TSA Magazine 2013
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Laws of Malaysia
LAWS OF MALAYSIA ONLINE VERSION OF UPDATED TEXT OF REPRINT Act 716 WILDLIFE CONSERVATION ACT 2010 As at 1 December 2014 2 WILDLIFE CONSERVATION ACT 2010 Date of Royal Assent … … 21 October 2010 Date of publication in the Gazette … … … 4 November 2010 Latest amendment made by P.U.(A)108/2014 which came into operation on ... ... ... ... … … … … 18 April 2014 3 LAWS OF MALAYSIA Act 716 WILDLIFE CONSERVATION ACT 2010 ARRANGEMENT OF SECTIONS PART I PRELIMINARY Section 1. Short title and commencement 2. Application 3. Interpretation PART II APPOINTMENT OF OFFICERS, ETC. 4. Appointment of officers, etc. 5. Delegation of powers 6. Power of Minister to give directions 7. Power of the Director General to issue orders 8. Carrying and use of arms PART III LICENSING PROVISIONS Chapter 1 Requirement for licence, etc. 9. Requirement for licence 4 Laws of Malaysia ACT 716 Section 10. Requirement for permit 11. Requirement for special permit Chapter 2 Application for licence, etc. 12. Application for licence, etc. 13. Additional information or document 14. Grant of licence, etc. 15. Power to impose additional conditions and to vary or revoke conditions 16. Validity of licence, etc. 17. Carrying or displaying licence, etc. 18. Change of particulars 19. Loss of licence, etc. 20. Replacement of licence, etc. 21. Assignment of licence, etc. 22. Return of licence, etc., upon expiry 23. Suspension or revocation of licence, etc. 24. Licence, etc., to be void 25. Appeals Chapter 3 Miscellaneous 26. Hunting by means of shooting 27. No licence during close season 28. Prerequisites to operate zoo, etc. 29. Prohibition of possessing, etc., snares 30. -
Interspecific Hybridization Between Mauremys Reevesii and Mauremys Sinensis : Evidence from Morphology and DNA Sequence Data
African Journal of Biotechnology Vol. 10(35), pp. 6716-6724, 13 July, 2011 Available online at http://www.academicjournals.org/AJB DOI: 10.5897/AJB11.063 ISSN 1684–5315 © 2011 Academic Journals Full Length Research Paper Interspecific hybridization between Mauremys reevesii and Mauremys sinensis : Evidence from morphology and DNA sequence data Xingquan Xia, Ling Wang, Liuwang Nie*, Zhengfeng Huang, Yuan Jiang, Wanxing Jing and Luo Liu The Provincial Key Lab of the Conservation and Exploitation Research of Biological Resources, Life Science College, Anhui Normal University, Anhui, Wuhu, 241000, China. Accepted 1 June, 2011 Turtle hybrids have been found in some taxa, but so far, studies on interspecific hybridization between Mauremy reevesii and Mauremy sinensis have not been reported. Recently, we obtained three specimens (Hy1, Hy2, Hy3 )))with unusual morphological characteristics from pet trade Market, which are suspected to be hybrids rather than new species, because they were morphologies intermediate between M. reevesii and M. sinensis . In further study, we analyzed two aspects; morphological characteristics and molecular data, separately. The morphological characteristics showed that the pattern of the carapace, the plastron and neck stripes of the three specimens was between that of M. reevesii and M. sinensis (the morphological features of Hy1 and Hy2 have more resemblance with those of M. sinensis , and those of Hy3 have more resemblance with those of M. reevesii ). In molecular analyses, two mitochondrial genes (12S, cytb) and two nuclear genes (RAG-1, R35) were respectively cloned from each suspected specimen. One sequence was obtained for each mitochondrial gene, while two different sequences were obtained for each nuclear gene. -
Phylogenetic Relationships of the Asian Box Turtles of the Genus Cuora Sensu Lato (Reptilia: Bataguridae) Inferred from Mitochondrial DNA Sequences
ZOOLOGICAL SCIENCE 19: 1305–1312 (2002) 2002 Zoological Society of Japan Phylogenetic Relationships of the Asian Box Turtles of the Genus Cuora sensu lato (Reptilia: Bataguridae) Inferred from Mitochondrial DNA Sequences Masanao Honda1*†, Yuichirou Yasukawa1, Ren Hirayama2 and Hidetoshi Ota1 1Tropical Biosphere Research Center, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan 2Faculty of Information, Teikyo Heisei University, Ichihara, Chiba 290-0193, Japan ABSTRACT—Phylogenetic relationships of the genus Cuora sensu lato (Cuora sensu stricto and Cisto- clemmys) and other testudinoid genera were inferred from variations in 882 base positions of mitochondrial 12S and 16S rRNA genes. Results yielded a robust support to the monophyly of a group (Cuora group) consisting of Cuora sensu lato and the monotypic Pyxidea. Within the Cuora group, the continental Cuora (sensu stricto) and the two subspecies of Ci. flavomarginata constituted two well-supported monophyletic groups. Distinctly small interspecific genetic distances in the former groups suggested that in the continent speciations in Cuora took place much later than the primary divergences in the Cuora group, or speciations in other related genera, such as Mauremys. Our analyses failed to provide a substantial support to the monophyly of any other combinations of taxa within the Cuora group, including Cuora in broad and strict senses, and Cistoclemmys as consisting of Ci. galbinifrons and Ci. flavomarginata. Besides these, our results also suggested the non-monophyly for the Batagurinae and the Geoemydinae, and sister relation- ships of the Bataguridae with Testudinidae rather than with the Emydidae. Key words: Bataguridae, Geoemydinae, Cuora, Cistoclemmys, Pyxidea Cu. amboinensis), Cyclemys Bell, 1834 (type species: Cy. -
Aggressive Interactions Among Male Cane Turtles Vijayachelys Silvatica (HENDERSON, 1912)
All_Short_Notes_SHORT_NOTE.qxd 15.01.2013 15:21 Seite 9 SHORT NOTE HERPETOZOA 25 (3/4) Wien, 30. Jänner 2013 SHORT NOTE 159 Aggressive interactions among male cane Turtles Vijayachelys silvatica (HENDERSON, 1912) Vijayachelys silvatica (HENDERSON, 1912) is a monotypic chelonian endemic to the Western Ghats (MOll et al. 1986; PRA- ScHAG et al. 2006). it attains a maximum straight carapace length (Scl) of 170 mm (WHiTAkER & JAGANATHAN 2009) and is thus one of the smallest terrestrial geoemy- did turtles. The species is omnivorous, feeding on fruits, leaves, molluscs, beetles and millipedes (MOll et al. 1986; DEEPAk et al. 2009; vASUDEvAN et al. 2010). Maxi - mum straight carapace length is not signifi- cantly different between males and females (WHiTAkER & JAGANATHAN 2009). How - ever, the species exhibits a sexual shell shape dimorphism, with females attaining bigger carapace width, shell height, plastron length and weight than males (WHiTAkER & JAGANATHAN 2009). in addition, the species is sexually dichromatic, with males showing different combinations of bright red, yellow, pink and black colors on the head, whereas females are clay to cinnamon rufous with or without a pink stripe on the head (MOll et al. 1986; DEE PAk & vASUDEvAN 2009). Mating in cochin Forest cane Turtles is reported to happen between June and November (APPUkUTTAN 1991; WHiTAkER & JAGANATHAN 2009). Aggressive interac- tion among male cane Turtles during this period is a known phenomenon (MOll et al. 1986), but the potential consequence to the inferior rival of losing the nuchal scute is reported here for the first time and allows for inferences on the size at sexual maturity. -
Zootaxa, a New Subspecies of Batagur Affinis (Cantor, 1847), One of The
Zootaxa 2233: 57–68 (2009) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2009 · Magnolia Press ISSN 1175-5334 (online edition) A new subspecies of Batagur affinis (Cantor, 1847), one of the world’s most critically endangered chelonians (Testudines: Geoemydidae) PETER PRASCHAG1, ROHAN HOLLOWAY2, ARTHUR GEORGES2, MARTIN PÄCKERT3, ANNA K. HUNDSDÖRFER3 & UWE FRITZ3,4 1The Turtle Conservancy, Behler Chelonian Institute, P.O. Box 1289, Ojai, CA 93024, USA 2Institute of Applied Ecology, Research Group, University of Canberra, Canberra 2601, Australia 3Museum of Zoology, Senckenberg Dresden, A.B. Meyer Building, D-01109 Dresden, Germany 4Corresponding author. E-mail: [email protected] Abstract Estuarine Batagur are among the most critically endangered chelonian species. We assess the taxonomic status of the recently discovered Cambodian relic population of Batagur by phylogenetic analyses of three mitochondrial (2096 bp) and three nuclear DNA fragments (1909 bp) using sequences from all other Batagur species and selected allied geoemydids. Furthermore, we calculated haplotype networks of the mitochondrial cytochrome b gene for Cambodian terrapins, B. affinis, B. baska, and B. kachuga and compare external morphology of estuarine Batagur populations. Genetically, Cambodian Batagur are closely related with, but distinct from B. affinis from Sumatra and the west coast of the Malay Peninsula. Morphologically, Cambodian Batagur resemble the distinctive B. affinis populations from the eastern Malay Peninsula that were not available for genetic study. We suggest that the Batagur populations from the eastern Malay Peninsula and Cambodia represent a new subspecies of B. affinis that once was distributed in estuaries surrounding the Gulf of Thailand (Batagur affinis edwardmolli subsp. -
WILDLIFE CONSERVATION ACT 2010 2 Laws of Malaysia ACT 716
Wildlife Conservation 1 LAWS OF MALAYSIA Act 716 WILDLIFE CONSERVATION ACT 2010 2 Laws of Malaysia ACT 716 Date of Royal Assent ... ... 21 October 2010 Date of publication in the Gazette ... ... ... 4 November 2010 Publisher’s Copyright C PERCETAKAN NASIONAL MALAYSIA BERHAD All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means electronic, mechanical, photocopying, recording and/or otherwise without the prior permission of Percetakan Nasional Malaysia Berhad (Appointed Printer to the Government of Malaysia). Wildlife Conservation 3 LAWS OF MALAYSIA Act 716 WILDLIFE CONSERVATION ACT 2010 ARRANGEMENT OF SECTIONS PART I PRELIMINARY Section 1. Short title and commencement 2. Application 3. Interpretation PART II APPOINTMENT OF OFFICERS, ETC. 4. Appointment of officers, etc. 5. Delegation of powers 6. Power of Minister to give directions 7. Power of the Director General to issue orders 8. Carrying and use of arms PART III LICENSING PROVISIONS Chapter 1 Requirement for licence, etc. 9. Requirement for licence 10. Requirement for permit 11. Requirement for special permit 4 Laws of Malaysia ACT 716 Chapter 2 Application for licence, etc. Section 12. Application for licence, etc. 13. Additional information or document 14. Grant of licence, etc. 15. Power to impose additional conditions and to vary or revoke conditions 16. Validity of licence, etc. 17. Carrying or displaying licence, etc. 18. Change of particulars 19. Loss of licence, etc. 20. Replacement of licence, etc. 21. Assignment of licence, etc. 22. Return of licence, etc., upon expiry 23. Suspension or revocation of licence, etc. -
The Conservation Biology of Tortoises
The Conservation Biology of Tortoises Edited by Ian R. Swingland and Michael W. Klemens IUCN/SSC Tortoise and Freshwater Turtle Specialist Group and The Durrell Institute of Conservation and Ecology Occasional Papers of the IUCN Species Survival Commission (SSC) No. 5 IUCN—The World Conservation Union IUCN Species Survival Commission Role of the SSC 3. To cooperate with the World Conservation Monitoring Centre (WCMC) The Species Survival Commission (SSC) is IUCN's primary source of the in developing and evaluating a data base on the status of and trade in wild scientific and technical information required for the maintenance of biological flora and fauna, and to provide policy guidance to WCMC. diversity through the conservation of endangered and vulnerable species of 4. To provide advice, information, and expertise to the Secretariat of the fauna and flora, whilst recommending and promoting measures for their con- Convention on International Trade in Endangered Species of Wild Fauna servation, and for the management of other species of conservation concern. and Flora (CITES) and other international agreements affecting conser- Its objective is to mobilize action to prevent the extinction of species, sub- vation of species or biological diversity. species, and discrete populations of fauna and flora, thereby not only maintain- 5. To carry out specific tasks on behalf of the Union, including: ing biological diversity but improving the status of endangered and vulnerable species. • coordination of a programme of activities for the conservation of biological diversity within the framework of the IUCN Conserva- tion Programme. Objectives of the SSC • promotion of the maintenance of biological diversity by monitor- 1. -
Turtles #1 Among All Species in Race to Extinction
Turtles #1 among all Species in Race to Extinction Partners in Amphibian and Reptile Conservation and Colleagues Ramp Up Awareness Efforts After Top 25+ Turtles in Trouble Report Published Washington, DC (February 24, 2011)―Partners in Amphibian and Reptile Conservation (PARC), an Top 25 Most Endangered Tortoises and inclusive partnership dedicated to the conservation of Freshwater Turtles at Extremely High Risk the herpetofauna--reptiles and amphibians--and their of Extinction habitats, is calling for more education about turtle Arranged in general and approximate conservation after the Turtle Conservation Coalition descending order of extinction risk announced this week their Top 25+ Turtles in Trouble 1. Pinta/Abingdon Island Giant Tortoise report. PARC initiated a year-long awareness 2. Red River/Yangtze Giant Softshell Turtle campaign to drive attention to the plight of turtles, now the fastest disappearing species group on the planet. 3. Yunnan Box Turtle 4. Northern River Terrapin 5. Burmese Roofed Turtle Trouble for Turtles 6. Zhou’s Box Turtle The Turtle Conservation Coalition has highlighted the 7. McCord’s Box Turtle Top 25 most endangered turtle and tortoise species 8. Yellow-headed Box Turtle every four years since 2003. This year the list included 9. Chinese Three-striped Box Turtle/Golden more species than previous years, expanding the list Coin Turtle from a Top 25 to Top 25+. According to the report, 10. Ploughshare Tortoise/Angonoka between 48 and 54% of all turtles and tortoises are 11. Burmese Star Tortoise considered threatened, an estimate confirmed by the 12. Roti Island/Timor Snake-necked Turtle Red List of the International Union for the 13. -
Aldabrachelys Arnoldi (Bour 1982) – Arnold's Giant Tortoise
Conservation Biology of Freshwater Turtles and Tortoises: A Compilation ProjectTestudinidae of the IUCN/SSC — AldabrachelysTortoise and Freshwater arnoldi Turtle Specialist Group 028.1 A.G.J. Rhodin, P.C.H. Pritchard, P.P. van Dijk, R.A. Saumure, K.A. Buhlmann, J.B. Iverson, and R.A. Mittermeier, Eds. Chelonian Research Monographs (ISSN 1088-7105) No. 5, doi:10.3854/crm.5.028.arnoldi.v1.2009 © 2009 by Chelonian Research Foundation • Published 18 October 2009 Aldabrachelys arnoldi (Bour 1982) – Arnold’s Giant Tortoise JUSTIN GERLACH 1 1133 Cherry Hinton Road, Cambridge CB1 7BX, United Kingdom [[email protected]] SUMMARY . – Arnold’s giant tortoise, Aldabrachelys arnoldi (= Dipsochelys arnoldi) (Family Testudinidae), from the granitic Seychelles, is a controversial species possibly distinct from the Aldabra giant tortoise, A. gigantea (= D. dussumieri of some authors). The species is a morphologi- cally distinctive morphotype, but has so far not been genetically distinguishable from the Aldabra tortoise, and is considered synonymous with that species by many researchers. Captive reared juveniles suggest that there may be a genetic basis for the morphotype and more detailed genetic work is needed to elucidate these relationships. The species is the only living saddle-backed tortoise in the Seychelles islands. It was apparently extirpated from the wild in the 1800s and believed to be extinct until recently purportedly rediscovered in captivity. The current population of this morphotype is 23 adults, including 18 captive adult males on Mahé Island, 5 adults recently in- troduced to Silhouette Island, and one free-ranging female on Cousine Island. Successful captive breeding has produced 138 juveniles to date. -
MADAGASCAR Food Security Outlook February to September 2016
MADAGASCAR Food Security Outlook February to September 2016 Ongoing drought will drive food insecurity during the 2016/17 consumption year KEY MESSAGES Current food security outcomes for February 2016 An El Niño-related drought is ongoing in the South and West, with certain areas facing one of the driest rainy seasons in 35 years. Although sufficient rainfall in central and northern parts of country will contribute to near-average harvests in those areas, staple food production at a national-level will likely be below- average due to significant declines in production in drought-affected areas. Poor households in the south, particularly in Androy, Atsimo Andrefana, Tsihombe and Ambovombe, will continue to face Crisis (IPC Phase 3) or Stressed (IPC Phase 2) food insecurity between February and April 2016 due to the effects of two consecutive years of below-average crop production in 2014 and 2015 and an ongoing, extended lean season caused by drought-related delays in 2016 harvests. Between April and August, main season harvests will slightly improve food insecurity in the South, although many households will still face Stressed (IPC Phase 2) outcomes given the effects of expected below-average harvests. Crop failures in the districts of Tsihombe and Ambovombe, however, will likely result Source: FEWS NET in a continuation of Crisis (IPC Phase 3) outcomes for affected populations in This map represents acute food insecurity these districts. outcomes relevant for emergency decision- making. It does not necessarily reflect chronic food insecurity. Visit www.fews.net/IPC for Looking towards the next lean season (December 2016 to February 2017), food more on this scale. -
Can Unwanted Suburban Tortoises Rescue Native Hawaiian Plants?
CAN UNWANTED SUBURBAN TORTOISES RESCUE NATIVE HAWAIIAN PLANTS? by David A. Burney, James O. Juvik, Lida Pigott Burney, and Tomas Diagne 104 THE TORTOISE ・ 2012 hrough a series of coincidences, surplus pet tortoises in Hawaii may end up offering a partial solution to the seemingly insurmountable challenge posed by invasive plants in the Makauwahi Cave Reserve Ton Kaua`i. This has come about through a serendipitous intersection of events in Africa, the Mascarene Islands, North America, and Hawaii. The remote Hawaiian Islands were beyond the reach of naturally dispersing island tortoises, but the niches were apparently still there. Giant flightless ducks and geese evolved on these islands with tortoise-like beaks and other adaptations as terrestrial “meso-herbivores.” Dating of these remarkable fossil remains shows that they went extinct soon after the arrival of Polynesians at the beginning of the last millennium leaving the niches for large native herbivores entirely empty. Other native birds, including important plant pollinators, and some plant species have also suffered extinction in recent centuries. This trend accelerated after European settlement ecosystem services and a complex mix of often with the introduction of many invasive alien plants conflicting stakeholder interests clearly requires and the establishment of feral ungulate populations new paradigms and new tools. such as sheep, goats, cattle, and European swine, as Lacking any native mammalian herbivores, the well as other insidious invasives such as deer, rats, majority of the over 1,000 native Hawaiian plant mongoose, feral house cats, and even mosquitoes, species on the islands have been widely regarded which transmit avian malaria to a poorly resistant in the literature as singularly lacking in defensive native avifauna. -
Download Download
HAMADRYAD Vol. 27. No. 2. August, 2003 Date of issue: 31 August, 2003 ISSN 0972-205X CONTENTS T. -M. LEONG,L.L.GRISMER &MUMPUNI. Preliminary checklists of the herpetofauna of the Anambas and Natuna Islands (South China Sea) ..................................................165–174 T.-M. LEONG & C-F. LIM. The tadpole of Rana miopus Boulenger, 1918 from Peninsular Malaysia ...............175–178 N. D. RATHNAYAKE,N.D.HERATH,K.K.HEWAMATHES &S.JAYALATH. The thermal behaviour, diurnal activity pattern and body temperature of Varanus salvator in central Sri Lanka .........................179–184 B. TRIPATHY,B.PANDAV &R.C.PANIGRAHY. Hatching success and orientation in Lepidochelys olivacea (Eschscholtz, 1829) at Rushikulya Rookery, Orissa, India ......................................185–192 L. QUYET &T.ZIEGLER. First record of the Chinese crocodile lizard from outside of China: report on a population of Shinisaurus crocodilurus Ahl, 1930 from north-eastern Vietnam ..................193–199 O. S. G. PAUWELS,V.MAMONEKENE,P.DUMONT,W.R.BRANCH,M.BURGER &S.LAVOUÉ. Diet records for Crocodylus cataphractus (Reptilia: Crocodylidae) at Lake Divangui, Ogooué-Maritime Province, south-western Gabon......................................................200–204 A. M. BAUER. On the status of the name Oligodon taeniolatus (Jerdon, 1853) and its long-ignored senior synonym and secondary homonym, Oligodon taeniolatus (Daudin, 1803) ........................205–213 W. P. MCCORD,O.S.G.PAUWELS,R.BOUR,F.CHÉROT,J.IVERSON,P.C.H.PRITCHARD,K.THIRAKHUPT, W. KITIMASAK &T.BUNDHITWONGRUT. Chitra burmanica sensu Jaruthanin, 2002 (Testudines: Trionychidae): an unavailable name ............................................................214–216 V. GIRI,A.M.BAUER &N.CHATURVEDI. Notes on the distribution, natural history and variation of Hemidactylus giganteus Stoliczka, 1871 ................................................217–221 V. WALLACH.