ANNALES MATHÉMATIQUES BLAISE PASCAL A.K. KATSARAS A. BELOYIANNIS On the topology of compactoid convergence in non-archimedean spaces Annales mathématiques Blaise Pascal, tome 3, no 2 (1996), p. 135-153 <http://www.numdam.org/item?id=AMBP_1996__3_2_135_0> © Annales mathématiques Blaise Pascal, 1996, tous droits réservés. L’accès aux archives de la revue « Annales mathématiques Blaise Pascal » (http: //math.univ-bpclermont.fr/ambp/) implique l’accord avec les conditions géné- rales d’utilisation (http://www.numdam.org/legal.php). Toute utilisation commer- ciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Ann. Math. Blaise Pascal, Vol. 3, N° 2, 1996, pp.135-153 ON THE TOPOLOGY OF COMPACTOID CONVERGENCE IN NON-ARCHIMEDEAN SPACES A. K. KATSARAS and A. BELOYIANNIS Department of Mathematics, University of Ioannina P.O. Box 1186, 451 10 loannina, Greece email:
[email protected] Abstract Some of the properties, of the topology of uniform convergence on the compactoid subsets of a non-Archimedean locally convex space E, are studied. In case E is metrizable, the compactoid convergence topology coincides with the finest locally convex topology which agrees with a~E’, E) on equicontinuous sets. 1 1 Introduction In [7J some of the properties of the topology of uniform convergence on the compactoid subsets, of a non-Archimedean locally convex space, are inves- tigated. In the same paper, the authors defined the ~-product E~F of two non-Archimedean locally convex spaces E and F.