Characteristics of Airborne Bacterial Communities in Indoor and Outdoor Environments During Continuous Haze Events in Beijing I

Total Page:16

File Type:pdf, Size:1020Kb

Characteristics of Airborne Bacterial Communities in Indoor and Outdoor Environments During Continuous Haze Events in Beijing I Environment International 139 (2020) 105721 Contents lists available at ScienceDirect Environment International journal homepage: www.elsevier.com/locate/envint Characteristics of airborne bacterial communities in indoor and outdoor T environments during continuous haze events in Beijing: Implications for health care Jianguo Guoa,b, Yi Xiongc, Changhua Shia,b, Ce Liud, Hongwei Lia,b, Hua Qiane, Zongke Sunf, ⁎ Chuan Qina,b, a NHC Key Laboratory of Human Disease Comparative Medicine (The Institute of Laboratory Animal Sciences, CAMS&PUMC), Beijing 100021, China b Key Laboratory of Human Diseases Animal Model, State Administration of Traditional Chinese Medicine, Beijing 100021, China c Department of Food Science and Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China d Department of Infectious Disease, Beijing Chuiyangliu Hospital, Affiliated with Tsinghua University, Beijing 100022, China e School of Energy and Environment, Southeast University, Nanjing 211189, China f National Institute of Environmental Health, China CDC, Beijing 100021, China ARTICLE INFO ABSTRACT Handling editor: Adrian Covaci There is solid evidence that haze pollution threatens human health owing to the abiotic pollutants it contains. Keywords: However, the characteristics of airborne bacterial communities in indoor and outdoor environments exhibiting Airborne bacterial community haze occurrence are still unknown. Thus, we examined variations in both indoor and outdoor airborne bacterial Haze events communities in Beijing from December 9–27, 2016, a period which included three haze events. The outdoor Indoor environment airborne bacterial communities were clustered into two main groups (Groups I and II), and they shifted between Outdoor environment two typical bacterial communities regardless of the haze event. The Chao1, Shannon, and phylogenetic diversity Respiratory disease indexes and abundance of dominant classes changed significantly, as did airborne bacterial community type. The Pneumonia indoor airborne bacterial community closely tracked the outdoor bacterial community type, forming two ob- vious groups supported by Adonis analysis, changes in dominant classes, and bacterial diversity compared to the outdoor group. Furthermore, we found that the airborne bacterial community type could affect the morbidity of respiratory diseases. Daily pneumonia cases were significantly higher in Group I(p = 0.035), whereas daily amygdalitis cases were significantly higher in Group II(p = 0.025). Interestingly, the enriched classes in the indoor environment were quite different from those in the typical airborne bacterial community environment, except for Clostridia, which had significantly higher abundance in both indoor environments. In conclusion, we found that the two indoor and outdoor airborne bacterial community types changed independently of haze events, and the special airborne bacterial community type was closely related to the incidence of pneumonia in the heavy haze season. 1. Introduction NOx, CO, VOCs, PM10, and PM2.5 emissions were reduced by 20–40% in 2020 (Guo et al. 2018). Many other measures have been implemented The annual concentrations of PM2.5 have increased by 48% in China to reduce the level of air pollution. However, there is still a long way to and an increasing trend was observed in 87.9% of the country ac- go. The level of air pollution in China is substantially higher than that in cording to data from 1999 to 2016 (Zhao et al. 2019). High PM2.5 levels developed countries, and its threat to public health has attracted a large were mainly located in the Beijing-Tianjin-Hebei region in North China, amount of attention, particularly in relation to haze events (Guan et al. East China, and the Henan province (Lin et al. 2014). The annual PM2.5 2016). 3 concentrations in >10% of this area have been > 35 μg/m since 2003 Haze pollution, and especially fine particulate matter (PM2.5), can (Zhaoet al. 2019). A total of 83% of the population lives in areas where increase mortality from heart disease (Pope et al. 2009; Pope et al. 3 the annual PM2.5 level exceeds 35 μg/m (Liu et al. 2016). A coal cap 2004), stroke, respiratory disease (Zhang and Cao 2015), and lung policy was implemented in the Beijing-Tianjin-Hebei region, and SO2, cancer (Lepeule et al. 2012; Pope et al. 2011), and can shorten ⁎ Corresponding author at: Pan Jia Yuan Nan Li No. 5, Chao Yang District, Beijing 100021, China. E-mail address: [email protected] (C. Qin). https://doi.org/10.1016/j.envint.2020.105721 Received 1 November 2019; Received in revised form 2 April 2020; Accepted 3 April 2020 Available online 16 April 2020 0160-4120/ © 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/BY-NC-ND/4.0/). J. Guo, et al. Environment International 139 (2020) 105721 ) )a( )b( 3 200 PM2.5 PM10 150 100 50 Concentration (ug/m 0 Jul-16 Oct-16 Apr-16 Jun-16 Jan-17 Mar-17 Feb-17 Nov-16 Dec-16 Aug-16 Sep-16 May-16 (c) TC1 TP2 TC3 TP4 TC5 TP6 TC7 3 g/m μ and PM10 Concentration of PM2.5 12/9a12/9p 12/10a12/10p12/11a12/11p12/12a12/12p12/13a12/13p12/14a12/14p12/15a12/15p12/16a12/16p12/17a12/17p12/18a12/18p12/19a12/19p12/20a12/20p12/21a12/21p12/22a12/22p12/23a12/23p12/24a12/24p12/25a12/25p12/26a12/26p12/27a12/27p Fig. 1. Sampling details. (a) Distribution of sampling sites. The room (307, 311, 315) represents the indoor environment, and balcony (Y) represents the outdoor environment. (b) Mean concentrations of PM2.5 and PM10 for each month between April 2016 and March 2017. (c) Concentrations of PM2.5 and PM10 at each sampling interval between December 9 and 27, 2016. TC: time interval < 75 μg/m3; TP: time interval > 75 μg/m3 (note: time intervals were numbered in chronological order). lifespans. Data from six low- and middle-income countries showed that outdoors (Kembel et al. 2012). Our knowledge of indoor microbial 3 each 10 μg/m increase of PM2.5 corresponded to a 0.72 increase in communities has greatly increased in recent years owing to the devel- overall disability scores based on the World Health Organization Dis- opment of high-throughput sequencing technology. This technology has ability Assessment Schedule (Lin et al. 2017). PM2.5 exposure caused shown that the indoor microbial community is affected by building 4.2 million deaths (7.6% of total global deaths) and 103.1 million factors, which govern the entry behavior of outdoor microorganisms, as disability-adjusted life-years (DALYs) (4.2% of global DALYs) in 2015 well as by occupants, who release human-associated microorganisms (Cohen et al. 2017). Premature mortalities attributed to PM2.5 in China and re-suspend microbes residing on floors and surfaces (Leung and Lee amounted to 1.37 million in 2013 (Liuet al. 2016). 2016). Therefore, both the outdoor environment and occupants act as Airborne microorganisms are crucial components of the atmo- major sources of indoor microorganisms (Adams et al. 2015; Hospodsky sphere, with bacterial cells exceeding 1 × 104 m−3 (Burrows et al. et al. 2012; Leung and Lee 2016; Stephens et al. 2015). 2009), and they can threaten human health by disseminating allergens In Beijing, severe haze pollution occurs frequently in winter, when and pathogens (Griffin 2007). Many researchers have investigated pathogenic bacteria and fungi are more abundant (Duet al. 2018). Al- structural variation in the airborne bacterial community during haze though microbial composition varies between settings, bacteria are events (Du et al. 2018; Sun et al. 2018; Yan et al. 2018; Zhen et al. generally the most abundant microbes (approximately 80%), followed 2017). However, comparisons of the airborne bacterial community on by fungi (Zhai et al. 2018). Therefore, in this study, we investigated haze and non-haze days have yielded inconsistent results. Fan et al. variations in airborne bacterial communities in indoor and outdoor screened several dominant genera in PM2.5 on heavy or severe pollution environments in Beijing from December 9–27, 2016, a period which days (Fan et al. 2019), and Sun et al. found that the dominant genera included three haze cycles. In addition, we explored the reason for the varied under different concentrations of PM including Rhizobium, Pro- shift in the bacterial community and the relationship between bacterial pionibacterium and Comamonadaceae (Abd Aziz et al. 2018; Sunet al. community structure and respiratory disease. Our results have im- 2018), while no correlation between dominant genera and pollution portant implications for health care during haze events. levels was observed in other studies (Duet al. 2018; Wei et al. 2016; Xu et al. 2017b; Yanet al. 2018). These inconsistent results may be largely 2. Material and methods due to the limited numbers of samples and lack of continuous sampling (Dong et al. 2016; Duet al. 2018), as data on unsampled days might 2.1. Exposure experiment help explain the correlation between airborne bacterial communities and air pollution. Therefore, a better understanding of the dynamic In this study, we sampled the indoor and outdoor environments on variation in airborne bacterial communities throughout the haze pro- the third floor of a three-story building at approximately 10 mabove cess is important for human health risk evaluation. the ground (116°26′35.86″E, 39°52′22.30″N). We selected four sam- Indoor airborne microorganisms are also an important considera- pling sites: one in each of three different student dormitories (307, 311, tion in human health risk evaluations during haze events, because hu- and 315), and one on a balcony (Y) (Fig. 1a). The balcony was open to mans spend most of their time indoors (up to 90% in industrialized the outdoor air, with no barriers. The samples collected from 307, 311, countries [(Hoppe and Martinac 1998; Klepeis et al. 2001)]).
Recommended publications
  • Table S4. Phylogenetic Distribution of Bacterial and Archaea Genomes in Groups A, B, C, D, and X
    Table S4. Phylogenetic distribution of bacterial and archaea genomes in groups A, B, C, D, and X. Group A a: Total number of genomes in the taxon b: Number of group A genomes in the taxon c: Percentage of group A genomes in the taxon a b c cellular organisms 5007 2974 59.4 |__ Bacteria 4769 2935 61.5 | |__ Proteobacteria 1854 1570 84.7 | | |__ Gammaproteobacteria 711 631 88.7 | | | |__ Enterobacterales 112 97 86.6 | | | | |__ Enterobacteriaceae 41 32 78.0 | | | | | |__ unclassified Enterobacteriaceae 13 7 53.8 | | | | |__ Erwiniaceae 30 28 93.3 | | | | | |__ Erwinia 10 10 100.0 | | | | | |__ Buchnera 8 8 100.0 | | | | | | |__ Buchnera aphidicola 8 8 100.0 | | | | | |__ Pantoea 8 8 100.0 | | | | |__ Yersiniaceae 14 14 100.0 | | | | | |__ Serratia 8 8 100.0 | | | | |__ Morganellaceae 13 10 76.9 | | | | |__ Pectobacteriaceae 8 8 100.0 | | | |__ Alteromonadales 94 94 100.0 | | | | |__ Alteromonadaceae 34 34 100.0 | | | | | |__ Marinobacter 12 12 100.0 | | | | |__ Shewanellaceae 17 17 100.0 | | | | | |__ Shewanella 17 17 100.0 | | | | |__ Pseudoalteromonadaceae 16 16 100.0 | | | | | |__ Pseudoalteromonas 15 15 100.0 | | | | |__ Idiomarinaceae 9 9 100.0 | | | | | |__ Idiomarina 9 9 100.0 | | | | |__ Colwelliaceae 6 6 100.0 | | | |__ Pseudomonadales 81 81 100.0 | | | | |__ Moraxellaceae 41 41 100.0 | | | | | |__ Acinetobacter 25 25 100.0 | | | | | |__ Psychrobacter 8 8 100.0 | | | | | |__ Moraxella 6 6 100.0 | | | | |__ Pseudomonadaceae 40 40 100.0 | | | | | |__ Pseudomonas 38 38 100.0 | | | |__ Oceanospirillales 73 72 98.6 | | | | |__ Oceanospirillaceae
    [Show full text]
  • Effects of Different Straw Biochar Combined with Microbial Inoculants on Soil Environment of Ginseng
    Effects of Different Straw Biochar Combined With Microbial Inoculants on Soil Environment of Ginseng Yuqi Qi Jilin Agricultural University Haolang Liu Jilin Agricultural University Jihong Wang ( [email protected] ) Jilin Agricultural University Yingping Wang Jilin Agricultural University Research Article Keywords: Microbial agent, Ginseng, Biochar, Soil remediation, Microbiota Posted Date: February 13th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-189319/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Version of Record: A version of this preprint was published at Scientic Reports on July 19th, 2021. See the published version at https://doi.org/10.1038/s41598-021-94209-1. Page 1/23 Abstract Ginseng is an important cash crop. The long-term continuous cropping of ginseng causes the imbalance of soil environment and the exacerbation of soil-borne diseases, which affects the healthy development of ginseng industry. In this study, ginseng continuous cropping soil was treated with microbial inocula using broad-spectrum biocontrol microbial strain Frankia F1. Wheat straw, rice straw and corn straw were the best carrier materials for microbial inoculum. After treatment with microbial inoculum prepared with corn stalk biochar, the soil pH value, organic matter, total nitrogen, available nitrogen, available phosphorus, and available potassium were increased by 11.18%, 55.43%, 33.07%, 26.70%, 16.40%, and 9.10%, the activities of soil urease, catalase and sucrase increased by 52.73%, 16.80% and 43.80%, respectively. A Metagenomic showed that after the application of microbial inoculum prepared fromwith corn stalk biochar, soil microbial OTUs, Chao1 index, Shannon index, and Simpson index increased by 19.86%, 16.05%, 28.83%, and 3.16%, respectively.
    [Show full text]
  • Soil Ph Is the Primary Factor Driving the Distribution and Function of Microorganisms in Farmland Soils in Northeastern China
    Annals of Microbiology (2019) 69:1461–1473 https://doi.org/10.1007/s13213-019-01529-9 ORIGINAL ARTICLE Soil pH is the primary factor driving the distribution and function of microorganisms in farmland soils in northeastern China Cheng-yu Wang1 & Xue Zhou1 & Dan Guo1 & Jiang-hua Zhao1 & Li Yan1 & Guo-zhong Feng1 & Qiang Gao1 & Han Yu2 & Lan-po Zhao1 Received: 26 May 2019 /Accepted: 3 November 2019 /Published online: 19 December 2019 # The Author(s) 2019 Abstract Purpose To understand which environmental factors influence the distribution and ecological functions of bacteria in agricultural soil. Method A broad range of farmland soils was sampled from 206 locations in Jilin province, China. We used 16S rRNA gene- based Illumina HiSeq sequencing to estimated soil bacterial community structure and functions. Result The dominant taxa in terms of abundance were found to be, Actinobacteria, Acidobacteria, Gemmatimonadetes, Chloroflexi, and Proteobacteria. Bacterial communities were dominantly affected by soil pH, whereas soil organic carbon did not have a significant influence on bacterial communities. Soil pH was significantly positively correlated with bacterial opera- tional taxonomic unit abundance and soil bacterial α-diversity (P<0.05) spatially rather than with soil nutrients. Bacterial functions were estimated using FAPROTAX, and the relative abundance of anaerobic and aerobic chemoheterotrophs, and nitrifying bacteria was 27.66%, 26.14%, and 6.87%, respectively, of the total bacterial community. Generally, the results indicate that soil pH is more important than nutrients in shaping bacterial communities in agricultural soils, including their ecological functions and biogeographic distribution. Keywords Agricultural soil . Soil bacterial community . Bacterial diversity . Bacterial biogeographic distribution .
    [Show full text]
  • Chemosynthetic and Photosynthetic Bacteria Contribute Differentially to Primary Production Across a Steep Desert Aridity Gradient
    The ISME Journal https://doi.org/10.1038/s41396-021-01001-0 ARTICLE Chemosynthetic and photosynthetic bacteria contribute differentially to primary production across a steep desert aridity gradient 1,2 3,4 5 6 2 Sean K. Bay ● David W. Waite ● Xiyang Dong ● Osnat Gillor ● Steven L. Chown ● 3 1,2 Philip Hugenholtz ● Chris Greening Received: 23 November 2020 / Revised: 16 April 2021 / Accepted: 28 April 2021 © The Author(s) 2021. This article is published with open access Abstract Desert soils harbour diverse communities of aerobic bacteria despite lacking substantial organic carbon inputs from vegetation. A major question is therefore how these communities maintain their biodiversity and biomass in these resource-limiting ecosystems. Here, we investigated desert topsoils and biological soil crusts collected along an aridity gradient traversing four climatic regions (sub-humid, semi-arid, arid, and hyper-arid). Metagenomic analysis indicated these communities vary in their capacity to use sunlight, organic compounds, and inorganic compounds as energy sources. Thermoleophilia, Actinobacteria, and Acidimicrobiia 1234567890();,: 1234567890();,: were the most abundant and prevalent bacterial classes across the aridity gradient in both topsoils and biocrusts. Contrary to the classical view that these taxa are obligate organoheterotrophs, genome-resolved analysis suggested they are metabolically flexible, withthecapacitytoalsouseatmosphericH2 to support aerobic respiration and often carbon fixation. In contrast, Cyanobacteria were patchily distributed and only abundant in certain biocrusts. Activity measurements profiled how aerobic H2 oxidation, chemosynthetic CO2 fixation, and photosynthesis varied with aridity. Cell-specific rates of atmospheric H2 consumption increased 143-fold along the aridity gradient, correlating with increased abundance of high-affinity hydrogenases. Photosynthetic and chemosynthetic primary production co-occurred throughout the gradient, with photosynthesis dominant in biocrusts and chemosynthesis dominant in arid and hyper-arid soils.
    [Show full text]
  • Genomic Analysis of Uncultured Microbes in Marine Sediments
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 12-2017 Singled Out: Genomic analysis of uncultured microbes in marine sediments Jordan Toby Bird University of Tennessee, [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Recommended Citation Bird, Jordan Toby, "Singled Out: Genomic analysis of uncultured microbes in marine sediments. " PhD diss., University of Tennessee, 2017. https://trace.tennessee.edu/utk_graddiss/4829 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Jordan Toby Bird entitled "Singled Out: Genomic analysis of uncultured microbes in marine sediments." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Doctor of Philosophy, with a major in Microbiology. Karen G. Lloyd, Major Professor We have read this dissertation and recommend its acceptance: Mircea Podar, Andrew D. Steen, Erik R. Zinser Accepted for the Council: Dixie L. Thompson Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) Singled Out: Genomic analysis of uncultured microbes in marine sediments A Dissertation Presented for the Doctor of Philosophy Degree The University of Tennessee, Knoxville Jordan Toby Bird December 2017 Copyright © 2017 by Jordan Bird All rights reserved.
    [Show full text]
  • Identify the Core Bacterial Microbiome of Hydrocarbon Degradation and A
    Identify the core bacterial microbiome of hydrocarbon degradation and a shift of dominant methanogenesis pathways in oil and aqueous phases of petroleum reservoirs with different temperatures from China Zhichao Zhou1, Bo Liang2, Li-Ying Wang2, Jin-Feng Liu2, Bo-Zhong Mu2, Hojae Shim3, and Ji-Dong Gu1,* 1 Laboratory of Environmental Microbiology and Toxicology, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, Hong Kong, People’s Republic of China 2 State Key Laboratory of Bioreactor Engineering and Institute of Applied Chemistry, East China University of Science and Technology, Shanghai 200237, People’s Republic of China 3 Faculty of Science and Technology, University of Macau, Macau, People’s Republic of China *Correspondence to: Ji-Dong Gu ([email protected]) 1 Supplementary Data 1.1 Characterization of geographic properties of sampling reservoirs Petroleum fluids samples were collected from eight sampling sites across China covering oilfields of different geological properties. The reservoir and crude oil properties together with the aqueous phase chemical concentration characteristics were listed in Table 1. P1 represents the sample collected from Zhan3-26 well located in Shengli Oilfield. Zhan3 block region in Shengli Oilfield is located in the coastal area from the Yellow River Estuary to the Bohai Sea. It is a medium-high temperature reservoir of fluvial face, made of a thin layer of crossed sand-mudstones, pebbled sandstones and fine sandstones. P2 represents the sample collected from Ba-51 well, which is located in Bayindulan reservoir layer of Erlian Basin, east Inner Mongolia Autonomous Region. It is a reservoir with highly heterogeneous layers, high crude oil viscosity and low formation fluid temperature.
    [Show full text]
  • Heliorhodopsin Evolution Is Driven by Photosensory Promiscuity in Monoderms 2 Paul-Adrian Bulzu1, Vinicius Silva Kavagutti1,2, Maria-Cecilia Chiriac1, Charlotte 3 D
    bioRxiv preprint doi: https://doi.org/10.1101/2021.02.01.429150; this version posted February 2, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Heliorhodopsin evolution is driven by photosensory promiscuity in monoderms 2 Paul-Adrian Bulzu1, Vinicius Silva Kavagutti1,2, Maria-Cecilia Chiriac1, Charlotte 3 D. Vavourakis3, Keiichi Inoue4, Hideki Kandori5,6, Adrian-Stefan Andrei7, Rohit 4 Ghai1* 5 1Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of 6 the Academy of Sciences of the Czech Republic, České Budějovice, Czech Republic. 7 2Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, 8 Branišovská 1760, České Budějovice, Czech Republic. 9 3EUTOPS, Research Institute for Biomedical Aging Research, University of Innsbruck, 10 Austria. 11 4The Institute for Solid State Physics, The University of Tokyo, Kashiwa, Japan. 12 5Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, 13 Showa, Nagoya 466-8555, Japan. 14 6OptoBioTechnology Research Center, Nagoya Institute of Technology, Showa, Nagoya 15 466-8555, Japan 16 7Limnological Station, Department of Plant and Microbial Biology, University of Zurich, 17 Kilchberg, Switzerland. 18 *Corresponding author: Rohit Ghai 19 Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of 20 the Academy 21 of Sciences of the Czech Republic, Na Sádkách 7, 370 05, České Budějovice, Czech 22 Republic. 23 Phone: +420 387 775 881 24 Fax: +420 385 310 248 25 E-mail: [email protected] 26 bioRxiv preprint doi: https://doi.org/10.1101/2021.02.01.429150; this version posted February 2, 2021.
    [Show full text]
  • Uncovering the Uncultivated Majority in Antarctic Soils: Toward a Synergistic Approach
    fmicb-10-00242 February 15, 2019 Time: 15:34 # 1 View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Ghent University Academic Bibliography REVIEW published: 15 February 2019 doi: 10.3389/fmicb.2019.00242 Uncovering the Uncultivated Majority in Antarctic Soils: Toward a Synergistic Approach Sam Lambrechts*, Anne Willems and Guillaume Tahon* Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium Although Antarctica was once believed to be a sterile environment, it is now clear that the microbial communities inhabiting the Antarctic continent are surprisingly diverse. Until the beginning of the new millennium, little was known about the most abundant inhabitants of the continent: prokaryotes. From then on, however, the rising use of deep sequencing techniques has led to a better understanding of the Antarctic prokaryote diversity and provided insights in the composition of prokaryotic communities in different Antarctic environments. Although these cultivation-independent approaches can produce millions of sequences, linking these data to organisms is hindered by several problems. The largest difficulty is the lack of biological information on Edited by: Samuel Cirés, large parts of the microbial tree of life, arising from the fact that most microbial Autonomous University of Madrid, diversity on Earth has never been characterized in laboratory cultures. These unknown Spain prokaryotes, also known as microbial dark matter, have been dominantly detected Reviewed by: David Anthony Pearce, in all major environments on our planet. Laboratory cultures provide access to the Northumbria University, complete genome and the means to experimentally verify genomic predictions and United Kingdom metabolic functions and to provide evidence of horizontal gene transfer.
    [Show full text]
  • The Impact of Urbanization on Soil Bacterial Diversity and Community Composition in Long Island, New York
    The Impact of Urbanization on Soil Bacterial Diversity and Community Composition in Long Island, New York by KAUNG MYAT SAN Thesis submitted to the Graduate Faculty in Biology in fulfillment of the requirements for the degree of Master of Art, The City University of New York March 2019 Approved by: __________________________________ Date: _________________________________________ i TABLE OF CONTENT Thesis Approval Form………………………………………………………………… i-ii Abstract………………………………………………………………….……………… iii Acknowledgements……………………………………………………………………... iv Introduction……………………………………….……………………. ……………. 1-7 1.1 Urbanization 1.2 Soil profile 1.3 Role of Microbes in Soil 1.4 Soil Bacterial Diversity and pH is linked to Human Population Density in Urban Centers 1.5 The Effects of Soil pH on Bacterial Diversity and the community composition Objectives and Hypotheses…………………………………………………………. 8-12 Materials and Methods……………………………………………………………. 13-21 2.1 Environmental Soil Collection 2.2 Soil Characterization of pH 2.3 Metagenomic Methods 2.4 DNA Sequences Processing 2.5 Statistical Analysis Results ……………………………………………………………………………… 22-28 Discussion …………………………………………………………………………. 29-32 Supplementary Materials…………………………………………………………. 33-42 References…………………………………………………………………………. 43-44 i QUEENS COLLEGE Of THE CITY UNIVERSITY OF NEW YORK Thesis Approval Form Mr./Ms_________________________________________________________________ (Please Print) a candidate for the degree of Master of Art [ ] Master of Science in Education [ ] Has satisfactorily completed a Master’s thesis
    [Show full text]
  • Connecting Biodiversity and Biogeochemical Role by Microbial
    Conne cting biodi versity and biogeochemical role by microbial metagenomics Tomàs Llorens Marès A questa tesi doctoral està subjecta a la llicència Reconeixement - NoComercial – CompartirIgual 4 .0. Espanya de Creative Commons . Esta tesis doctoral está sujeta a la licencia Reconocimiento - No Comercial – CompartirIgual 4 .0. España de Creative Commons . Th is doctoral thesis is licensed under the Creative Commons Attribution - NonCommercial - ShareAlike 4 .0. Spain License . ! ! ! Tesi Doctoral Universitat de Barcelona Facultat de Biologia – Departament d’Ecologia Programa de doctorat en Ecologia Fonamental i Aplicada Connecting biodiversity and biogeochemical role by microbial metagenomics Vincles entre biodiversitat microbiana i funció biogeoquímica mitjançant una aproximació metagenòmica Memòria presentada pel Sr. Tomàs Llorens Marès per optar al grau de doctor per la Universitat de Barcelona Tomàs Llorens Marès Centre d’Estudis Avançats de Blanes (CEAB) Consejo Superior de Investigaciones Científicas (CSIC) Blanes, Juny de 2015 Vist i plau del director i tutora de la tesi El director de la tesi La tutora de la tesi Dr. Emilio Ortega Casamayor Dra. Isabel Muñoz Gracia Investigador científic Professora al Departament del CEAB (CSIC) d’Ecologia (UB) Llorens-Marès, T., 2015. Connecting biodiversity and biogeochemical role by microbial metagenomics. PhD thesis. Universitat de Barcelona. 272 p. Disseny coberta: Jordi Vissi Garcia i Tomàs Llorens Marès. Fletxes coberta: Jordi Vissi Garcia. Fotografia coberta: Estanys de Baiau (Transpirinenca 2008), fotografia de l’autor. ! ! ! La ciència es construeix a partir d’aproximacions que s’acosten progressivament a la realitat Isaac Asimov (1920-1992) ! V! Agraïments Tot va començar l’estiu de 2009, just acabada la carrera de Biotecnologia. Com sovint passa quan acabes una etapa i n’has de començar una altra, els interrogants s’obren al teu davant i la millor forma de resoldre’ls és provar.
    [Show full text]
  • Supplement of Biogeosciences, 16, 4229–4241, 2019 © Author(S) 2019
    Supplement of Biogeosciences, 16, 4229–4241, 2019 https://doi.org/10.5194/bg-16-4229-2019-supplement © Author(s) 2019. This work is distributed under the Creative Commons Attribution 4.0 License. Supplement of Identifying the core bacterial microbiome of hydrocarbon degradation and a shift of dominant methanogenesis pathways in the oil and aqueous phases of petroleum reservoirs of different temperatures from China Zhichao Zhou et al. Correspondence to: Ji-Dong Gu ([email protected]) and Bo-Zhong Mu ([email protected]) The copyright of individual parts of the supplement might differ from the CC BY 4.0 License. 1 Supplementary Data 1.1 Characterization of geographic properties of sampling reservoirs Petroleum fluids samples were collected from eight sampling sites across China covering oilfields of different geological properties. The reservoir and crude oil properties together with the aqueous phase chemical concentration characteristics were listed in Table 1. P1 represents the sample collected from Zhan3-26 well located in Shengli Oilfield. Zhan3 block region in Shengli Oilfield is located in the coastal area from the Yellow River Estuary to the Bohai Sea. It is a medium-high temperature reservoir of fluvial face, made of a thin layer of crossed sand-mudstones, pebbled sandstones and fine sandstones. P2 represents the sample collected from Ba-51 well, which is located in Bayindulan reservoir layer of Erlian Basin, east Inner Mongolia Autonomous Region. It is a reservoir with highly heterogeneous layers, high crude oil viscosity and low formation fluid temperature. It was dedicated to water-flooding, however, due to low permeability and high viscosity of crude oil, displacement efficiency of water-flooding driving process was slowed down along the increase of water-cut rate.
    [Show full text]
  • Short-Term Effect of Simulated Salt Marsh Restoration by Sand- Amendment on Sediment Bacterial Communities
    University of South Carolina Scholar Commons Faculty Publications Biological Sciences, Department of 4-29-2019 Short-Term Effect of Simulated Salt Marsh Restoration by Sand- Amendment on Sediment Bacterial Communities François Thomas James T. Morris [email protected] Cathleen Wigand Stefan M. Sievert Follow this and additional works at: https://scholarcommons.sc.edu/biol_facpub Part of the Biology Commons Publication Info Published in PLoS ONE, Volume 14, Issue 4, 2019, pages e0215767-. ©This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication. This Article is brought to you by the Biological Sciences, Department of at Scholar Commons. It has been accepted for inclusion in Faculty Publications by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. RESEARCH ARTICLE Short-term effect of simulated salt marsh restoration by sand-amendment on sediment bacterial communities 1,2 3 4 1 FrancËois Thomas *, James T. Morris , Cathleen Wigand , Stefan M. SievertID * 1 Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, United States of America, 2 Sorbonne UniversiteÂ, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), Roscoff, France, 3 Belle Baruch Institute for Marine & Coastal Sciences, University of South Carolina, Columbia, SC, United States of America, 4 U.S. EPA, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Atlantic Ecology Division, Narragansett, RI, United States of a1111111111 America a1111111111 a1111111111 * [email protected] (FT); [email protected] (SMS) a1111111111 a1111111111 Abstract Coastal climate adaptation strategies are needed to build salt marsh resiliency and maintain critical ecosystem services in response to impacts caused by climate change.
    [Show full text]