PLANT SPECIES AVAILABLE from NOOSA & DISTRICT LANDCARE RESOURCE CENTRE, POMONA, December 2015 (Opposite the Pub)

Total Page:16

File Type:pdf, Size:1020Kb

PLANT SPECIES AVAILABLE from NOOSA & DISTRICT LANDCARE RESOURCE CENTRE, POMONA, December 2015 (Opposite the Pub) PLANT SPECIES AVAILABLE FROM NOOSA & DISTRICT LANDCARE RESOURCE CENTRE, POMONA, December 2015 (opposite the pub) Prices: Tube stock: $2.00 * Orders 100-500: $1.80 Kauri, Brown & Hoop pines: $2.20 * Orders 500 plus: $1.54 Bunya pines: $3.50 * Orders over 1000 – price negotiable Specials: $1.00 * Larger pots as marked * Members receive 10% - 20% discount on plants * Phone 5485 2468 to pre-order plants Acacia falcata SICKLE WATTLE Shrub to 4 m throughout Queensland and NSW, mostly in Coastal areas. Often very ‘showy’ flowering periods in June with cream coloured ball-flowers. Unusual seed pods show the seeds very obviously which attracts birds such as the pale headed rosellas. Acacia flavescens PRIMROSE BALL WATTLE Small to medium tree to 10 metres. Rough furrowed bark, large distinctive phyllodes. Panicles of creamy-white to yellowish flower heads, throughout summer, autumn and winter. Common in sandy coastal soils. Acacia fimbriata BRISBANE WATTLE Shrub or bushy small tree to 4m. Hardy and fast growing. Attractive ferny semi-weeping foliage. Flowers are scented yellow fluffy balls in winter. Alectryon coriaceous BEACH ALECTRYON Bushy coastal shrub 1-6m. Panicles of small yellow flowers in winter and distinctive bird-attracting fruit. Very hardy in a coastal site, not frost tolerant. Allocasuarina littoralis BLACK SHE-OAK Open forest tree to 10m, black fissured bark. Hardy, adaptable and fast growing in variety of sites. Black cockatoo feed tree, suitable for cabinet work. Allocasuarina torulosa ROSE SHE-OAK Medium tree slender and pyramidal 10 – 25 metres. Food tree for Black Cockatoos. Hardy and adaptable; suitable for moist rich or nutrient-deficient sandy soils; frost tolerant. Alpinia caerulea NATIVE GINGER Clumping plant to 1.5m. Understorey species, likes shady moist site. Bright blue berries attract birds. Fruit, leaves and tuberous roots are edible and make a tasty addition to salads. Alphitonia petriei PINK ASH – SARSPARILLA Medium rainforest tree to 15 meteres. Panicles of tiny white flowers in summer followed by bird attracting fruit. Hardy and extremely fast growing pioneer tree in a variety of soils. Alphitonia excelsa RED ASH Medium to large pioneer tree 15m. Hardy and adaptable, fast growing. Masses of tiny white flowers followed by black berries attracts birds. Cabinet timber uses. Araucaria bidwillii BUNYA PINE Rainforest tree to 50m, valuable timber species. Large, heavy (to 7kg), edible nuts. Prefers deep, rich soil but very tough, withstanding frost, low moisture and strong wind. Araucaria cunninghamii HOOP PINE Rainforest tree to 50m. Trunk straight, timber highly prized. Hardy, slow growing unless well fertilised. Needs good drainage. Excellent tub plant. Argyrhodendron sp. Kin Kin RUSTY TULIP OAK – COPPER BOOYONG Medium sized buttressed rainforest tree ±15 metres. Small bell-like creamy flowers in winter. Coppery, winged seeds and leaves with a distinctive shinny reddish-brown colour underneath. Hardy once established. Auranticarpa rhombifolium DIAMOND PITTOSPORUM Small to medium tree to 15m in subtropical and dry rainforest. Often planted as an ornamental, it grows in a pyramidal shape in the open and is tough and hardy when established. Leaves are simple, alternate, glossy and diamond shaped with toothed edges. Flowers are small and white, from November to January. Austromyrtus dulcis MIDYIM Low spreading shrub to 50cm, adaptable to most soils, dry or moist, sun or part shade. Masses of white flowers during spring and summer, followed by white,edible sweet berries; attractive reddish new growth. Banksia robur SWAMP BANKSIA Low spreading decorative shrub to 1.5 metres. Aquamarine flower spikes turning to greenish-yellow. Grows in poorly drained soil but also withstands drought conditions, prefers a sunny position. Backhousia citridora LEMON MYRTLE Attractive shrub usually to 3m; taller in rainforest situation. Moderately hardy in well-drained site. Dense foliage, white heads of flowers. Lemon-scented leaves used as bush tucker; grown commercially for flavouring and oil. Backhousia myrtifolia SILKY MYRTLE ― GREY MYRTLE Large shrub or small tree 3 – 7 metres. Profuse white flowers in spring. Hardy and adaptable; ample moisture and nutrients in the early stages promote growth. Baumea rubignosa SOFT TWIGRUSH Clumping sedge to 1 metre. Fluffy reddish-brown flower heads year-round followed by shiny orange nuts. Suits wet or poorly drained soils. Callerya megasperma NATIVE WISTERIA Vigorous, woody rainforest climber. Pendulous clusters of pale purple and white flowers in spring. The flowers of this decorative plant are as prolific as the introduced Wisteria but the leaves are retained all year round. By natural inclination if forms a canopy over surrounding vegetation and needs plenty of scope with strong supports. Hardy and fast growing with adequate moisture. Callicarpa pedunculata VELVET LEAF Small openly branched shrub 1-2m. Fast growing and reasonably hardy but dislikes extreme cold or exposure. Prune regularly to keep bushy shape. Attractive small purple fruit attract birds; useful screening shrub. Callitrus columellaris BRIBIE ISLAND CYPRESS, COASTAL CYPRESS PINE Medium to large conical tree to 20m. Coppery winged seeds attract cockatoos, rosellas and galahs. Moderately fast growing; hardy in a variety of situations; suits sandy well-drained soils; durable timber tree. Carex appressa TUSSOCK SEDGE Perennial clumping grass-like plant to 1m. Rusty-brown seed heads. Suits wet soil but adapts to well-drained soils. Frost hardy; sun to part shade. Ideal for re-vegetating riparian zones. Good ornamental garden sedge. Carissa ovata CURRANT BUSH – BLACKBERRY Decorative small spiny shrub 1 to 2m. Fragrant white flowers mostly in summer. Purplish-black berries a favourite food of the Regent and Satin Bower-birds; hardy in well drained soils; full sun or partial shade. Caropobrotus glaucescens PIG FACE Perenial, fleshy ground cover of coastal dunes (used for dune stabilization), pink flowers in summer months. Fruit can be eaten raw, leaves used for marine stings, insect bites and sunburn. Attractive addition in a coastal garden/rockery. 2 Cassia brewsteri LEICHHARDT BEAN Rainforest tree ±10m. Adaptable to various free-draining soils, tolerates dry conditions. Showy red and yellow pendulous flowers (flowers when quite young), attractive glossy foliage. Castanospermum australe BLACK BEAN Medium rainforest tree to 12+ metres. Dark green glossy leaves are pinnate and symmetrical. Yellow to red flowers in late spring. Prefers a well-drained site on alluvial soils but will manage clay. Once established it is hardy in sun or partial shade. Castanospora alphandii BROWN TAMARIND Rainforest tree to 20m. Attractive weeping foliage forms a handsome rounded crown; white scented flowers; timber uses. Fruit is a peach-coloured capsule to 3cm in diameter and contain two brown seeds Casuarina equisetifolia HORSETAIL SHE-OAK Coastal tree to 10m with graceful, drooping foliage, important for sand dune stabilisation. Not an easy species to grow away from the coast. Casuarina glauca SWAMP SHE-OAK Small ornamental tree 6 – 16 metres. Food source for black cockatoos, lorikeets and rosellas. Male and female flowers on separate trees. Strong growing and hardy in a variety of conditions. Choricarpia subargentea GIANT IRONWOOD A rare medium sized Australian rainforest tree up to 20 metres, occasionally reaching 30 metres. The trunk can be smooth or glossy and orange/brown or pinkish/mauve colour or green where bark has recently been shed or if shed irregularly the trunk takes a mottled appearance, it can be multi-stemmed and with some buttressing at the base. Flowers are white, densely together in globular heads, and appear in April. Hardy in well drained soils; tolerates full sun and poor soil; frost tolerant. Cissus antarctica NATIVE GRAPE – WATER VINE – KANGAROO VINE Robust and vigorous rainforest vine or groundcover. Leaves are grey-green to dark-green, felty and rust colored underneath. Dense clusters of yellow flowers in summer. The vine offers shelter and nesting sites for birds while and the fruit is eaten by possums and many bird species, including Topknot Pigeons, Wompoo Fruit-doves and Rose-crowned Fruit-doves. Very hardy in sun or shade but will look best with extra water and soil nutrients; good as an indoor plant. Citrus australasica var. sanguinea (syn Microcitrus australasica var.sanguinea) FINGER LIME Thorny evergreen shrub to 4m; white to pink petal flowers; edible acidic red cylindrical fruit to 10cm with pink caviar-like pulp. Requires rich, well-drained soil in a sheltered position; tolerates light frost. Commersonia bartramia BROWN KURRAJONG Hardy and fast growing pioneer rainforest species to 10 meters. Masses of white flowers in summer, pale trunk and the horizonallly layered appearance of the foliage are very attractive. Frost tender when young. Cordyline rubra RED-FRUITED PALM LILY Ornamental rainforest understorey species to 3m. Suits shady areas or indoor tub; attractive red berries reportedly edible. Corymbia intermedia BLOODWOOD Medium to tall tree (10 – 36 metres) with moderately dense canopy. Masses of white flowers in panicles December to May. Hardy in all soil types. Flowers attracts many species of wildlife. Croton insularis SILVER CROTON A good small shade or screening tree to15 metres. Cream to silvery brown flowers in racemes. Relatively fast growing and hardy in most well-drained soil types; leaves have a distinctive silvery underside. Cryptocarya glaucescens JACKWOOD Rainforest tree to 25m.
Recommended publications
  • Evolutionary Comparisons of the Chloroplast Genome in Lauraceae and Insights Into Loss Events in the Magnoliids
    GBE Evolutionary Comparisons of the Chloroplast Genome in Lauraceae and Insights into Loss Events in the Magnoliids Yu Song1,2,†,Wen-BinYu1,2,†, Yunhong Tan1,2,†, Bing Liu3,XinYao1,JianjunJin4, Michael Padmanaba1, Jun-Bo Yang4,*, and Richard T. Corlett1,2,* 1Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China 2Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Yezin, Nay Pyi Taw, Myanmar 3State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China 4Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China *Corresponding authors: E-mails: [email protected]; [email protected]. †These authors contributed equally to this work. Accepted: September 1, 2017 Data deposition: This project has been deposited at GenBank of NCBI under the accession number MF939337 to MF939351. Abstract Available plastomes of the Lauraceae show similar structure and varied size, but there has been no systematic comparison across the family. In order to understand the variation in plastome size and structure in the Lauraceae and related families of magnoliids, we here compare 47 plastomes, 15 newly sequenced, from 27 representative genera. We reveal that the two shortest plastomes are in the parasitic Lauraceae genus Cassytha, with lengths of 114,623 (C. filiformis) and 114,963 bp (C. capillaris), and that they have lost NADH dehydrogenase (ndh) genes in the large single-copy region and one entire copy of the inverted repeat (IR) region. The plastomes of the core Lauraceae group, with lengths from 150,749 bp (Nectandra angustifolia) to 152,739 bp (Actinodaphne trichocarpa), have lost trnI-CAU, rpl23, rpl2,afragmentofycf2, and their intergenic regions in IRb region, whereas the plastomes of the basal Lauraceae group, with lengths from 157,577 bp (Eusideroxylon zwageri) to 158,530 bp (Beilschmiedia tungfangen- sis), have lost rpl2 in IRa region.
    [Show full text]
  • Ultramafic Geocology of South and Southeast Asia
    Galey et al. Bot Stud (2017) 58:18 DOI 10.1186/s40529-017-0167-9 REVIEW Open Access Ultramafc geoecology of South and Southeast Asia M. L. Galey1, A. van der Ent2,3, M. C. M. Iqbal4 and N. Rajakaruna5,6* Abstract Globally, ultramafc outcrops are renowned for hosting foras with high levels of endemism, including plants with specialised adaptations such as nickel or manganese hyperaccumulation. Soils derived from ultramafc regoliths are generally nutrient-defcient, have major cation imbalances, and have concomitant high concentrations of potentially phytotoxic trace elements, especially nickel. The South and Southeast Asian region has the largest surface occur- rences of ultramafc regoliths in the world, but the geoecology of these outcrops is still poorly studied despite severe conservation threats. Due to the paucity of systematic plant collections in many areas and the lack of georeferenced herbarium records and databased information, it is not possible to determine the distribution of species, levels of end- emism, and the species most threatened. However, site-specifc studies provide insights to the ultramafc geoecology of several locations in South and Southeast Asia. The geoecology of tropical ultramafc regions difers substantially from those in temperate regions in that the vegetation at lower elevations is generally tall forest with relatively low levels of endemism. On ultramafc mountaintops, where the combined forces of edaphic and climatic factors inter- sect, obligate ultramafc species and hyperendemics often occur. Forest clearing, agricultural development, mining, and climate change-related stressors have contributed to rapid and unprecedented loss of ultramafc-associated habitats in the region. The geoecology of the large ultramafc outcrops of Indonesia’s Sulawesi, Obi and Halmahera, and many other smaller outcrops in South and Southeast Asia, remains largely unexplored, and should be prioritised for study and conservation.
    [Show full text]
  • WIAD CONSERVATION a Handbook of Traditional Knowledge and Biodiversity
    WIAD CONSERVATION A Handbook of Traditional Knowledge and Biodiversity WIAD CONSERVATION A Handbook of Traditional Knowledge and Biodiversity Table of Contents Acknowledgements ...................................................................................................................... 2 Ohu Map ...................................................................................................................................... 3 History of WIAD Conservation ...................................................................................................... 4 WIAD Legends .............................................................................................................................. 7 The Story of Julug and Tabalib ............................................................................................................... 7 Mou the Snake of A’at ........................................................................................................................... 8 The Place of Thunder ........................................................................................................................... 10 The Stone Mirror ................................................................................................................................. 11 The Weather Bird ................................................................................................................................ 12 The Story of Jelamanu Waterfall .........................................................................................................
    [Show full text]
  • Take Another Look
    Take Contact Details Another SUNSHINE COAST REGIONAL COUNCIL Caloundra Customer Service Look..... 1 Omrah Avenue, Caloundra FRONT p: 07 5420 8200 e: [email protected] Maroochydore Customer Service 11-13 Ocean Street, Maroochydore p: 07 5475 8501 e: [email protected] Nambour Customer Service Cnr Currie & Bury Street, Nambour p: 07 5475 8501 e: [email protected] Tewantin Customer Service 9 Pelican Street, Tewantin p: 07 5449 5200 e: [email protected] YOUR LOCAL CONTACT Our Locals are Beauties HINTERLAND EDITION HINTERLAND EDITION 0 Local native plant guide 2 What you grow in your garden can have major impact, Introduction 3 for better or worse, on the biodiversity of the Sunshine Native plants 4 - 41 Coast. Growing a variety of native plants on your property can help to attract a wide range of beautiful Wildlife Gardening 20 - 21 native birds and animals. Native plants provide food and Introduction Conservation Partnerships 31 shelter for wildlife, help to conserve local species and Table of Contents Table Environmental weeds 42 - 73 enable birds and animals to move through the landscape. Method of removal 43 Choosing species which flower and fruit in different Succulent plants and cacti 62 seasons, produce different types of fruit and provide Water weeds 70 - 71 roost or shelter sites for birds, frogs and lizards can greatly increase your garden’s real estate value for native References and further reading 74 fauna. You and your family will benefit from the natural pest control, life and colour that these residents and PLANT TYPE ENVIRONMENTAL BENEFITS visitors provide – free of charge! Habitat for native frogs Tall Palm/Treefern Local native plants also improve our quality of life in Attracts native insects other ways.
    [Show full text]
  • 10. GLOCHIDION J. R. Forster & G. Forster, Char. Gen. Pl. 57. 1775, Nom. Cons
    Fl. China 11: 193–202. 2008. 10. GLOCHIDION J. R. Forster & G. Forster, Char. Gen. Pl. 57. 1775, nom. cons. 算盘子属 suan pan zi shu Li Bingtao (李秉滔 Li Ping-tao); Michael G. Gilbert Agyneia Linnaeus; Bradleia Banks ex Gaertner [“Bradleja”]. Trees or shrubs, monoecious, rarely dioecious; indumentum of simple hairs, often absent. Leaves alternate, distichous, or spiral; stipules thick, mostly persistent; petiole short; leaf blade simple, margin entire, venation pinnate. Flowers axillary or supra-axillary, fascicled or in short cymes or umbels, proximal axils with male flowers, distal axils usually with female flowers, usually distinctly pedicellate. Male flowers: pedicels slender or almost absent; sepals 5 or 6, imbricate; petals absent; disk absent; stamens 3–8, connate into an oblong or ellipsoid column, shorter than sepals; anthers 2-locular, extrorse, linear, longitudinally dehiscent, connectives prolonged into an erect acumen; pistillode absent. Female flowers: pedicels stout and short or subsessile; sepals as in male, but slightly thicker; ovary globose, 3–15-locular; ovules 2 per locule; styles connate into a short, thick, cylindric column, apex lobed or toothed, rarely free. Fruit a capsule, globose or depressed globose, ± prominently longitudinally grooved, sunken at apex, dehiscent into 3–15 2-valved cocci when mature, rarely unlobed; exocarp leathery or papery; endocarp crustaceous; styles usually persistent. Seeds not strophiolate, hemispheric or laterally compressed; endosperm fleshy; cotyledon flattened. About 200 species: chiefly in tropical Asia, the Pacific islands, and Malaysia, a few in tropical America and Africa; 28 species (seven endemic, one introduced) in China. Glochidion is noteworthy for its pollination mechanism, which involves a symbiotic relationship with moths of the genus Epicephala closely paralleling that found in Yucca (Kato et al., Proc.
    [Show full text]
  • Notes on Occurrence and Feeding of Birds at Crater Mountain Biological Research Station, Papua New Guinea
    EMU Vol. 96,89-101,1996 0 Royal Australasian Ornithologists Union 1996 0158-4197/96/0289 + 12 Received 10-4-1995, accepted 14-7-1995 Notes on Occurrence and Feeding of Birds at Crater Mountain Biological Research Station, Papua New Guinea Andrew L. MacklJ and Debra D. Wright132 University of Miami, Department of Biology, Coral Gables, Florida 33124, USA Department of Ornithology, Academy of Natural Sciences, 19th and Parkway, Philadelphia, Pennsylvania 19103, USA Summary: During 1989-93, 170 species of birds were ob- net capture rates. Comparisons among four other sites in served and 1787 individuals captured in mist nets at the southern Papua New Guinea reveal striking similarities Crater Mountain Biological Research Station, Chimbu among sites in number of species and trophic organisation. Province, Papua New Guinea. Populations of many species Range extensions, weights and natural history observations fluctuated on annual or supra-annual schedules; 46 species are reported for many species. Feeding observations of nec- were considered transients. Areas of the forest where many tarivorous and frugivorous birds at over 50 species of plant understorey trees had been removed exhibited reduced mist are reported. In a review of the ecology of New Guinea's avifauna, Management Area, a conservation project based on Beehler (1982) reported that no long-term field studies land-use management by the traditional Pawaiian and had been carried out in diverse avian communities of Gimi landowners. The station is 10 km east of Haia in New Guinea. Since then there has been some progress, Chimbu Province, Papua New Guinea (6"43.4'S, mostly in lowland sites (Bell 1982a, 1982b, 1982c, 145'5.6'E) at c.
    [Show full text]
  • Psychotria Nervosa Family: Rubiaceae
    Stephen H. Brown, Horticulture Agent Bronwyn Mason, Master Gardener Lee County Extension, Fort Myers, Florida (239) 533-7513 [email protected] http://lee.ifas.ufl.edu/hort/GardenHome.shtml Psychotria nervosa Family: Rubiaceae Common name: Wild coffee; shiny-leaved wild coffee Synonyms (discarded names): Psychotria undata Origin: Florida; Southern Mexico; Bahamas; Caribbean; Central America; Northern South America U.S.D.A. Zone: 9-12 (20°F Minimum) Growth Rate: Fast Plant Type: Shrub Leaf Persistence: Evergreen Flowering Months: Spring and summer Light Requirements: Low; medium; high Salt Tolerance: Moderate Drought Tolerance: Low to moderate; often found wilting in late spring. Soil Requirements: Wide Nutritional Requirements: Low Major Potential Pests: Scales; sooty mold Typical Dimensions: 6 -7 feet tall with an equivalent width Propagation: Seeds or cuttings Human hazards: None Uses: Florida-friendly landscape; understory; border; foundation; mass planting; informal hedge; rain garden; specimen; butterfly and wildlife attractant Upright shrub growing in a mix moist forest Natural Geographic Distribution Wild coffee is found in the higher areas of swamps and in hydric and mesic hammocks and areas that are seasonally wet and dry. It is also found in limestone (highly alkaline) soils. It grows as far north as northeast Florida (Duval County) in cold protected areas. It is widely distributed in south and central Florida. Growth Habit Wild coffee is an upright, multi-stemmed, ever- green shrub. Under natural shaded conditions it is likely to be a lanky plant, taller than it is wide. In cultivation, it often appears as a bushy, wide spreading shrub with many more branches than A cultivated shrub under an oak mid-September its uncultivated counterpart.
    [Show full text]
  • Synopsis and Typification of Mexican and Central American
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Annalen des Naturhistorischen Museums in Wien Jahr/Year: 2018 Band/Volume: 120B Autor(en)/Author(s): Berger Andreas Artikel/Article: Synopsis and typification of Mexican and Central American Palicourea (Rubiaceae: Palicoureeae), part I: The entomophilous species 59-140 ©Naturhistorisches Museum Wien, download unter www.zobodat.at Ann. Naturhist. Mus. Wien, B 120 59–140 Wien, Jänner 2018 Synopsis and typification of Mexican and Central American Palicourea (Rubiaceae: Palicoureeae), part I: The entomophilous species A. Berger* Abstract The prominent but complex genus Psychotria (Rubiaceae: Psychotrieae) is one of the largest genera of flow- ering plants and its generic circumscription has been controversial for a long time. Recent DNA-phyloge- netic studies in combination with a re-evaluation of morphological characters have led to a disintegration process that peaked in the segregation of hundreds of species into various genera within the new sister tribe Palicoureeae. These studies have also shown that species of Psychotria subg. Heteropsychotria are nested within Palicourea, which was traditionally separated by showing an ornithophilous (vs. entomophilous) pol- lination syndrome. In order to render the genera Palicourea and Psychotria monophyletic groups, all species of subg. Heteropsychotria have to be transferred to Palicourea and various authors and publications have provided some of the necessary combinations. In the course of ongoing research on biotic interactions and chemodiversity of the latter genus, the need for a comprehensive and modern compilation of species of Pali­ courea in its new circumscription became apparent. As first step towards such a synopsis, the entomophilous Mexican and Central American species (the traditional concept of Psychotria subg.
    [Show full text]
  • Identification Challenges in Examination of Commercial Plant Material of Psychotria Viridis
    Acta Poloniae Pharmaceutica ñ Drug Research, Vol. 72 No. 4 pp. 747ñ755, 2015 ISSN 0001-6837 Polish Pharmaceutical Society NATURAL DRUGS IDENTIFICATION CHALLENGES IN EXAMINATION OF COMMERCIAL PLANT MATERIAL OF PSYCHOTRIA VIRIDIS ANNA P. KOWALCZUK1*, ANNA £OZAK1, ROBERT BACHLI—SKI3, ANNA DUSZY—SKA3, JOANNA SAKOWSKA1 and JORDAN K. ZJAWIONY2 1National Institute of Medicines, Che≥mska 30/34, 00-725 Warszawa, Poland 2Department of Pharmacognosy and Research Institute of Pharmaceutical Sciences, School of Pharmacy, The University of Mississippi, MS 38677, USA 3Central Forensic Laboratory of the Police, Aleje Ujazdowskie 7, 00-583 Warszawa, Poland Abstract: Psychotria viridis (chacruna) is a hallucinogenic plant with psychoactive properties associated with the presence of N,N-dimethyltryptamine (DMT). This species is primarily known as an ingredient of the bev- erage Ayahuasca, but dry leaves are also smoked by recreational users. The plant is controlled in Poland and France and its proper identification poses many challenges due to the fact that genus Psychotria is relatively large and there are other species that are easily confused with chacruna. The aim of the present work was to develop an effective authentication procedure for the dried and shredded leaves of P. viridis, to be used in com- parison of chemical and botanical characteristics of its commercial products. Dried leaves of P. viridis origi- nating from Brazil, Peru and Hawaii were purchased from Internet providers. For DMT identification, thin layer chromatography (TLC) and high performance liquid chromatography (HPLC) methods have been elaborated, validated and applied. In order to clarify the existing differences among samples, chemometric methods have been used. Botanical features and the gas chromatography tandem mass spectrometry (GC-MS) chromatograms have been analyzed using hierarchical cluster analysis (HCA).
    [Show full text]
  • A Planting Guide to Promote Biodiversity in Tweed Shire
    My Local Native Garden A planting guide to promote biodiversity in Tweed Shire www.tweed.nsw.gov.au Acknowledgements Tweed Shire Council recognises the generations of the Image Credits: local Aboriginal people of the Bundjalung Nation who have lived in and derived their physical and spiritual Alison Ratcliffe, Andy Erskine, Angus Underwood, needs from the forests, rivers, lakes and streams of this Australian National Botanic Gardens, Australian Native beautiful valley over many thousands of years as the Plants Society, BRAIN, Brian Walters, Byron Backyard, traditional owners and custodians of these lands. Byron Shire Council, CRC for Water Sensitive Cities, David Milledge; David Taylor, David Ting, Deborah Tweed Shire Council acknowledges Brunswick Valley Pearse, Flora Far North Queensland, Friends of the Landcare Inc. and Rous County Council for granting Koala Inc., George Cornacz, Glen Leiper, Hank Bower, permission to utilise the information contained within James Mayson, Jimmy Britton, John Turnbull, Lucinda My Local Native Garden: A planting guide to promote Cox, M Crocker, Mark Evans, Mangroves to Mountains, biodiversity in the Byron Shire (Brunswick Valley Marama Hopkins, Michael Bingham, Nick Sanderson, Landcare 2017). Peter Gibney, Peter Gray, Peter Scholer, PlantNET, Rainer Contents Hartlieb, Richard Smith, Rita de Heer, Robert Whyte, INTRODUCTION The 2017 “My Local Native Garden” Team Rous County Council, Save Our Waterways Now, Steve Alison Ratcliffe – editor and updates Wilson, Susan Allen, Suzi Lechner, Tanya Fountain, T
    [Show full text]
  • Phylogenetic Reconstruction Prompts Taxonomic Changes in Sauropus, Synostemon and Breynia (Phyllanthaceae Tribe Phyllantheae)
    Blumea 59, 2014: 77–94 www.ingentaconnect.com/content/nhn/blumea RESEARCH ARTICLE http://dx.doi.org/10.3767/000651914X684484 Phylogenetic reconstruction prompts taxonomic changes in Sauropus, Synostemon and Breynia (Phyllanthaceae tribe Phyllantheae) P.C. van Welzen1,2, K. Pruesapan3, I.R.H. Telford4, H.-J. Esser 5, J.J. Bruhl4 Key words Abstract Previous molecular phylogenetic studies indicated expansion of Breynia with inclusion of Sauropus s.str. (excluding Synostemon). The present study adds qualitative and quantitative morphological characters to molecular Breynia data to find more resolution and/or higher support for the subgroups within Breynia s.lat. However, the results show molecular phylogeny that combined molecular and morphological characters provide limited synergy. Morphology confirms and makes the morphology infrageneric groups recognisable within Breynia s.lat. The status of the Sauropus androgynus complex is discussed. Phyllanthaceae Nomenclatural changes of Sauropus species to Breynia are formalised. The genus Synostemon is reinstated. Sauropus Synostemon Published on 1 September 2014 INTRODUCTION Sauropus in the strict sense (excluding Synostemon; Pruesapan et al. 2008, 2012) and Breynia are two closely related tropical A phylogenetic analysis of tribe Phyllantheae (Phyllanthaceae) Asian-Australian genera with up to 52 and 35 species, respec- using DNA sequence data by Kathriarachchi et al. (2006) pro- tively (Webster 1994, Govaerts et al. 2000a, b, Radcliffe-Smith vided a backbone phylogeny for Phyllanthus L. and related 2001). Sauropus comprises mainly herbs and shrubs, whereas genera. Their study recommended subsuming Breynia L. (in- species of Breynia are always shrubs. Both genera share bifid cluding Sauropus Blume), Glochidion J.R.Forst. & G.Forst., or emarginate styles, non-apiculate anthers, smooth seeds and and Synostemon F.Muell.
    [Show full text]
  • And Leafflower Trees (Phyllanthaceae: Phyllanthus Sensu Lato [Glochidion]) in Southeastern Polynesia
    Coevolutionary Diversification of Leafflower Moths (Lepidoptera: Gracillariidae: Epicephala) and Leafflower Trees (Phyllanthaceae: Phyllanthus sensu lato [Glochidion]) in Southeastern Polynesia By David Howard Hembry A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Environmental Science, Policy, and Management in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Rosemary Gillespie, Chair Professor Bruce Baldwin Professor Patrick O’Grady Spring 2012 1 2 Abstract Coevolution between phylogenetically distant, yet ecologically intimate taxa is widely invoked as a major process generating and organizing biodiversity on earth. Yet for many putatively coevolving clades we lack knowledge both of their evolutionary history of diversification, and the manner in which they organize themselves into patterns of interaction. This is especially true for mutualistic associations, despite the fact that mutualisms have served as models for much coevolutionary research. In this dissertation, I examine the codiversification of an obligate, reciprocally specialized pollination mutualism between leafflower moths (Lepidoptera: Gracillariidae: Epicephala) and leafflower trees (Phyllanthaceae: Phyllanthus sensu lato [Glochidion]) on the oceanic islands of southeastern Polynesia. Leafflower moths are the sole known pollinators of five clades of leafflowers (in the genus Phyllanthus s. l., including the genera Glochidion and Breynia), and thus this interaction is considered to be obligate. Female moths actively transfer pollen from male flowers to female flowers, using a haired proboscis to transfer pollen into the recessed stigmatic surface at the end of the fused stylar column. The moths then oviposit into the flowers’ ovaries, and the larva which hatches consumes a subset, but not all, of the developing fruit’s seed set.
    [Show full text]