Informed Backtracking Beam Search
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Lecture 4 Dynamic Programming
1/17 Lecture 4 Dynamic Programming Last update: Jan 19, 2021 References: Algorithms, Jeff Erickson, Chapter 3. Algorithms, Gopal Pandurangan, Chapter 6. Dynamic Programming 2/17 Backtracking is incredible powerful in solving all kinds of hard prob- lems, but it can often be very slow; usually exponential. Example: Fibonacci numbers is defined as recurrence: 0 if n = 0 Fn =8 1 if n = 1 > Fn 1 + Fn 2 otherwise < ¡ ¡ > A direct translation in:to recursive program to compute Fibonacci number is RecFib(n): if n=0 return 0 if n=1 return 1 return RecFib(n-1) + RecFib(n-2) Fibonacci Number 3/17 The recursive program has horrible time complexity. How bad? Let's try to compute. Denote T(n) as the time complexity of computing RecFib(n). Based on the recursion, we have the recurrence: T(n) = T(n 1) + T(n 2) + 1; T(0) = T(1) = 1 ¡ ¡ Solving this recurrence, we get p5 + 1 T(n) = O(n); = 1.618 2 So the RecFib(n) program runs at exponential time complexity. RecFib Recursion Tree 4/17 Intuitively, why RecFib() runs exponentially slow. Problem: redun- dant computation! How about memorize the intermediate computa- tion result to avoid recomputation? Fib: Memoization 5/17 To optimize the performance of RecFib, we can memorize the inter- mediate Fn into some kind of cache, and look it up when we need it again. MemFib(n): if n = 0 n = 1 retujrjn n if F[n] is undefined F[n] MemFib(n-1)+MemFib(n-2) retur n F[n] How much does it improve upon RecFib()? Assuming accessing F[n] takes constant time, then at most n additions will be performed (we never recompute). -
Exhaustive Recursion and Backtracking
CS106B Handout #19 J Zelenski Feb 1, 2008 Exhaustive recursion and backtracking In some recursive functions, such as binary search or reversing a file, each recursive call makes just one recursive call. The "tree" of calls forms a linear line from the initial call down to the base case. In such cases, the performance of the overall algorithm is dependent on how deep the function stack gets, which is determined by how quickly we progress to the base case. For reverse file, the stack depth is equal to the size of the input file, since we move one closer to the empty file base case at each level. For binary search, it more quickly bottoms out by dividing the remaining input in half at each level of the recursion. Both of these can be done relatively efficiently. Now consider a recursive function such as subsets or permutation that makes not just one recursive call, but several. The tree of function calls has multiple branches at each level, which in turn have further branches, and so on down to the base case. Because of the multiplicative factors being carried down the tree, the number of calls can grow dramatically as the recursion goes deeper. Thus, these exhaustive recursion algorithms have the potential to be very expensive. Often the different recursive calls made at each level represent a decision point, where we have choices such as what letter to choose next or what turn to make when reading a map. Might there be situations where we can save some time by focusing on the most promising options, without committing to exploring them all? In some contexts, we have no choice but to exhaustively examine all possibilities, such as when trying to find some globally optimal result, But what if we are interested in finding any solution, whichever one that works out first? At each decision point, we can choose one of the available options, and sally forth, hoping it works out. -
4 Beyond Classical Search
BEYOND CLASSICAL 4 SEARCH In which we relax the simplifying assumptions of the previous chapter, thereby getting closer to the real world. Chapter 3 addressed a single category of problems: observable, deterministic, known envi- ronments where the solution is a sequence of actions. In this chapter, we look at what happens when these assumptions are relaxed. We begin with a fairly simple case: Sections 4.1 and 4.2 cover algorithms that perform purely local search in the state space, evaluating and modify- ing one or more current states rather than systematically exploring paths from an initial state. These algorithms are suitable for problems in which all that matters is the solution state, not the path cost to reach it. The family of local search algorithms includes methods inspired by statistical physics (simulated annealing)andevolutionarybiology(genetic algorithms). Then, in Sections 4.3–4.4, we examine what happens when we relax the assumptions of determinism and observability. The key idea is that if an agent cannot predict exactly what percept it will receive, then it will need to consider what to do under each contingency that its percepts may reveal. With partial observability, the agent will also need to keep track of the states it might be in. Finally, Section 4.5 investigates online search,inwhichtheagentisfacedwithastate space that is initially unknown and must be explored. 4.1 LOCAL SEARCH ALGORITHMS AND OPTIMIZATION PROBLEMS The search algorithms that we have seen so far are designed to explore search spaces sys- tematically. This systematicity is achieved by keeping one or more paths in memory and by recording which alternatives have been explored at each point along the path. -
Backtrack Parsing Context-Free Grammar Context-Free Grammar
Context-free Grammar Problems with Regular Context-free Grammar Language and Is English a regular language? Bad question! We do not even know what English is! Two eggs and bacon make(s) a big breakfast Backtrack Parsing Can you slide me the salt? He didn't ought to do that But—No! Martin Kay I put the wine you brought in the fridge I put the wine you brought for Sandy in the fridge Should we bring the wine you put in the fridge out Stanford University now? and University of the Saarland You said you thought nobody had the right to claim that they were above the law Martin Kay Context-free Grammar 1 Martin Kay Context-free Grammar 2 Problems with Regular Problems with Regular Language Language You said you thought nobody had the right to claim [You said you thought [nobody had the right [to claim that they were above the law that [they were above the law]]]] Martin Kay Context-free Grammar 3 Martin Kay Context-free Grammar 4 Problems with Regular Context-free Grammar Language Nonterminal symbols ~ grammatical categories Is English mophology a regular language? Bad question! We do not even know what English Terminal Symbols ~ words morphology is! They sell collectables of all sorts Productions ~ (unordered) (rewriting) rules This concerns unredecontaminatability Distinguished Symbol This really is an untiable knot. But—Probably! (Not sure about Swahili, though) Not all that important • Terminals and nonterminals are disjoint • Distinguished symbol Martin Kay Context-free Grammar 5 Martin Kay Context-free Grammar 6 Context-free Grammar Context-free -
Backtracking / Branch-And-Bound
Backtracking / Branch-and-Bound Optimisation problems are problems that have several valid solutions; the challenge is to find an optimal solution. How optimal is defined, depends on the particular problem. Examples of optimisation problems are: Traveling Salesman Problem (TSP). We are given a set of n cities, with the distances between all cities. A traveling salesman, who is currently staying in one of the cities, wants to visit all other cities and then return to his starting point, and he is wondering how to do this. Any tour of all cities would be a valid solution to his problem, but our traveling salesman does not want to waste time: he wants to find a tour that visits all cities and has the smallest possible length of all such tours. So in this case, optimal means: having the smallest possible length. 1-Dimensional Clustering. We are given a sorted list x1; : : : ; xn of n numbers, and an integer k between 1 and n. The problem is to divide the numbers into k subsets of consecutive numbers (clusters) in the best possible way. A valid solution is now a division into k clusters, and an optimal solution is one that has the nicest clusters. We will define this problem more precisely later. Set Partition. We are given a set V of n objects, each having a certain cost, and we want to divide these objects among two people in the fairest possible way. In other words, we are looking for a subdivision of V into two subsets V1 and V2 such that X X cost(v) − cost(v) v2V1 v2V2 is as small as possible. -
Module 5: Backtracking
Module-5 : Backtracking Contents 1. Backtracking: 3. 0/1Knapsack problem 1.1. General method 3.1. LC Branch and Bound solution 1.2. N-Queens problem 3.2. FIFO Branch and Bound solution 1.3. Sum of subsets problem 4. NP-Complete and NP-Hard problems 1.4. Graph coloring 4.1. Basic concepts 1.5. Hamiltonian cycles 4.2. Non-deterministic algorithms 2. Branch and Bound: 4.3. P, NP, NP-Complete, and NP-Hard 2.1. Assignment Problem, classes 2.2. Travelling Sales Person problem Module 5: Backtracking 1. Backtracking Some problems can be solved, by exhaustive search. The exhaustive-search technique suggests generating all candidate solutions and then identifying the one (or the ones) with a desired property. Backtracking is a more intelligent variation of this approach. The principal idea is to construct solutions one component at a time and evaluate such partially constructed candidates as follows. If a partially constructed solution can be developed further without violating the problem’s constraints, it is done by taking the first remaining legitimate option for the next component. If there is no legitimate option for the next component, no alternatives for any remaining component need to be considered. In this case, the algorithm backtracks to replace the last component of the partially constructed solution with its next option. It is convenient to implement this kind of processing by constructing a tree of choices being made, called the state-space tree. Its root represents an initial state before the search for a solution begins. The nodes of the first level in the tree represent the choices made for the first component of a solution; the nodes of the second level represent the choices for the second component, and soon. -
A. Local Beam Search with K=1. A. Local Beam Search with K = 1 Is Hill-Climbing Search
4. Give the name that results from each of the following special cases: a. Local beam search with k=1. a. Local beam search with k = 1 is hill-climbing search. b. Local beam search with one initial state and no limit on the number of states retained. b. Local beam search with k = ∞: strictly speaking, this doesn’t make sense. The idea is that if every successor is retained (because k is unbounded), then the search resembles breadth-first search in that it adds one complete layer of nodes before adding the next layer. Starting from one state, the algorithm would be essentially identical to breadth-first search except that each layer is generated all at once. c. Simulated annealing with T=0 at all times (and omitting the termination test). c. Simulated annealing with T = 0 at all times: ignoring the fact that the termination step would be triggered immediately, the search would be identical to first-choice hill climbing because every downward successor would be rejected with probability 1. d. Simulated annealing with T=infinity at all times. d. Simulated annealing with T = infinity at all times: ignoring the fact that the termination step would never be triggered, the search would be identical to a random walk because every successor would be accepted with probability 1. Note that, in this case, a random walk is approximately equivalent to depth-first search. e. Genetic algorithm with population size N=1. e. Genetic algorithm with population size N = 1: if the population size is 1, then the two selected parents will be the same individual; crossover yields an exact copy of the individual; then there is a small chance of mutation. -
COMBINATORIAL PROBLEMS - P-CLASS Graph Search Given: 퐺 = (푉, 퐸), Start Node Goal: Search in a Graph
ZHAW/HSR Print date: 04.02.19 TSM_Alg & FTP_Optimiz COMBINATORIAL PROBLEMS - P-CLASS Graph Search Given: 퐺 = (푉, 퐸), start node Goal: Search in a graph DFS 1. Start at a, put it on stack. Insert from g h Depth-First- Stack = LIFO "Last In - First Out" top ↓ e e e e e Search 2. Whenever there is an unmarked neighbour, Access c f f f f f f f go there and and put it on stack from top ↓ d d d d d d d d d d d 3. If there is no unmarked neighbour, backtrack; b b b b b b b b b b b b b i.e. remove current node from stack (grey ⇒ green) and a a a a a a a a a a a a a a a go to step 2. BFS 1. Start at a, put it in queue. Insert from top ↓ h g Breadth-First Queue = FIFO "First In - First Out" f h g Search 2. Output first vertex from queue (grey ⇒ green). Mark d e c f h g all neighbors and put them in queue (white ⇒ grey). Do Access from bottom ↑ a b d e c f h g so until queue is empty Minimum Spanning Tree (MST) Given: Graph 퐺 = (푉, 퐸, 푊) with undirected edges set 퐸, with positive weights 푊 Goal: Find a set of edges that connects all vertices of G and has minimum total weight. Application: Network design (water pipes, electricity cables, chip design) Algorithm: Kruskal's, Prim's, Optimistic, Pessimistic Optimistic Approach Successively build the cheapest connection available =Kruskal's algorithm that is not redundant. -
CS/ECE 374: Algorithms & Models of Computation
CS/ECE 374: Algorithms & Models of Computation, Fall 2018 Backtracking and Memoization Lecture 12 October 9, 2018 Chandra Chekuri (UIUC) CS/ECE 374 1 Fall 2018 1 / 36 Recursion Reduction: Reduce one problem to another Recursion A special case of reduction 1 reduce problem to a smaller instance of itself 2 self-reduction 1 Problem instance of size n is reduced to one or more instances of size n − 1 or less. 2 For termination, problem instances of small size are solved by some other method as base cases. Chandra Chekuri (UIUC) CS/ECE 374 2 Fall 2018 2 / 36 Recursion in Algorithm Design 1 Tail Recursion: problem reduced to a single recursive call after some work. Easy to convert algorithm into iterative or greedy algorithms. Examples: Interval scheduling, MST algorithms, etc. 2 Divide and Conquer: Problem reduced to multiple independent sub-problems that are solved separately. Conquer step puts together solution for bigger problem. Examples: Closest pair, deterministic median selection, quick sort. 3 Backtracking: Refinement of brute force search. Build solution incrementally by invoking recursion to try all possibilities for the decision in each step. 4 Dynamic Programming: problem reduced to multiple (typically) dependent or overlapping sub-problems. Use memoization to avoid recomputation of common solutions leading to iterative bottom-up algorithm. Chandra Chekuri (UIUC) CS/ECE 374 3 Fall 2018 3 / 36 Subproblems in Recursion Suppose foo() is a recursive program/algorithm for a problem. Given an instance I , foo(I ) generates potentially many \smaller" problems. If foo(I 0) is one of the calls during the execution of foo(I ) we say I 0 is a subproblem of I . -
Toward a Model for Backtracking and Dynamic Programming
TOWARD A MODEL FOR BACKTRACKING AND DYNAMIC PROGRAMMING Michael Alekhnovich, Allan Borodin, Joshua Buresh-Oppenheim, Russell Impagliazzo, Avner Magen, and Toniann Pitassi Abstract. We propose a model called priority branching trees (pBT ) for backtrack- ing and dynamic programming algorithms. Our model generalizes both the priority model of Borodin, Nielson and Rackoff, as well as a simple dynamic programming model due to Woeginger, and hence spans a wide spectrum of algorithms. After witnessing the strength of the model, we then show its limitations by providing lower bounds for algorithms in this model for several classical problems such as Interval Scheduling, Knapsack and Satisfiability. Keywords. Greedy Algorithms, Dynamic Programming, Models of Computation, Lower Bounds. Subject classification. 68Q10 1. Introduction The “Design and Analysis of Algorithms” is a basic component of the Computer Science Curriculum. Courses and texts for this topic are often organized around a toolkit of al- gorithmic paradigms or meta-algorithms such as greedy algorithms, divide and conquer, dynamic programming, local search, etc. Surprisingly (as this is often the main “theory course”), these algorithmic paradigms are rarely, if ever, precisely defined. Instead, we provide informal definitional statements followed by (hopefully) well chosen illustrative examples. Our informality in algorithm design should be compared to computability the- ory where we have a well accepted formalization for the concept of an algorithm, namely that provided by Turing machines and its many equivalent computational models (i.e. consider the almost universal acceptance of the Church-Turing thesis). While quantum computation may challenge the concept of “efficient algorithm”, the benefit of having a well defined concept of an algorithm and a computational step is well appreciated. -
Tree Search Backtracking Search Backtracking Search
Search: tree search • Now let's put modeling aside and suppose we are handed a search problem. How do we construct an algorithm for finding a minimum cost path (not necessarily unique)? Backtracking search • We will start with backtracking search, the simplest algorithm which just tries all paths. The algorithm is called recursively on the current state s and the path leading up to that state. If we have reached a goal, then we can update the minimum cost path with the current path. Otherwise, we consider all possible actions a from state s, and recursively search each of the possibilities. • Graphically, backtracking search performs a depth-first traversal of the search tree. What is the time and memory complexity of this algorithm? • To get a simple characterization, assume that the search tree has maximum depth D (each path consists of D actions/edges) and that there are b available actions per state (the branching factor is b). • It is easy to see that backtracking search only requires O(D) memory (to maintain the stack for the recurrence), which is as good as it gets. • However, the running time is proportional to the number of nodes in the tree, since the algorithm needs to check each of them. The number 2 D bD+1−1 D of nodes is 1 + b + b + ··· + b = b−1 = O(b ). Note that the total number of nodes in the search tree is on the same order as the [whiteboard: search tree] number of leaves, so the cost is always dominated by the last level. -
CSCI 742 - Compiler Construction
CSCI 742 - Compiler Construction Lecture 12 Recursive-Descent Parsers Instructor: Hossein Hojjat February 12, 2018 Recap: Predictive Parsers • Predictive Parser: Top-down parser that looks at the next few tokens and predicts which production to use • Efficient: no need for backtracking, linear parsing time • Predictive parsers accept LL(k) grammars • L means “left-to-right” scan of input • L means leftmost derivation • k means predict based on k tokens of lookahead 1 Implementations Analogous to lexing: Recursive descent parser (manual) • Each non-terminal parsed by a procedure • Call other procedures to parse sub-nonterminals recursively • Typically implemented manually Table-driven parser (automatic) • Push-down automata: essentially a table driven FSA, plus stack to do recursive calls • Typically generated by a tool from a grammar specification 2 Making Grammar LL • Recall the left-recursive grammar: S ! S + E j E E ! num j (E) • Grammar is not LL(k) for any number of k • Left-recursion elimination: rewrite left-recursive productions to right-recursive ones S ! EE0 S ! S + E j E E0 ! +EE0 j E ! num j (E) E ! num j (E) 3 Making Grammar LL • Recall the grammar: S ! E + E j E E ! num j (E) • Grammar is not LL(k) for any number of k • Left-factoring: Factor common prefix E, add new non-terminal E0 for what follows that prefix S ! EE0 S ! E + E j E E0 ! +E j E ! num j (E) E ! num j (E) 4 Parsing with new grammar S ! EE0 E0 ! +E j E ! num j (E) Partly-derived String Lookahead parsed part unparsed part S ( (num)+num ) E E0 ( (num)+num ) (E)