1First the Basics

Total Page:16

File Type:pdf, Size:1020Kb

1First the Basics First the Basics ALWAYS Safety First Why? 1 Safety is important for you, as well as for your coworkers. There are inherent dangers in organic chemistry lab; the chemicals you will work with may be very flammable, and some are toxic. Safety is your number one priority. By working safely and in control of the situation, you not only protect yourself and your classmates, but you also protect the environment from the effect of harmful chemicals. Which Safety Features Are Available in the Lab? A laboratory is always equipped with an alarm system and a sprinkler system, which will be activated either when an alarm is pulled or triggered by an occurrence in the building. Each laboratory room is equipped with safety showers, eyewashes, and fire extinguish- ers. The lab rooms have multiple exit doors to allow for quick evacuation. If anything goes wrong, your instructor must be alerted immediately. Most emergencies can be handled with available personnel. But if there is any doubt that help is needed, CALL 911. It is much better to err on the side of caution. When calling 911, it is advis- able to use a line phone, as most cell phones don’t tell the operator where you are located. The safety shower should only be used if necessary; that is, when your clothing is on fire or if a large amount of chemicals has been spilled on your body and cloth- ing. If this is not the case, it is more efficient to use the faucets and spray heads in the sink. Any contamination of the skin must be rinsed with water for 15 minutes. If any chemical comes in contact with your eye, use the eyewash station. Hold your First the Basics eye open with your fingers, and irrigate your eye for 15 minutes. This may seem • like a very long time, but taking this precaution is vital to your safety! The fire extinguisher can be used if there is a fire in the lab. If the fire is in a beaker or flask, it is usually much safer to cover the container and let the fire die due to lack of oxygen. If you are not sure how to use a fire extinguisher, don’t do it. If you Chapter 1 are not sure that you can extinguish the fire, don’t do it. Call your instructor, who has been trained to use a fire extinguisher. Be aware that there are different kinds of fire extinguishers. The most common fire extinguisher in a teaching laboratory is labeled as “ABC,” and is appropriate for use in the event of most chemical fires. Each organic chemistry laboratory is equipped with fume hoods. A hood is an enclosed space with a high continuous air flow, which will keep noxious and toxic 2 fumes out of the general laboratory space. Hoods are often used in teaching labo- ratories to dispense reagents in a safe fashion. Frequently the workbenches in the laboratory are equipped with either overhead vent hoods or down drafts on the benches itself. What Should I Wear? Your eyes are the most vulnerable part of your body. At all times, you should wear goggles in the lab. No exceptions. The goggles must be “chemical resistant”; the vent holes at the top of these goggles do not allow any liquid to get inside. Lots of people wear contact lenses. Accident statistics show that wearing contacts is not more dangerous than wearing glasses in the lab, as long as goggles are worn, but you have to be very aware of the fact that you are wearing these lenses. If an accident occurs and you are wearing contacts, remove them as soon as possible. Any exposed part of your body is vulnerable to contamination by chemicals. An apron or lab coat should be worn at all times. Shoulders should be covered, so no tank tops without a lab coat. Closed-toe shoes are also essential. Sandals or flip-flops are not allowed. The remaining question is: Should gloves be worn or not? There is no denying that gloves play an essential part in lab safety. However, you should be conscious of the fact that gloves are also composed of chemicals, and therefore the right kind of glove should be worn for specific chemicals. Manufacturers of gloves offer in- formation regarding the protection different gloves provide for certain chemicals. Also, it is more difficult to manipulate small items when wearing gloves, and the chances of spills increases with glove use. For most experiments in teaching labo- ratories, gloves are optional if the chemicals used are not toxic or caustic. Gloves should be worn if indicated in the procedure. What Should I Pay Attention to? • No smoking, eating or drinking are allowed in the laboratory. Never taste anything in the lab. Safety First ALWAYS • Never leave an experiment in progress unattended, especially if heating is involved. Should you need to leave the lab while an experiment is in progress, get your instructor or a classmate to keep watch over your reaction while you are gone. • For most experiments, digital thermometers are the best choice. However, for certain experiments, mercury thermometers are irreplaceable. Special rules apply to mercury thermometers because of the highly toxic nature of mercury. 3 If you break a mercury thermometer, do not try to clean it up. You should notify your instructor immediately so that the problem will be taken care of. Make absolutely certain you do not walk through the mercury-contaminated area. You sure don’t want to track toxic mercury back to your apartment or dorm room. To avoid breaking a thermometer, secure it at all times with a clamp. • If there is a desk area in your lab room, there will be a very clear dividing line between the non-chemical area and the laboratory area. Classroom rules ap- ply to a desk area, while laboratory rules strictly apply once the line into the lab section is crossed. • Aisles must be kept free of obstructions, such as backpacks, coats, and other large items. • Never fill a pipet by mouth suction. Avoid contamination of reagents. Use clean and dry scooping and measuring equipment. • Do not use any glass containers, such as beakers or crystallizing dishes, to collect ice out of an ice machine. It is impossible to see the glass shards of a broken container in the ice, and fellow students could get seriously cut if they put their hand in. • If the faucets for the deionized water are made of plastic, treat them gently! • Immediately report defective equipment to the instructor so it can be repaired. Chemical Waste One thing to remember about chemicals is that they don’t just go away. There- First the Basics • fore, we are all responsible for making sure they get where they belong. There are several waste streams in each laboratory, whether teaching or research: aqueous waste, regular garbage, glass waste, liquid organic waste, solid chemical waste, and special waste streams. We’ll discuss all of these in order. Chapter 1 Rule # 1: Only water goes down the drain. It could be soapy water, or it could be very slightly acidic or alkaline, but that’s where it stops. NO EXCEP- TIONS! The effluent of the laboratories joins all the other effluent of the city and it is therefore essential that no hazardous materials whatsoever go down the drain. Regular garbage: All solid non-chemical non-glass waste goes in the gar- bage cans. Lots of paper towels end up here. 4 Glass waste: All glass waste, in particular Pasteur pipets and other sharp objects, are collected in special containers to avoid harmful accidents. Liquid organic waste: All organic waste, except the solids, goes into the liquid waste container. This includes the organic solutions generated during your experiments, and all the acetone washings of the glassware. This waste has to be clearly identified at all times with waste tags, and will be disposed of responsibly. These containers have to be capped at all times when not in use, according to EPA (Environmental Protection Agency) rules. Solid chemical waste: Solid organic chemical waste should be placed into a designated container. This waste includes silica gel from columns, drying agents, contaminated filter paper, etc. It will be disposed of by the laboratory personnel in a responsible fashion. Special waste streams: For certain experiments, separate specific waste streams will be created. This includes Cr waste from an oxidation reaction or the catalyst used in catalytic hydrogenation. These mixtures require special treatment due to either their toxicity or inherent chemical properties. The Why and How of a Laboratory Notebook The Basics About Notebooks A laboratory notebook is the essential record of what happened in the laboratory. This is valid for teaching laboratories, synthetic research laboratory, or analytical chemistry laboratory. If you do an experiment, you need to write down exactly what you did and what happened. Fellow scientists should be able to read your notebook, and maybe come up with possible alternative explanations for what happened. If a chemist in a pharmaceutical company made the drug taxol for the first time, other scientists might want to repeat this synthesis and potentially improve upon it. To be able to publish experimental results, such as the synthesis of a drug, an official record of these experiments has to exist. There are some basic rules as far as notebooks are concerned: The Why and How of a Laboratory Notebook • The pages in a notebook are always numbered. • No pages are ever removed. • All entries are in ink, and are never deleted. If you change your mind about 5 something, you can always scratch out an entry, but never erase.
Recommended publications
  • The Emergence of Gravitational Wave Science: 100 Years of Development of Mathematical Theory, Detectors, Numerical Algorithms, and Data Analysis Tools
    BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 53, Number 4, October 2016, Pages 513–554 http://dx.doi.org/10.1090/bull/1544 Article electronically published on August 2, 2016 THE EMERGENCE OF GRAVITATIONAL WAVE SCIENCE: 100 YEARS OF DEVELOPMENT OF MATHEMATICAL THEORY, DETECTORS, NUMERICAL ALGORITHMS, AND DATA ANALYSIS TOOLS MICHAEL HOLST, OLIVIER SARBACH, MANUEL TIGLIO, AND MICHELE VALLISNERI In memory of Sergio Dain Abstract. On September 14, 2015, the newly upgraded Laser Interferometer Gravitational-wave Observatory (LIGO) recorded a loud gravitational-wave (GW) signal, emitted a billion light-years away by a coalescing binary of two stellar-mass black holes. The detection was announced in February 2016, in time for the hundredth anniversary of Einstein’s prediction of GWs within the theory of general relativity (GR). The signal represents the first direct detec- tion of GWs, the first observation of a black-hole binary, and the first test of GR in its strong-field, high-velocity, nonlinear regime. In the remainder of its first observing run, LIGO observed two more signals from black-hole bina- ries, one moderately loud, another at the boundary of statistical significance. The detections mark the end of a decades-long quest and the beginning of GW astronomy: finally, we are able to probe the unseen, electromagnetically dark Universe by listening to it. In this article, we present a short historical overview of GW science: this young discipline combines GR, arguably the crowning achievement of classical physics, with record-setting, ultra-low-noise laser interferometry, and with some of the most powerful developments in the theory of differential geometry, partial differential equations, high-performance computation, numerical analysis, signal processing, statistical inference, and data science.
    [Show full text]
  • 18Th Annual Student Research and Creativity Celebration at Buffalo State College
    III IIII II I I I I I I I I III IIII II I I I I I I I I Editor Jill Singer, Ph.D. Director, Office of Undergraduate Research Cover Design and Layout: Carol Alex The following individuals and offices are acknowledged for their many contributions: Marc Bayer, Interim Library Director, E.H. Butler Library, Department and Program Coordinators (identified below) and the library staff Donald Schmitter, Hospitality and Tourism, and students and very special thanks to: in HTR 400: Catering Management Kaylene Waite, Graphic Design, Instructional Resources Bruce Fox, Photographer Carol Alex, Center for Development of Human Services Andrew Chambers, Information Management Officer Sean Fox, Ellofex, Inc. Bernadette Gilliam and Mary Beth Wojtaszek, Events Management Department and Program Coordinators for the Eighteenth Annual Student Research and Creativity Celebration Lisa Marie Anselmi, Anthropology Dan MacIsaac, Physics Sarbani Banerjee, Computer Information Systems Candace Masters, Art Education Saziye Bayram, Mathematics Carmen McCallum, Higher Education Administration Carol Beckley, Theater Michaelene Meger, Exceptional Education Lynn Boorady, Fashion and Textile Technology Andrew Nicholls, History and Social Studies Education Louis Colca, Social Work Jill Norvilitis, Psychology Sandra Washington-Copeland, McNair Scholars Program Kathleen O’Brien, Hospitality and Tourism Carol DeNysschen, Health, Nutrition, and Dietetics Lorna Perez, English Eric Dolph, Interior Design Rebecca Ploeger, Art Conservation Reva Fish, Social & Psychological Foundations
    [Show full text]
  • Kinetic Models for the in Situ Reaction Between Cu-Ti Melt and Graphite
    metals Article Kinetic Models for the in Situ Reaction between Cu-Ti Melt and Graphite Lei Guo, Xiaochun Wen and Zhancheng Guo * State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Xueyuan Road No.30, Haidian District, Beijing 100083, China; [email protected] (L.G.); [email protected] (X.W.) * Correspondence: [email protected]; Tel.: +86-135-2244-2020 Received: 16 January 2020; Accepted: 17 February 2020; Published: 18 February 2020 Abstract: The in situ reaction method for preparing metal matrix composites has the advantages of a simple process, good combination of the reinforcing phase and matrix, etc. Based on the mechanism of forming TiCx particles via the dissolution reaction of solid carbon (C) particles in Cu-Ti melt, the kinetic models for C particle dissolution reaction were established. The kinetic models of the dissolution reaction of spherical, cylindrical, and flat C source particles in Cu-Ti melt were deduced, and the expressions of the time for the complete reaction of C source particles of different sizes were obtained. The mathematical relationship between the degree of reaction of C source and the reaction time was deduced by introducing the shape factor. By immersing a cylindrical C rod in a Cu-Ti melt and placing it in a super-gravity field for the dissolution reaction, it was found that the super-gravity field could cause the precipitated TiCx particles to aggregate toward the upper part of the sample under the action of buoyancy. Therefore, the consuming rate of the C rod was significantly accelerated. Based on the flat C source reaction kinetic model, the relationship between the floating speed of TiCx particles in the Cu-Ti melt and the centrifugal velocity (or the coefficient of super-gravity G) was derived.
    [Show full text]
  • Open B. L. Chaloux Dissertation
    The Pennsylvania State University The Graduate School Department of Materials Science and Engineering CONTROLLING THE CONDUCTIVITY AND STABILITY OF AZOLES: PROTON AND HYDROXIDE EXCHANGE FUNCTIONALITIES A Dissertation in Materials Science and Engineering by Brian Leonard Chaloux © 2014 Brian Leonard Chaloux Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy August 2014 ii The dissertation of Brian Leonard Chaloux has been reviewed and approved* by the following: Michael A. Hickner Associate Professor of Materials Science and Engineering and Chemical Engineering Dissertation Advisor, Chair of Committee Ralph H. Colby Professor of Materials Science and Engineering and Chemical Engineering James P. Runt Professor of Polymer Science Harry R. Allcock Evan Pugh Professor of Chemistry Suzanne E. Mohney Professor of Materials Science and Engineering and Electrical Engineering Chair, Intercollege Graduate Degree Program in Materials Science and Engineering * Signatures are on file in the Graduate School. iii ABSTRACT For low temperature hydrogen fuel cells to achieve widespread adoption in transport applications, it is necessary to both decrease their cost and improve the range of environmental conditions under which they effectively operate. These problems can be addressed, respectively, by either switching the catalyst from platinum to a less expensive metal, or by reducing the polymer exchange membrane‘s reliance upon water for proton conduction. This work focuses on understanding the chemistry and physics that limit cation stability in alkaline environments and that enable high proton conductivity in anhydrous polymer exchange membranes. Polystyrenic 1H-azoles (including 1H-tetrazole, 1H-1,2,3-triazole, and 1H-imidazoline) were synthesized to investigate whether pKa and pKb of an amophoteric, proton-conductive group have a systematic effect on anhydrous proton conductivity.
    [Show full text]
  • The Use of Gravity Filtration of Carbon Nanotubes from Suspension To
    applied sciences Article The Use of Gravity Filtration of Carbon Nanotubes from Suspension to Produce Films with Low Roughness for Carbon Nanotube/Silicon Heterojunction Solar Device Application Tom S. L. Grace 1, Christopher T. Gibson 1 , Jason R. Gascooke 1 and Joseph G. Shapter 1,2,* 1 Flinders Microscopy and Microanalysis, College of Science and Engineering, Flinders University, Bedford Park, Adelaide, SA 5042, Australia; tom.grace@flinders.edu.au (T.S.L.G.); Christopher.gibson@flinders.edu.au (C.T.G.); jason.gascooke@flinders.edu.au (J.R.G.) 2 Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia * Correspondence: [email protected] Received: 17 August 2020; Accepted: 9 September 2020; Published: 15 September 2020 Featured Application: Transparent electrodes are critical in many applications. This work probes an approach to make highly conducting, highly transparent electrodes using carbon nanotubes. Abstract: The morphology of carbon nanotube (CNT) films is an important factor in the performance of CNT/silicon (CNT/Si) heterojunction solar devices. Films have generally been prepared via vacuum filtration from aqueous suspensions. Whilst this enables strong films to be formed quickly, they are highly disordered on the micron scale, with many charge traps and gaps forming in the films. It has been previously established that lowering the filtration speed enables more ordered films to be formed. The use of slow gravity filtration to improve the morphology of CNT films used in the CNT/Si device is reported here. It was found that slow filtration causes significant macroscale inhomogeneity in the CNT films, with concentrated thick regions, surrounded by larger thinner areas.
    [Show full text]
  • The Aberrance of the 4S Diastereomer of 4-Hydroxyproline Matthew D
    Published on Web 07/16/2010 The Aberrance of the 4S Diastereomer of 4-Hydroxyproline Matthew D. Shoulders,†,‡ Frank W. Kotch,†,§ Amit Choudhary,⊥ Ilia A. Guzei,† and Ronald T. Raines*,†,| Departments of Chemistry and Biochemistry, and the Graduate Program in Biophysics, UniVersity of WisconsinsMadison, Madison, Wisconsin 53706 Received April 16, 2010; E-mail: [email protected] Abstract: Prolyl 4-hydroxylases install a hydroxyl group in the 4R configuration on the γ-carbon atom of certain (2S)-proline (Pro) residues in tropocollagen, elastin, and other proteins to form (2S,4R)-4- hydroxyproline (Hyp). The gauche effect arising from this prevalent post-translational modification enforces aCγ-exo ring pucker and stabilizes the collagen triple helix. The Hyp diastereomer (2S,4S)-4-hydroxyproline (hyp) has not been observed in a protein, despite the ability of electronegative 4S substituents to enforce the more common Cγ-endo ring pucker of Pro. Here, we use density functional theory, spectroscopy, crystallography, and calorimetry to explore the consequences of hyp incorporation on protein stability using a collagen model system. We find that the 4S-hydroxylation of Pro to form hyp does indeed enforce a Cγ-endo ring pucker but a transannular hydrogen bond between the hydroxyl moiety and the carbonyl of hyp distorts the main-chain torsion angles that typically accompany a Cγ-endo ring pucker. This same transannular hydrogen bond enhances an nfπ* interaction that stabilizes the trans conformation of the peptide bond preceding hyp, endowing hyp with the unusual combination of a Cγ-endo ring pucker and high trans/cis ratio. O-Methylation of hyp to form (2S,4S)-4-methoxyproline (mop) eliminates the transannular hydrogen bond and restores a prototypical Cγ-endo pucker.
    [Show full text]
  • Sieving the Landscape of Gravity Theories
    SISSA — Scuola Internazionale Superiore di Studi Avanzati Ph.D. Curriculum in Astrophysics Academic year 2013/2014 Sieving the Landscape of Gravity Theories From the Equivalence Principles to the Near-Planck Regime Thesis submitted for the degree of Doctor Philosophiæ Advisors: Candidate: Prof. Stefano Liberati Eolo Di Casola Prof. Sebastiano Sonego 22nd October 2014 Abstract This thesis focusses on three main aspects of the foundations of any theory of gravity where the gravitational field admits a geometric interpretation: (a) the principles of equivalence; (b) their role as selection rules in the landscape of extended theories of gravity; and (c) the possible modifications of the spacetime structure at a “mesoscopic” scale, due to underlying, microscopic-level, quantum- gravitational effects. The first result of the work is the introduction of a formal definition of the Gravitational Weak Equivalence Principle, which expresses the universality of free fall of test objects with non-negligible self-gravity, in a matter-free environ- ment. This principle extends the Galilean universality of free-fall world-lines for test bodies with negligible self-gravity (Weak Equivalence Principle). Second, we use the Gravitational Weak Equivalence Principle to build a sieve for some classes of extended theories of gravity, to rule out all models yielding non-universal free-fall motion for self-gravitating test bodies. When applied to metric theories of gravity in four spacetime dimensions, the method singles out General Relativity (both with and without the cosmological constant term), whereas in higher-dimensional scenarios the whole class of Lanczos–Lovelock gravity theories also passes the test. Finally, we focus on the traditional, manifold-based model of spacetime, and on how it could be modified, at a “mesoscopic” (experimentally attainable) level, by the presence of an underlying, sub-Planckian quantum regime.
    [Show full text]
  • A Geometrodynamic Model (GDM) of Reality a Realization of Einstein's Vision
    A GeometroDynamic Model (GDM) of Reality A Realization of Einstein’s Vision Shlomo Barak To cite this version: Shlomo Barak. A GeometroDynamic Model (GDM) of Reality A Realization of Einstein’s Vision. 2018. hal-01435685v4 HAL Id: hal-01435685 https://hal.archives-ouvertes.fr/hal-01435685v4 Preprint submitted on 21 Sep 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. A GeometroDynamic Model (GDM) of Reality A Realization of Einstein’s Vision Shlomo Barak Taga Innovations 16 Beit Hillel St. Tel Aviv 670017 Israel Corresponding author: [email protected] Abstract The current paradigm, despite the successes of the excellent theories that construct it, is facing many obstacles. Many principles remain unproven, attributes of elementary particles cannot be derived and calculated, and mysteries are un-resolved. This situation results from the lack of a deeper underlying theoretical layer that explores the geometrodynamics of space. Our GeometroDynamic Model of reality - the GDM, presented here, is this required layer. The GDM reveals the essence of charge, elementary particles, gravitation, and inertia (mass). It also relates to additional fundamental subjects. The GDM provides derivations and accurate calculations of the radii and masses of elementary particles.
    [Show full text]
  • Full Abstract Booklet
    21st International Conference on General Relativity and Gravitation Columbia University in the City of New York July 10th - 15th, 2016 ii Contents Session A1 1 A group theoretic approach to shear-free radiating stars (Gezahegn Zewdie Abebe)................................... 1 Separable metrics and radiating stars (Gezahegn Zewdie Abebe) . 1 Lie point symmetries, vacuum Einstein equations, and Ricci solitons (Mo- hammad Akbar).............................. 2 Open Access Non-Linear Electrodynamics Gedanken Experiment for Mod- ified Zero Point Energy and Planck's Constant, h Bar, in the Begin- ning of Cosmological Expansion, So h(Today) = h(Initial). (Andrew Beckwith) ................................. 2 Solving the Einstein-Maxwell Equations for the Propagation of Relativistic Energy during Kasner and other Anisotropic Early-Universe Models (Brett Bochner).............................. 3 Ergosphere of the Born-Infeld black hole (Nora Breton)........... 3 Elastic waves in spherically symmetric elastic spacetimes (Irene Brito,Jaume Carot, and Estelita Vaz)......................... 3 Cylindrically symmetric inhomogeneous dust collapse (Irene Brito, M. F. A. Da Silva, Filipe C. Mena and N. O. Santos)............ 4 Did GW150914 produce a rotating gravastar? (Cecilia Chirenti) . 4 The Inverse spatial Laplacian of spherically symmetric backgrounds (Karan Fernandes) ................................ 4 Coordinate families for the Schwarzschild geometry based on radial timelike geodesics (Tehani Finch)......................... 5 Rotating black hole
    [Show full text]
  • Accepted Manuscript Not Copyedited
    Rapid removal of copper impurity from bismuth–copper alloy melts via super-gravity separation Xiao-chun Wen, Lei Guo, Qi-peng Bao, and Zhan-cheng Guo Cite this article as: Xiao-chun Wen, Lei Guo, Qi-peng Bao, and Zhan-cheng Guo, Rapid removal of copper impurity from bismuth–copper alloy melts via super-gravity separation, Int. J. Miner. Metall. Mater., (2021). https://doi.org/10.1007/s12613-020-2118-9 View the article online at SpringerLink or IJMMM Webpage. Articles you may be interested in Davidson E. Egirani, Nanfe R. Poyi, and Napoleon Wessey, Synthesis of a copper() oxide-montmorillonite composite for lead removal, Int. J. Miner. Metall. Mater., 26(2019), No. 7, pp. 803-810. https://doi.org/10.1007/s12613-019-1788-7 Lei Cao, Ya-long Liao, Gong-chu Shi, Yu Zhang, and Mu-yuan Guo, Leaching behavior of zinc and copper from zinc refinery residue and filtration performance of pulp under the hydrothermal process, Int. J. Miner. Metall. Mater., 26(2019), No. 1, pp. 21- 32. https://doi.org/10.1007/s12613-019-1706-z Rui-min Jiao, Peng Xing, Cheng-yan Wang, Bao-zhong Ma, and Yong-Qiang Chen, Recovery of iron from copper tailings via low-temperature direct reduction and magnetic separation:process optimization and mineralogical study, Int. J. Miner. Metall. Mater., 24(2017), No. 9, pp. 974-982. https://doi.org/10.1007/s12613-017-1485-3 Wei-ping Liu and Xia-fei Yin, Recovery of copper from copper slag using a microbial fuel cell and characterization of its electrogenesis, Int. J.
    [Show full text]
  • Separation, Purification and Identification of the Components of a Mixture Supplementary Material
    Supplementary information for Comprehensive Organic Chemistry Experiments for the Laboratory Classroom © The Royal Society of Chemistry 2017 Separation, purification and identification of the components of a mixture Supplementary Material Experimental notes Background topics……………………………………………………………………………………..1 Experimental details………..………………………………………………………………………….2 Figures Photos of the experiment…………………………………………………………………….…..…….3 IR spectra…………………………………………………….……………………………………..……5 Experimental notes Background topics This experiment does not involve typical chemical reactions of organic compounds, with the exception of acid-base reactions. Its aim is to provide the students the knowledge of fundamental experimental techniques of unitary operations, such as extraction, distillation, filtration, recrystallization and thin layer chromatography. The work (two laboratory sessions) has a low difficulty level and is adequate to introductory level students, especially engineering students (chemical, biochemical, material sciences, biomedical and related areas) or Chemistry students at introductory level. This simple pedagogic experiment was already realized by over 500 students of the Faculty of Sciences and Technology, Universidade Nova de Lisboa (in classes of 22 students/class, 11 groups of two), who accomplished the work in two (2x3 hours) laboratory sessions. The students must be encouraged to rationalise the principles of the unitary operations performed and to understand their application. If this work is a first experiment in an Organic Chemistry laboratory class, every experimental detail must be extensively discussed. Special attention and care must also be given to collection and treatment of results (calculation of Rf values and recuperation “yields”, measurement of physical properties, e.g. melting points). It is also important to encourage the students to compare the experimental results with those referred in the literature. Hints for the answers to the proposed questions and topics to discussion: 1.
    [Show full text]
  • Download Author Version (PDF)
    Dalton Transactions Accepted Manuscript This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication. Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available. You can find more information about Accepted Manuscripts in the Information for Authors. Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains. www.rsc.org/dalton Page 1 of 43 Dalton Transactions Electronic tuning of Mo 2(thioamidate)4 complexes through π-system substituents and cis/trans isomerism Brian S. Dolinar and John F. Berry* Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI, 53704. Email: [email protected] Abstract We report an exploration of the coordination chemistry of a systematic series of cyclic 4+ Manuscript thioamidate ligands with the quadruply-bonded Mo 2 core. In addition to the S and N donor atoms that bind to Mo, the ligands utilized in this study have an additional O or S atom in conjugation with the thioamidate π system.
    [Show full text]