression, including the popular g prior and its recent ameliorations. Formalization of desirable characteristics for model comparison and parameter esti- mation has led to the growth of appropriate mixtures of g priors that conform to the seven standard model selection criteria laid out by Bayarri et al. (2012). The existence of some of these properties (or lack thereof) is demonstrated by examining the behavior of the prior under suitable limits on the likelihood or on the prior itself.
    [Show full text]
  • A Compendium of Conjugate Priors
    A Compendium of Conjugate Priors Daniel Fink Environmental Statistics Group Department of Biology Montana State Univeristy Bozeman, MT 59717 May 1997 Abstract This report reviews conjugate priors and priors closed under sampling for a variety of data generating processes where the prior distributions are univariate, bivariate, and multivariate. The effects of transformations on conjugate prior relationships are considered and cases where conjugate prior relationships can be applied under transformations are identified. Univariate and bivariate prior relationships are verified using Monte Carlo methods. Contents 1 Introduction Experimenters are often in the position of having had collected some data from which they desire to make inferences about the process that produced that data. Bayes' theorem provides an appealing approach to solving such inference problems. Bayes theorem, π(θ) L(θ x ; : : : ; x ) g(θ x ; : : : ; x ) = j 1 n (1) j 1 n π(θ) L(θ x ; : : : ; x )dθ j 1 n is commonly interpreted in the following wayR. We want to make some sort of inference on the unknown parameter(s), θ, based on our prior knowledge of θ and the data collected, x1; : : : ; xn . Our prior knowledge is encapsulated by the probability distribution on θ; π(θ). The data that has been collected is combined with our prior through the likelihood function, L(θ x ; : : : ; x ) . The j 1 n normalized product of these two components yields a probability distribution of θ conditional on the data. This distribution, g(θ x ; : : : ; x ) , is known as the posterior distribution of θ. Bayes' j 1 n theorem is easily extended to cases where is θ multivariate, a vector of parameters.
    [Show full text]
  • An Introduction to Markov Chain Monte Carlo Methods and Their Actuarial Applications
    AN INTRODUCTION TO MARKOV CHAIN MONTE CARLO METHODS AND THEIR ACTUARIAL APPLICATIONS DAVID P. M. SCOLLNIK Department of Mathematics and Statistics University of Calgary Abstract This paper introduces the readers of the Proceed- ings to an important class of computer based simula- tion techniques known as Markov chain Monte Carlo (MCMC) methods. General properties characterizing these methods will be discussed, but the main empha- sis will be placed on one MCMC method known as the Gibbs sampler. The Gibbs sampler permits one to simu- late realizations from complicated stochastic models in high dimensions by making use of the model’s associated full conditional distributions, which will generally have a much simpler and more manageable form. In its most extreme version, the Gibbs sampler reduces the analy- sis of a complicated multivariate stochastic model to the consideration of that model’s associated univariate full conditional distributions. In this paper, the Gibbs sampler will be illustrated with four examples. The first three of these examples serve as rather elementary yet instructive applications of the Gibbs sampler. The fourth example describes a reasonably sophisticated application of the Gibbs sam- pler in the important arena of credibility for classifica- tion ratemaking via hierarchical models, and involves the Bayesian prediction of frequency counts in workers compensation insurance. 114 AN INTRODUCTION TO MARKOV CHAIN MONTE CARLO METHODS 115 1. INTRODUCTION The purpose of this paper is to acquaint the readership of the Proceedings with a class of simulation techniques known as Markov chain Monte Carlo (MCMC) methods. These methods permit a practitioner to simulate a dependent sequence of ran- dom draws from very complicated stochastic models.
    [Show full text]
  • Accelerating Bayesian Inference on Structured Graphs Using Parallel Gibbs Sampling
    Accelerating Bayesian Inference on Structured Graphs Using Parallel Gibbs Sampling Glenn G. Ko∗, Yuji Chai∗, Rob A. Rutenbary, David Brooks∗, Gu-Yeon Wei∗ ∗Harvard University, Cambridge, USA yUniversity of Pittsburgh, Pittsburgh, USA [email protected], [email protected], [email protected], fdbrooks, [email protected] Abstract—Bayesian models and inference is a class of machine with substantial uncertainty and noise is normally reserved for learning that is useful for solving problems where the amount Bayesian models and inference. of data is scarce and prior knowledge about the application Bayesian models pose challenges that are different from allows you to draw better conclusions. However, Bayesian models often requires computing high-dimensional integrals and finding deep learning. They tend to have more complex structure, the posterior distribution can be intractable. One of the most that may be hierarchical with dependencies between different commonly used approximate methods for Bayesian inference distributions Without an easily-defined common computational is Gibbs sampling, which is a Markov chain Monte Carlo kernel and hardware accelerators like GPU and TPU [5], and (MCMC) technique to estimate target stationary distribution. software frameworks such as Tensorflow [6] and PyTorch [7], The idea in Gibbs sampling is to generate posterior samples by iterating through each of the variables to sample from its it is hard to build and run models fast and efficiently. This conditional given all the other variables fixed. While Gibbs work explores hardware accelerators for Bayesian models and sampling is a popular method for probabilistic graphical models inference which has growing interest and demand. such as Markov Random Field (MRF), the plain algorithm is Probabilistic graphical models are Bayesian models described slow as it goes through each of the variables sequentially.
    [Show full text]
  • Gibbs Sampling, Exponential Families and Orthogonal Polynomials
    Statistical Science 2008, Vol. 23, No. 2, 151–178 DOI: 10.1214/07-STS252 c Institute of Mathematical Statistics, 2008 Gibbs Sampling, Exponential Families and Orthogonal Polynomials1 Persi Diaconis, Kshitij Khare and Laurent Saloff-Coste Abstract. We give families of examples where sharp rates of conver- gence to stationarity of the widely used Gibbs sampler are available. The examples involve standard exponential families and their conjugate priors. In each case, the transition operator is explicitly diagonalizable with classical orthogonal polynomials as eigenfunctions. Key words and phrases: Gibbs sampler, running time analyses, expo- nential families, conjugate priors, location families, orthogonal polyno- mials, singular value decomposition. 1. INTRODUCTION which has f as stationary density under mild con- ditions discussed in [4, 102]. The Gibbs sampler, also known as Glauber dy- The algorithm was introduced in 1963 by Glauber namics or the heat-bath algorithm, is a mainstay of [49] to do simulations for Ising models, and inde- scientific computing. It provides a way to draw sam- pendently by Turcin [103]. It is still a standard tool ples from a multivariate probability density f(x1,x2, of statistical physics, both for practical simulation ...,xp), perhaps only known up to a normalizing (e.g., [88]) and as a natural dynamics (e.g., [10]). constant, by a sequence of one-dimensional sampling The basic Dobrushin uniqueness theorem showing problems. From (X1,...,Xp) proceed to (X1′ , X2,..., existence of Gibbs measures was proved based on Xp), then (X1′ , X2′ , X3,...,Xp),..., (X1′ , X2′ ,...,Xp′ ) this dynamics (e.g., [54]). It was introduced as a where at the ith stage, the coordinate is sampled base for image analysis by Geman and Geman [46].
    [Show full text]
  • A Review of Bayesian Optimization
    Taking the Human Out of the Loop: A Review of Bayesian Optimization The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Shahriari, Bobak, Kevin Swersky, Ziyu Wang, Ryan P. Adams, and Nando de Freitas. 2016. “Taking the Human Out of the Loop: A Review of Bayesian Optimization.” Proc. IEEE 104 (1) (January): 148– 175. doi:10.1109/jproc.2015.2494218. Published Version doi:10.1109/JPROC.2015.2494218 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:27769882 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Open Access Policy Articles, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#OAP 1 Taking the Human Out of the Loop: A Review of Bayesian Optimization Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P. Adams and Nando de Freitas Abstract—Big data applications are typically associated with and the analytics company that sits between them. The analyt- systems involving large numbers of users, massive complex ics company must develop procedures to automatically design software systems, and large-scale heterogeneous computing and game variants across millions of users; the objective is to storage architectures. The construction of such systems involves many distributed design choices. The end products (e.g., rec- enhance user experience and maximize the content provider’s ommendation systems, medical analysis tools, real-time game revenue. engines, speech recognizers) thus involves many tunable config- The preceding examples highlight the importance of au- uration parameters.
    [Show full text]
  • Gibbs Sampling
    4 Modern Model Estimation Part 1: Gibbs Sampling The estimation of a Bayesian model is the most difficult part of undertaking a Bayesian analysis. Given that researchers may use different priors for any particular model, estimation must be tailored to the specific model under consideration. Classical analyses, on the other hand, often involve the use of standard likelihood functions, and hence, once an estimation routine is developed, it can be used again and again. The trade-off for the additional work required for a Bayesian analysis is that (1) a more appropriate model for the data can be constructed than extant software may allow, (2) more measures of model fit and outlier/influential case diagnostics can be produced, and (3) more information is generally available to summarize knowledge about model parameters than a classical analysis based on maximum likelihood (ML) estimation provides. Along these same lines, additional measures may be constructed to test hypotheses concerning parameters not directly estimated in the model. In this chapter, I first discuss the goal of model estimation in the Bayesian paradigm and contrast it with that of maximum likelihood estimation. Then, I discuss modern simulation/sampling methods used by Bayesian statisticians to perform analyses, including Gibbs sampling. In the next chapter, I discuss the Metropolis-Hastings algorithm as an alternative to Gibbs sampling. 4.1 What Bayesians want and why As the discussion of ML estimation in Chapter 2 showed, the ML approach finds the parameter values that maximize the likelihood function for the ob- served data and then produces point estimates of the standard errors of these estimates.
    [Show full text]
  • Differentially Private Bayesian Inference for Exponential Families
    Differentially Private Bayesian Inference for Exponential Families Garrett Bernstein College of Information and Computer Sciences University of Massachusetts Amherst Amherst, MA 01002 [email protected] Daniel Sheldon College of Information and Computer Sciences University of Massachusetts Amherst Amherst, MA 01002 [email protected] Abstract The study of private inference has been sparked by growing concern regarding the analysis of data when it stems from sensitive sources. We present the first method for private Bayesian inference in exponential families that properly accounts for noise introduced by the privacy mechanism. It is efficient because it works only with sufficient statistics and not individual data. Unlike other methods, it gives properly calibrated posterior beliefs in the non-asymptotic data regime. 1 Introduction Differential privacy is the dominant standard for privacy [1]. A randomized algorithm that satisfies differential privacy offers protection to individuals by guaranteeing that its output is insensitive to changes caused by the data of any single individual entering or leaving the data set. An algorithm can be made differentially private by applying one of several general-purpose mechanisms to randomize the computation in an appropriate way, for example, by adding noise calibrated to the sensitivity of the quantity being computed, where sensitivity captures how much the quantity depends on any individual’s data [1]. Due to the obvious importance of protecting individual privacy while drawing population level inferences from data, differentially private algorithms have been developed for a broad range of machine learning tasks [2–9]. There is a growing interest in private methods for Bayesian inference [10–14].
    [Show full text]