Meteor Shower Forecasting in Near-Earth Space

Total Page:16

File Type:pdf, Size:1020Kb

Meteor Shower Forecasting in Near-Earth Space Meteor shower forecasting in near-Earth space Althea V. Moorhead∗ NASA Meteoroid Environment Office, Marshall Space Flight Center EV44, Huntsville, Alabama, 35812 Auriane Egal† Department of Physics and Astronomy, The University of Western Ontario, London, Ontario N6A 3K7, Canada Peter G. Brown‡ Department of Physics and Astronomy, The University of Western Ontario, London, Ontario N6A 3K7, Canada Centre for Planetary Science and Exploration, The University of Western Ontario, London, Ontario N6A 5B8, Canada Danielle E. Moser§ Jacobs, Jacobs Space Exploration Group, Huntsville, Alabama, 35812 NASA Meteoroid Environment Office, Marshall Space Flight Center EV44, Huntsville, Alabama, 35812 William J. Cooke¶ NASA Meteoroid Environment Office, Marshall Space Flight Center EV44, Huntsville, Alabama, 35812 NASA’s Meteoroid Environment Office (MEO) produces an annual meteor shower forecast in order to help spacecraft operators assess the risk posed by meteoroid streams. Previously, this forecast focused on the International Space Station and therefore reported meteoroid fluxes and enhancement factors at an orbital altitude of 400 km. This paper presents an updated forecast algorithm that has an improved calculation of the flux enhancement produced by showers and can calculate fluxes at any selected Earth or lunar orbital altitude. Finally, we discuss and generate forecasted fluxes for the 2018 Draconid meteor shower, which is expected to produce meteoroid flux enhancements near the Sun-Earth L1 and L2 Lagrange points but not at Earth. Nomenclature R = average radius of a large body 1 Bp = shower growth exponent, deg− r = population index or heliocentric distance 1 Bm = shower decay exponent, deg− s = mass index BH = Brinell hardness t = time 1 1 c = speed of sound, km s− v = meteoroid velocity, km s− d = crater diameter, cm x; y = position coordinates within the ecliptic plane 1 f = meteoroid flux ZHR = zenithal hourly rate, hr− G = gravitational constant ZHR0 = peak zenithal hourly rate H = atmospheric thickness, km α = shower flux fraction h = altitude, km β = flux enhancement factor arXiv:1904.06370v1 [astro-ph.EP] 12 Apr 2019 KE = kinetic energy, J γ = damage rate multiplier kavg = perception factor δ = attitude disturbance rate multiplier L = angular momentum ζ = attitude disturbance enhancement factor M = mass of a large body, kg η = gravitational focusing or shielding factor m = meteoroid mass θ = impact angle, radians N = number of particles λ0 = peak solar longitude p = crater depth in cm λ = solar longitude, deg ξ = distance from center of spacecraft less well-known but also highly variable and has produced Π = Heaviside pi function storms with rates of 10,000 per hour. In 2018, the Draconids 3 were expected to produce high activity at the Sun-Earth L1 ρ = density, kg m− and L2 Lagrange points [7]. φ = azimuthal angle, radians Meteor showers are generally short-lived; durations can = planetary shielding angle, radians range from a few hours to a few weeks and, within those Ω = solid angle, steradians periods, most of the activity occurs near a “peak” time. This is particularly true for the Draconids, which tend to maintain at least half their maximum activity for only a few hours. Subscripts As a result, spacecraft operators may choose to mitigate the 6.5 = for meteors brighter than magnitude 6.5 risk operationally by phasing orbits, delaying launches, re- b = of massive body b orienting spacecraft, or powering down components. These G = corresponding to [1] mitigation techniques require accurate predictions of the tim- g = gravitational focusing ing and duration of meteor showers in order to be effective. Gaia = of the Gaia spacecraft NASA’s Meteoroid Environment Office (MEO) therefore issues both annual and custom meteor shower forecasts that h = at altitude h predict the timing and activity of meteor showers for particle i = corresponding to individual shower i sizes that are potentially threatening to spacecraft. ip = interplanetary Our forecasts do not include the full working list of lim = limiting over 1000 meteor showers included in the International ∗ mg = for meteoroids larger than 1 mg Astronomical Union (IAU) Meteor Data Center. Only showers that are capable of producing an appreciable flux = of the Earth ⊕ are incorporated; a typical forecast year is based on a list of s = planetary shielding around 30 meteor showers [8]. The list of relevant showers SOHO = of the SOHO spacecraft must be reconsidered each year either as new information t = target material becomes available for poorly measured showers or as new TOA = at the top of the Earth’s atmosphere predictions are made for variable showers. The MEO runs simulations of variable meteor showers each year in order to TOB = at the top of a body’s surface or atmosphere predict their activity [9, 10]; these predictions are fed into a forecasting algorithm that converts predicted visual rates to fluxes at a given spacecraft altitude [8]. I. Introduction The MEO forecasting code was originally designed to eteoroid impacts pose a constant risk to spacecraft; generate predictions for the Space Shuttle and International 1 Mtheir high speeds (12-72 km s− ) compared to orbital Space Station and thus computed meteoroid fluxes at an debris means that a tiny particle can impart a great deal of altitude of 400 km above the Earth’s surface and for limiting kinetic energy, momentum, or damage. The vast majority of particle kinetic energies that are relevant to a manned vehicle. the meteoroid flux is associated with the background compo- In this paper, we present results from a significantly expanded nent of the meteoroid environment: the so-called “sporadic” version of the code that can generate meteoroid fluxes at any meteoroids. As a result, meteoroid environment models such Earth-orbiting altitude. Furthermore, the code can compute as NASA’s Meteoroid Engineering Model (MEM) [2, 3] fluxes on the Moon’s surface or in lunar orbit, and can handle and ESA’s Interplanetary Meteoroid Environment Model special locations such as the L1 and L2 Lagrange points. (IMEM) [4] focus on the sporadic complex. Yet meteor Our forecasts are also no longer restricted to calculating showers can produce short-term enhancements of the me- kinetic-energy-limited fluxes; we have modified the code to teoroid flux and associated risk that are not captured by generate size- and mass-limited fluxes as well. Section II models such as MEM and IMEM. describes our improved forecasting algorithm. Meteor showers can match or even exceed the sporadic Our forecasts do not simply report shower fluxes, but flux for a short period; the Geminid meteor shower, for attempt to put these fluxes into context by comparing them example, can double the meteoroid flux at the time of peak with the sporadic or background meteoroid flux. We do activity. The Leonid and Draconid meteor showers do not so by providing “enhancement factors” that describe the pose much of an impact risk in a typical year, but sometimes factor by which the typical background flux is increased produce outbursts in which the level of activity can be tens due to meteor showers. These enhancement factors may be to thousands of times higher than normal [5]. Both showers combined with existing sporadic meteoroid risk assessments produce “storms” – i.e., meteor shower outbursts with a to estimate the increase in risk. We typically assume a visual rate exceeding 1000 per hour [6]. The phenomenal “worst-case scenario” in which a spacecraft surface directly Leonid storm of 1833 had estimated hourly rates of 10,000 faces the shower radiant and does not benefit from any to 60,000 per hour [5]. The Draconid meteor shower is ∗https://www.ta3.sk/IAUC22DB/MDC2007/index.php 2 planetary shielding. However, depending on the response of both new measurements and model predictions of unusual the spacecraft material to meteoroid impacts, the risk may activity. be enhanced to a greater degree than is described by our simple enhancement factors. In Section II.E.3, we compute A. Shower activity parameters the additional enhancement factors that would need to be There are no measurements of meteor shower fluxes from applied for a sample ballistic limit equation (BLE) and for in-situ experiments. Thus, we must use observations of momentum disturbances. meteors in the Earth’s atmosphere to quantify meteor shower Section III reviews recent results from models of the 2018 activity. Meteor astronomers typically measure activity in Draconid meteor shower, which likely exhibited storm-level terms of ZHR. ZHR is not simply a measure of hourly rate, activity at both the L1 and L2 Sun-Earth Lagrange points. but is rather the hourly rate of meteors that would be seen We derive a meteor shower profile from the results of Egal with the naked eye under ideal observing conditions by an et al. [7] and use our forecasting algorithm to calculate the alert observer when the shower radiant is directly overhead equivalent fluxes. We present a suite of flux predictions for [17]. All other observations – those made during a full moon, spacecraft orbiting near L1 and L2. say, or with a meteor radar rather than the naked eye – must Note that in this paper, “meteor” and “meteoroid” carry take their observing conditions and instrument sensitivity different meanings. We use the term “meteoroid” to refer into account in order to calculate an equivalent ZHR. These to a small natural particle moving through space, and the ZHR values can then be used to compare showers or to term “meteor” to refer to the light and ionization produced compare a single shower’s activity levels over time. If the when a meteoroid enters the Earth’s atmosphere. When we cumulative number of meteoroids above some threshold discuss fluxes, we are generally referring to meteoroids, and mass follows a power-law, the shower ZHR is proportional when we refer to hourly rates (especially zenithal hourly to the shower meteoroid flux.
Recommended publications
  • Geminids 2012-2015
    Short paper Geminids 2012−−−2015: multi-year meteor videographyyy Alex Pratt, William Stewart, Allan Carter, Denis Buczynski, David Anderson, Nick James, Michael O’Connell, Graham Roche, Gordon Reinicke, Michael Morris, Jeremy Shears, Mike Foylan, David Dunn, Ray Taylor, Frank Johns, Nick Quinn, Steve & Peta Bosley, Steve Johnston NEMETODE, a network of low-light video cameras in and around the British Isles, operated in conjunction with the BAA Meteor Section and other groups, monitors the activity of meteors, enabling the precise measurement of radiant positions, of the altitudes and geocentric velocities of meteoroids and the determination of their former solar system orbits. The results from multi-year observations of the Geminid meteor shower are presented and discussed. Equipment and methods The NEMETODE team employed the equipment and methods de- scribed in previous papers1,2 and on their website.3 These included Genwac, KPF and Watec video cameras equipped with fixed and variable focal length lenses ranging from 2.6mm semi fish-eye mod- els to 12mm narrow field systems. The Geminid meteor stream The Geminids (IAU MDC 004 GEM) are relatively slow meteors with geocentric velocities of 34 km/s, about half the speed of Perseids and Leonids. Although only apparent to visual observers for about Figure 1. Magnitude distribution of the 2012–2015 Geminid meteors and contemporaneous sporadics. 10 days in December, Geminids can be identified via imaging and triangulation from late November to early January. They are cur- Whereas most meteor showers originate from comets, the Geminid rently the most active and reliable annual shower, producing a ZHR parent body is the Apollo asteroid (3200) Phaethon.
    [Show full text]
  • Metal Species and Meteor Activity 5 Discussion J
    Atmos. Chem. Phys. Discuss., 9, 18705–18726, 2009 Atmospheric www.atmos-chem-phys-discuss.net/9/18705/2009/ Chemistry ACPD © Author(s) 2009. This work is distributed under and Physics 9, 18705–18726, 2009 the Creative Commons Attribution 3.0 License. Discussions This discussion paper is/has been under review for the journal Atmospheric Chemistry Metal species and and Physics (ACP). Please refer to the corresponding final paper in ACP if available. meteor activity J. Correira et al. Title Page Metal concentrations in the upper Abstract Introduction atmosphere during meteor showers Conclusions References J. Correira1,*, A. C. Aikin1, J. M. Grebowsky2, and J. P. Burrows3 Tables Figures 1 The Catholic University of America, Institute for Astrophysics and Computational Sciences J I Department of Physics, Washington, DC 20064, USA 2 NASA Goddard Space Flight Center, Code 695, Greenbelt, MD 20771, USA J I 3Institute of Environmental Physics (IUP), University of Bremen, Bremen, Germany Back Close *now at: Computational Physics, Inc., Springfield, Virginia, USA Full Screen / Esc Received: 30 June 2009 – Accepted: 10 August 2009 – Published: 10 September 2009 Correspondence to: J. Correira ([email protected]) Printer-friendly Version Published by Copernicus Publications on behalf of the European Geosciences Union. Interactive Discussion 18705 Abstract ACPD Using the nadir-viewing Global Ozone Measuring Experiment (GOME) UV/VIS spec- trometer on the ERS-2 satellite, we investigate short term variations in the vertical mag- 9, 18705–18726, 2009 nesium column densities in the atmosphere and any connection to possible enhanced 5 mass deposition during a meteor shower. Time-dependent mass influx rates are de- Metal species and rived for all the major meteor showers using published estimates of mass density and meteor activity temporal profiles of meteor showers.
    [Show full text]
  • Download This Article in PDF Format
    A&A 598, A40 (2017) Astronomy DOI: 10.1051/0004-6361/201629659 & c ESO 2017 Astrophysics Separation and confirmation of showers? L. Neslušan1 and M. Hajduková, Jr.2 1 Astronomical Institute, Slovak Academy of Sciences, 05960 Tatranska Lomnica, Slovak Republic e-mail: [email protected] 2 Astronomical Institute, Slovak Academy of Sciences, Dubravska cesta 9, 84504 Bratislava, Slovak Republic e-mail: [email protected] Received 6 September 2016 / Accepted 30 October 2016 ABSTRACT Aims. Using IAU MDC photographic, IAU MDC CAMS video, SonotaCo video, and EDMOND video databases, we aim to separate all provable annual meteor showers from each of these databases. We intend to reveal the problems inherent in this procedure and answer the question whether the databases are complete and the methods of separation used are reliable. We aim to evaluate the statistical significance of each separated shower. In this respect, we intend to give a list of reliably separated showers rather than a list of the maximum possible number of showers. Methods. To separate the showers, we simultaneously used two methods. The use of two methods enables us to compare their results, and this can indicate the reliability of the methods. To evaluate the statistical significance, we suggest a new method based on the ideas of the break-point method. Results. We give a compilation of the showers from all four databases using both methods. Using the first (second) method, we separated 107 (133) showers, which are in at least one of the databases used. These relatively low numbers are a consequence of discarding any candidate shower with a poor statistical significance.
    [Show full text]
  • Assessing Risk from Dangerous Meteoroids in Main Meteor Showers Andrey Murtazov
    Proceedings of the IMC, Mistelbach, 2015 155 Assessing risk from dangerous meteoroids in main meteor showers Andrey Murtazov Astronomical observatory, Ryazan State University, Ryazan, Russia [email protected] The risk from dangerous meteoroids in main meteor showers is calculated. The showers were: Quadrantids–2014; Eta Aquariids–2013, Perseids–2014 and Geminids–2014. The computed results for the risks during the shower periods of activity and near the maximum are provided. 1 Introduction The activity periods of these showers (IMO) are: Quadrantids–2014; 1d; Eta Aquariids–2013; 10d, Bright meteors are of serious hazard for space vehicles. Perseids–2014; 14d and Geminids–2014; 4d. A lot of attention has been recently paid to meteor Our calculations have shown that the average collisions N investigations in the context of the different types of of dangerous meteoroids for these showers in their hazards caused by comparatively small meteoroids. activity periods are: Furthermore, the investigation of risk distribution related Quadrantids–2014: N = (2.6 ± 0.5)10-2 km-2; to collisions of meteoroids over 1 mm in diameter with Eta Aquariids–2013: N = (2.8)10-1 km-2; space vehicles is quite important for the long-term Perseids–2014: N = (8.4 ± 0.8)10-2 km-2; forecast regarding the development of space research and Geminids–2014: N = (4.8 ± 0.8)10-2 km-2. circumterrestrial ecology problems (Beech, et al., 1997; Wiegert, Vaubaillon, 2009). Consequently, the average value of collision risk was: Considered hazardous are the meteoroids that create -2 -1 Quadrantids–2014: R = 0.03 km day ; meteors brighter than magnitude 0.
    [Show full text]
  • 17. a Working List of Meteor Streams
    PRECEDING PAGE BLANK NOT FILMED. 17. A Working List of Meteor Streams ALLAN F. COOK Smithsonian Astrophysical Observatory Cambridge, Massachusetts HIS WORKING LIST which starts on the next is convinced do exist. It is perhaps still too corn- page has been compiled from the following prehensive in that there arc six streams with sources: activity near the threshold of detection by pho- tography not related to any known comet and (1) A selection by myself (Cook, 1973) from not sho_m to be active for as long as a decade. a list by Lindblad (1971a), which he found Unless activity can be confirmed in earlier or from a computer search among 2401 orbits of later years or unless an associated comet ap- meteors photographed by the Harvard Super- pears, these streams should probably be dropped Sehmidt cameras in New Mexico (McCrosky and from a later version of this list. The author will Posen, 1961) be much more receptive to suggestions for dele- (2) Five additional radiants found by tions from this list than he will be to suggestions McCrosky and Posen (1959) by a visual search for additions I;o it. Clear evidence that the thresh- among the radiants and velocities of the same old for visual detection of a stream has been 2401 meteors passed (as in the case of the June Lyrids) should (3) A further visual search among these qualify it for permanent inclusion. radiants and velocities by Cook, Lindblad, A comment on the matching sets of orbits is Marsden, McCrosky, and Posen (1973) in order. It is the directions of perihelion that (4) A computer search
    [Show full text]
  • Meteor Shower Detection with Density-Based Clustering
    Meteor Shower Detection with Density-Based Clustering Glenn Sugar1*, Althea Moorhead2, Peter Brown3, and William Cooke2 1Department of Aeronautics and Astronautics, Stanford University, Stanford, CA 94305 2NASA Meteoroid Environment Office, Marshall Space Flight Center, Huntsville, AL, 35812 3Department of Physics and Astronomy, The University of Western Ontario, London N6A3K7, Canada *Corresponding author, E-mail: [email protected] Abstract We present a new method to detect meteor showers using the Density-Based Spatial Clustering of Applications with Noise algorithm (DBSCAN; Ester et al. 1996). DBSCAN is a modern cluster detection algorithm that is well suited to the problem of extracting meteor showers from all-sky camera data because of its ability to efficiently extract clusters of different shapes and sizes from large datasets. We apply this shower detection algorithm on a dataset that contains 25,885 meteor trajectories and orbits obtained from the NASA All-Sky Fireball Network and the Southern Ontario Meteor Network (SOMN). Using a distance metric based on solar longitude, geocentric velocity, and Sun-centered ecliptic radiant, we find 25 strong cluster detections and 6 weak detections in the data, all of which are good matches to known showers. We include measurement errors in our analysis to quantify the reliability of cluster occurrence and the probability that each meteor belongs to a given cluster. We validate our method through false positive/negative analysis and with a comparison to an established shower detection algorithm. 1. Introduction A meteor shower and its stream is implicitly defined to be a group of meteoroids moving in similar orbits sharing a common parentage.
    [Show full text]
  • EPSC2015-482, 2015 European Planetary Science Congress 2015 Eeuropeapn Planetarsy Science Ccongress C Author(S) 2015
    EPSC Abstracts Vol. 10, EPSC2015-482, 2015 European Planetary Science Congress 2015 EEuropeaPn PlanetarSy Science CCongress c Author(s) 2015 Recent meteor showers – models and observations P. Koten (1) and J. Vaubaillon (2) (1) Astronomical Institute of ACSR, Ond řejov, Czech Republic, (2) Institut de mecanique Celeste et de Calcul des Ephemerides, Paris, France ([email protected] / Fax: +420-323-620263) Abstract 3. Meteor showers A number of meteor shower outbursts and storms Among the most studied meteor showers is the occurred in recent years starting with several Leonid Leonids due to recent return of their parent comet. storms around 2000 [1]. The methods of modeling Outbursts and storms between 1998 and 2002 and meteoroid streams became better and more precise. also another event in 2009 were observed and An increasing number of observing systems enabled analyzed. The Draconid outbursts in 2005 and 2011 better coverage of such events. The observers were also covered. Especially the latter was observed provide modelers with an important feedback on intensively using different instruments onboard two precision of their models. Here we present aircraft [4]. comparison of several observational results with the model predictions. 1. Introduction The double station observations using video technique are carried out by the Ondrejov observatory team for many years [2]. Besides the regular observations of the meteor showers the campaigns are also dedicated to predicted meteor storms and outbursts. The team participated to several international campaigns during recent Leonid meteor shower return as well as on the Draconid airborne campaign in 2011. The main goal of this experiment is the determination of the meteor trajectories and orbits and the meteor shower activity is also measured and compared with predictions.
    [Show full text]
  • Meteor Showers # 11.Pptx
    20-05-31 Meteor Showers Adolf Vollmy Sources of Meteors • Comets • Asteroids • Reentering debris C/2019 Y4 Atlas Brett Hardy 1 20-05-31 Terminology • Meteoroid • Meteor • Meteorite • Fireball • Bolide • Sporadic • Meteor Shower • Meteor Storm Meteors in Our Atmosphere • Mesosphere • Atmospheric heating • Radiant • Zenithal Hourly Rate (ZHR) 2 20-05-31 Equipment Lounge chair Blanket or sleeping bag Hot beverage Bug repellant - ThermaCELL Camera & tripod Tracking Viewing Considerations • Preparation ! Locate constellation ! Take a nap and set alarm ! Practice photography • Location: dark & unobstructed • Time: midnight to dawn https://earthsky.org/astronomy- essentials/earthskys-meteor-shower- guide https://www.amsmeteors.org/meteor- showers/meteor-shower-calendar/ • Where to look: 50° up & 45-60° from radiant • Challenges: fatigue, cold, insects, Moon • Recording observations ! Sky map, pen, red light & clipboard ! Time, position & location ! Recording device & time piece • Binoculars Getty 3 20-05-31 Meteor Showers • 112 confirmed meteor showers • 695 awaiting confirmation • Naming Convention ! C/2019 Y4 (Atlas) ! (3200) Phaethon June Tau Herculids (m) Parent body: 73P/Schwassmann-Wachmann Peak: June 2 – ZHR = 3 Slow moving – 15 km/s Moon: Waning Gibbous June Bootids (m) Parent body: 7p/Pons-Winnecke Peak: June 27– ZHR = variable Slow moving – 14 km/s Moon: Waxing Crescent Perseid by Brian Colville 4 20-05-31 July Delta Aquarids Parent body: 96P/Machholz Peak: July 28 – ZHR = 20 Intermediate moving – 41 km/s Moon: Waxing Gibbous Alpha
    [Show full text]
  • 7 X 11 Long.P65
    Cambridge University Press 978-0-521-85349-1 - Meteor Showers and their Parent Comets Peter Jenniskens Index More information Index a – semimajor axis 58 twin shower 440 A – albedo 111, 586 fragmentation index 444 A1 – radial nongravitational force 15 meteoroid density 444 A2 – transverse, in plane, nongravitational force 15 potential parent bodies 448–453 A3 – transverse, out of plane, nongravitational a-Centaurids 347–348 force 15 1980 outburst 348 A2 – effect 239 a-Circinids (1977) 198 ablation 595 predictions 617 ablation coefficient 595 a-Lyncids (1971) 198 carbonaceous chondrite 521 predictions 617 cometary matter 521 a-Monocerotids 183 ordinary chondrite 521 1925 outburst 183 absolute magnitude 592 1935 outburst 183 accretion 86 1985 outburst 183 hierarchical 86 1995 peak rate 188 activity comets, decrease with distance from Sun 1995 activity profile 188 Halley-type comets 100 activity 186 Jupiter-family comets 100 w 186 activity curve meteor shower 236, 567 dust trail width 188 air density at meteor layer 43 lack of sodium 190 airborne astronomy 161 meteoroid density 190 1899 Leonids 161 orbital period 188 1933 Leonids 162 predictions 617 1946 Draconids 165 upper mass cut-off 188 1972 Draconids 167 a-Pyxidids (1979) 199 1976 Quadrantids 167 predictions 617 1998 Leonids 221–227 a-Scorpiids 511 1999 Leonids 233–236 a-Virginids 503 2000 Leonids 240 particle density 503 2001 Leonids 244 amorphous water ice 22 2002 Leonids 248 Andromedids 153–155, 380–384 airglow 45 1872 storm 380–384 albedo (A) 16, 586 1885 storm 380–384 comet 16 1899
    [Show full text]
  • Lunar Meteor Schedule and Observing Plan for 2020
    Lunar Meteor Schedule and Observing Plan for 2020 This form outlines the plan to monitor the moon on a regular basis both inside and outside normal annual showers. Each month, for a total of up to 14 days per month, we are coordinating observations of the Earthshine portion of the moon for background (including the minor showers when they fall during this time) meteor impact flux. A typical run of observations starts three days after New Moon and continues until two days past First Quarter. The run resumes a two days before Last Quarter and continues until three days prior to New Moon. The actual interval will depend on the lunar elevation and elongation as well as the ability of the observer to control stray light in one’s system. Shower Activity Maximum Radiant V∞ r ZHR Date λ⊙ α δ km/s Mar-Apr, late May, Antihelion Source (ANT) Dec 10 – Sep 10 30 3.0 4 late June Quadrantids (QUA) Dec 28 - Jan 12 Jan 04 283.15° 230° +49° 41 2.1 110 γ-Ursae Minorids (GUM) Jan 10 - Jan 22 Jan 19 298° 228° +67° 31 3.0 3 α-Centaurids (ACE) Jan 31 - Feb 20 Feb 08 319.2° 210° -59° 58 2.0 6 γ-Normids (GNO) Feb 25 - Mar 28 Mar 14 354° 239° -50° 56 2.4 6 Lyrids (LYR) Apr 14 - Apr 30 Apr 22 32.32° 271° +34° 49 2.1 18 π-Puppids (PPU) Apr 15 – Apr 28 Apr 23 33.5° 110° -45° 18 2.0 Var η-Aquariids (ETA) Apr 19 - May 28 May 05 45.5° 338° -01° 66 2.4 50 η-Lyrids (ELY) May 03 - May 14 May 08 48.0° 287° +44° 43 3.0 3 June Bootids (JBO) Jun 22 - Jul 02 Jun 27 95.7° 224° +48° 18 2.2 Var Piscis Austrinids (PAU) Jul 15 - Aug 10 Jul 27 125° 341° -30° 35 3.2 5 South.
    [Show full text]
  • Smithsonian Contributions Astrophysics
    SMITHSONIAN CONTRIBUTIONS to ASTROPHYSICS Number 14 Discrete Levels off Beginning Height off Meteors in Streams By A. F. Cook Number 15 Yet Another Stream Search Among 2401 Photographic Meteors By A. F. Cook, B.-A. Lindblad, B. G. Marsden, R. E. McCrosky, and A. Posen Smithsonian Institution Astrophysical Observatory Smithsonian Institution Press SMITHSONIAN CONTRIBUTIONS TO ASTROPHYSICS NUMBER 14 A. F. cook Discrete Levels of Beginning Height of Meteors in Streams SMITHSONIAN INSTITUTION PRESS CITY OF WASHINGTON 1973 Publications of the Smithsonian Institution Astrophysical Observatory This series, Smithsonian Contributions to Astrophysics, was inaugurated in 1956 to provide a proper communication for the results of research conducted at the Astrophysical Observatory of the Smithsonian Institution. Its purpose is the "increase and diffusion of knowledge" in the field of astrophysics, with particular emphasis on problems of the sun, the earth, and the solar system. Its pages are open to a limited number of papers by other investigators with whom we have common interests. Another series, Annals of the Astrophysical Observatory, was started in 1900 by the Observa- tory's first director, Samuel P. Langley, and was published about every ten years. These quarto volumes, some of which are still available, record the history of the Observatory's researches and activities. The last volume (vol. 7) appeared in 1954. Many technical papers and volumes emanating from the Astrophysical Observatory have appeared in the Smithsonian Miscellaneous Collections. Among these are Smithsonian Physical Tables, Smithsonian Meteorological Tables, and World Weather Records. Additional information concerning these publications can be obtained from the Smithsonian Institution Press, Smithsonian Institution, Washington, D.C.
    [Show full text]
  • Events: No General Meeting in April
    The monthly newsletter of the Temecula Valley Astronomers Apr 2020 Events: No General Meeting in April. Until we can resume our monthly meetings, you can still interact with your astronomy associates on Facebook or by posting a message to our mailing list. General information: Subscription to the TVA is included in the annual $25 membership (regular members) donation ($9 student; $35 family). President: Mark Baker 951-691-0101 WHAT’S INSIDE THIS MONTH: <[email protected]> Vice President: Sam Pitts <[email protected]> Cosmic Comments Past President: John Garrett <[email protected]> by President Mark Baker Treasurer: Curtis Croulet <[email protected]> Looking Up Redux Secretary: Deborah Baker <[email protected]> Club Librarian: Vacant compiled by Clark Williams Facebook: Tim Deardorff <[email protected]> Darkness – Part III Star Party Coordinator and Outreach: Deborah Baker by Mark DiVecchio <[email protected]> Hubble at 30: Three Decades of Cosmic Discovery Address renewals or other correspondence to: Temecula Valley Astronomers by David Prosper PO Box 1292 Murrieta, CA 92564 Send newsletter submissions to Mark DiVecchio th <[email protected]> by the 20 of the month for Members’ Mailing List: the next month's issue. [email protected] Website: http://www.temeculavalleyastronomers.com/ Like us on Facebook Page 1 of 18 The monthly newsletter of the Temecula Valley Astronomers Apr 2020 Cosmic Comments by President Mark Baker One of the things commonly overlooked about Space related Missions is time, and of course, timing…!!! Many programs take a decade just to get them in place and off the ground, and many can take twice that long…just look at the James Webb Telescope!!! So there’s the “time” aspect of such endeavors…what about timing?? I mentioned last month that July is looking like a busy month for Martian Missions… here’s a refresher: 1) The NASA Mars 2020 rover Perseverance and its helicopter drone companion (aka Lone Ranger and Tonto, as I called them) is still on schedule.
    [Show full text]