Meteor Showers from Active Asteroids and Dormant Comets in Near-Earth
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Metal Species and Meteor Activity 5 Discussion J
Atmos. Chem. Phys. Discuss., 9, 18705–18726, 2009 Atmospheric www.atmos-chem-phys-discuss.net/9/18705/2009/ Chemistry ACPD © Author(s) 2009. This work is distributed under and Physics 9, 18705–18726, 2009 the Creative Commons Attribution 3.0 License. Discussions This discussion paper is/has been under review for the journal Atmospheric Chemistry Metal species and and Physics (ACP). Please refer to the corresponding final paper in ACP if available. meteor activity J. Correira et al. Title Page Metal concentrations in the upper Abstract Introduction atmosphere during meteor showers Conclusions References J. Correira1,*, A. C. Aikin1, J. M. Grebowsky2, and J. P. Burrows3 Tables Figures 1 The Catholic University of America, Institute for Astrophysics and Computational Sciences J I Department of Physics, Washington, DC 20064, USA 2 NASA Goddard Space Flight Center, Code 695, Greenbelt, MD 20771, USA J I 3Institute of Environmental Physics (IUP), University of Bremen, Bremen, Germany Back Close *now at: Computational Physics, Inc., Springfield, Virginia, USA Full Screen / Esc Received: 30 June 2009 – Accepted: 10 August 2009 – Published: 10 September 2009 Correspondence to: J. Correira ([email protected]) Printer-friendly Version Published by Copernicus Publications on behalf of the European Geosciences Union. Interactive Discussion 18705 Abstract ACPD Using the nadir-viewing Global Ozone Measuring Experiment (GOME) UV/VIS spec- trometer on the ERS-2 satellite, we investigate short term variations in the vertical mag- 9, 18705–18726, 2009 nesium column densities in the atmosphere and any connection to possible enhanced 5 mass deposition during a meteor shower. Time-dependent mass influx rates are de- Metal species and rived for all the major meteor showers using published estimates of mass density and meteor activity temporal profiles of meteor showers. -
Download This Article in PDF Format
A&A 598, A40 (2017) Astronomy DOI: 10.1051/0004-6361/201629659 & c ESO 2017 Astrophysics Separation and confirmation of showers? L. Neslušan1 and M. Hajduková, Jr.2 1 Astronomical Institute, Slovak Academy of Sciences, 05960 Tatranska Lomnica, Slovak Republic e-mail: [email protected] 2 Astronomical Institute, Slovak Academy of Sciences, Dubravska cesta 9, 84504 Bratislava, Slovak Republic e-mail: [email protected] Received 6 September 2016 / Accepted 30 October 2016 ABSTRACT Aims. Using IAU MDC photographic, IAU MDC CAMS video, SonotaCo video, and EDMOND video databases, we aim to separate all provable annual meteor showers from each of these databases. We intend to reveal the problems inherent in this procedure and answer the question whether the databases are complete and the methods of separation used are reliable. We aim to evaluate the statistical significance of each separated shower. In this respect, we intend to give a list of reliably separated showers rather than a list of the maximum possible number of showers. Methods. To separate the showers, we simultaneously used two methods. The use of two methods enables us to compare their results, and this can indicate the reliability of the methods. To evaluate the statistical significance, we suggest a new method based on the ideas of the break-point method. Results. We give a compilation of the showers from all four databases using both methods. Using the first (second) method, we separated 107 (133) showers, which are in at least one of the databases used. These relatively low numbers are a consequence of discarding any candidate shower with a poor statistical significance. -
Assessing Risk from Dangerous Meteoroids in Main Meteor Showers Andrey Murtazov
Proceedings of the IMC, Mistelbach, 2015 155 Assessing risk from dangerous meteoroids in main meteor showers Andrey Murtazov Astronomical observatory, Ryazan State University, Ryazan, Russia [email protected] The risk from dangerous meteoroids in main meteor showers is calculated. The showers were: Quadrantids–2014; Eta Aquariids–2013, Perseids–2014 and Geminids–2014. The computed results for the risks during the shower periods of activity and near the maximum are provided. 1 Introduction The activity periods of these showers (IMO) are: Quadrantids–2014; 1d; Eta Aquariids–2013; 10d, Bright meteors are of serious hazard for space vehicles. Perseids–2014; 14d and Geminids–2014; 4d. A lot of attention has been recently paid to meteor Our calculations have shown that the average collisions N investigations in the context of the different types of of dangerous meteoroids for these showers in their hazards caused by comparatively small meteoroids. activity periods are: Furthermore, the investigation of risk distribution related Quadrantids–2014: N = (2.6 ± 0.5)10-2 km-2; to collisions of meteoroids over 1 mm in diameter with Eta Aquariids–2013: N = (2.8)10-1 km-2; space vehicles is quite important for the long-term Perseids–2014: N = (8.4 ± 0.8)10-2 km-2; forecast regarding the development of space research and Geminids–2014: N = (4.8 ± 0.8)10-2 km-2. circumterrestrial ecology problems (Beech, et al., 1997; Wiegert, Vaubaillon, 2009). Consequently, the average value of collision risk was: Considered hazardous are the meteoroids that create -2 -1 Quadrantids–2014: R = 0.03 km day ; meteors brighter than magnitude 0. -
17. a Working List of Meteor Streams
PRECEDING PAGE BLANK NOT FILMED. 17. A Working List of Meteor Streams ALLAN F. COOK Smithsonian Astrophysical Observatory Cambridge, Massachusetts HIS WORKING LIST which starts on the next is convinced do exist. It is perhaps still too corn- page has been compiled from the following prehensive in that there arc six streams with sources: activity near the threshold of detection by pho- tography not related to any known comet and (1) A selection by myself (Cook, 1973) from not sho_m to be active for as long as a decade. a list by Lindblad (1971a), which he found Unless activity can be confirmed in earlier or from a computer search among 2401 orbits of later years or unless an associated comet ap- meteors photographed by the Harvard Super- pears, these streams should probably be dropped Sehmidt cameras in New Mexico (McCrosky and from a later version of this list. The author will Posen, 1961) be much more receptive to suggestions for dele- (2) Five additional radiants found by tions from this list than he will be to suggestions McCrosky and Posen (1959) by a visual search for additions I;o it. Clear evidence that the thresh- among the radiants and velocities of the same old for visual detection of a stream has been 2401 meteors passed (as in the case of the June Lyrids) should (3) A further visual search among these qualify it for permanent inclusion. radiants and velocities by Cook, Lindblad, A comment on the matching sets of orbits is Marsden, McCrosky, and Posen (1973) in order. It is the directions of perihelion that (4) A computer search -
Meteor Shower Detection with Density-Based Clustering
Meteor Shower Detection with Density-Based Clustering Glenn Sugar1*, Althea Moorhead2, Peter Brown3, and William Cooke2 1Department of Aeronautics and Astronautics, Stanford University, Stanford, CA 94305 2NASA Meteoroid Environment Office, Marshall Space Flight Center, Huntsville, AL, 35812 3Department of Physics and Astronomy, The University of Western Ontario, London N6A3K7, Canada *Corresponding author, E-mail: [email protected] Abstract We present a new method to detect meteor showers using the Density-Based Spatial Clustering of Applications with Noise algorithm (DBSCAN; Ester et al. 1996). DBSCAN is a modern cluster detection algorithm that is well suited to the problem of extracting meteor showers from all-sky camera data because of its ability to efficiently extract clusters of different shapes and sizes from large datasets. We apply this shower detection algorithm on a dataset that contains 25,885 meteor trajectories and orbits obtained from the NASA All-Sky Fireball Network and the Southern Ontario Meteor Network (SOMN). Using a distance metric based on solar longitude, geocentric velocity, and Sun-centered ecliptic radiant, we find 25 strong cluster detections and 6 weak detections in the data, all of which are good matches to known showers. We include measurement errors in our analysis to quantify the reliability of cluster occurrence and the probability that each meteor belongs to a given cluster. We validate our method through false positive/negative analysis and with a comparison to an established shower detection algorithm. 1. Introduction A meteor shower and its stream is implicitly defined to be a group of meteoroids moving in similar orbits sharing a common parentage. -
Meteor Showers # 11.Pptx
20-05-31 Meteor Showers Adolf Vollmy Sources of Meteors • Comets • Asteroids • Reentering debris C/2019 Y4 Atlas Brett Hardy 1 20-05-31 Terminology • Meteoroid • Meteor • Meteorite • Fireball • Bolide • Sporadic • Meteor Shower • Meteor Storm Meteors in Our Atmosphere • Mesosphere • Atmospheric heating • Radiant • Zenithal Hourly Rate (ZHR) 2 20-05-31 Equipment Lounge chair Blanket or sleeping bag Hot beverage Bug repellant - ThermaCELL Camera & tripod Tracking Viewing Considerations • Preparation ! Locate constellation ! Take a nap and set alarm ! Practice photography • Location: dark & unobstructed • Time: midnight to dawn https://earthsky.org/astronomy- essentials/earthskys-meteor-shower- guide https://www.amsmeteors.org/meteor- showers/meteor-shower-calendar/ • Where to look: 50° up & 45-60° from radiant • Challenges: fatigue, cold, insects, Moon • Recording observations ! Sky map, pen, red light & clipboard ! Time, position & location ! Recording device & time piece • Binoculars Getty 3 20-05-31 Meteor Showers • 112 confirmed meteor showers • 695 awaiting confirmation • Naming Convention ! C/2019 Y4 (Atlas) ! (3200) Phaethon June Tau Herculids (m) Parent body: 73P/Schwassmann-Wachmann Peak: June 2 – ZHR = 3 Slow moving – 15 km/s Moon: Waning Gibbous June Bootids (m) Parent body: 7p/Pons-Winnecke Peak: June 27– ZHR = variable Slow moving – 14 km/s Moon: Waxing Crescent Perseid by Brian Colville 4 20-05-31 July Delta Aquarids Parent body: 96P/Machholz Peak: July 28 – ZHR = 20 Intermediate moving – 41 km/s Moon: Waxing Gibbous Alpha -
Smithsonian Contributions Astrophysics
SMITHSONIAN CONTRIBUTIONS to ASTROPHYSICS Number 14 Discrete Levels off Beginning Height off Meteors in Streams By A. F. Cook Number 15 Yet Another Stream Search Among 2401 Photographic Meteors By A. F. Cook, B.-A. Lindblad, B. G. Marsden, R. E. McCrosky, and A. Posen Smithsonian Institution Astrophysical Observatory Smithsonian Institution Press SMITHSONIAN CONTRIBUTIONS TO ASTROPHYSICS NUMBER 14 A. F. cook Discrete Levels of Beginning Height of Meteors in Streams SMITHSONIAN INSTITUTION PRESS CITY OF WASHINGTON 1973 Publications of the Smithsonian Institution Astrophysical Observatory This series, Smithsonian Contributions to Astrophysics, was inaugurated in 1956 to provide a proper communication for the results of research conducted at the Astrophysical Observatory of the Smithsonian Institution. Its purpose is the "increase and diffusion of knowledge" in the field of astrophysics, with particular emphasis on problems of the sun, the earth, and the solar system. Its pages are open to a limited number of papers by other investigators with whom we have common interests. Another series, Annals of the Astrophysical Observatory, was started in 1900 by the Observa- tory's first director, Samuel P. Langley, and was published about every ten years. These quarto volumes, some of which are still available, record the history of the Observatory's researches and activities. The last volume (vol. 7) appeared in 1954. Many technical papers and volumes emanating from the Astrophysical Observatory have appeared in the Smithsonian Miscellaneous Collections. Among these are Smithsonian Physical Tables, Smithsonian Meteorological Tables, and World Weather Records. Additional information concerning these publications can be obtained from the Smithsonian Institution Press, Smithsonian Institution, Washington, D.C. -
The 2019 Meteor Shower Activity Forecast for Low Earth Orbit 1 Overview
NASA METEOROID ENVIRONMENT OFFICE The 2019 meteor shower activity forecast for low Earth orbit Issued 15 October 2018 The purpose of this document is to provide a forecast of major meteor shower activity in low Earth orbit. Several meteor showers – the Draconids, Perseids, eta Aquariids, Orionids, and potentially the Androme- dids – are predicted to exhibit increased rates in 2019. However, no storms (meteor showers with visual rates exceeding 1000 [1, 2]) are predicted. 1 Overview Both the MSFC stream model [3] and the Egal et al. Draconid model [4] predict a second Draconid outburst in 2019. The 2019 Draconids are expected to have nearly the same level of activity as the 2018 Draconids, which reached a zenithal hourly rate (or ZHR) of about 100. Twin outbursts also occurred in 2011 and 2012 [5, 6]. The Perseids, eta Aquariids, and Orionids are expected to show mild enhancements over their baseline activity level in 2019. The Perseids are expected to be slightly more active in 2019 than in 2018, with a peak ZHR around 112. The eta Aquariids and Orionids, which belong to a single meteoroid stream generated by comet 1P/Halley, are thought to have a 12-year activity cycle and are currently increasing in activity from year to year. A review of eta Aquariid literature [7, 8, 9, 10] also indicates that the overall activity level is higher than previously believed, and this is reflected in higher forecasted rates (a ZHR of 75) and fluxes for this shower. We may see enhanced beta Taurid activity in 2019. The beta Taurids are part of the same stream as the Northern and Southern Taurids but produce daytime meteors. -
Proceedings of the International Meteor Conference La Palma, Canary Islands, Spain 20–23 September, 2012
ISBN 978-2-87355-024-4 Proceedings of the International Meteor Conference La Palma, Canary Islands, Spain 20–23 September, 2012 Published by the International Meteor Organization 2013 Edited by Marc Gyssens and Paul Roggemans Proceedings of the International Meteor Conference La Palma, Canary Islands, Spain, 20–23 September, 2012 International Meteor Organization ISBN 978-2-87355-024-4 Copyright notices c 2013 The International Meteor Organization The copyright of papers in this publication remains with the authors. It is the aim of the IMO to increase the spread of scientific information, not to restrict it. When material is submitted to the IMO for publication, this is taken as indicating that the author(s) grant(s) permission for the IMO to publish this material any number of times, in any format(s), without payment. This permission is taken as covering rights to reproduce both the content of the material and its form and appearance, including images and typesetting. Formats may include paper and electronically readable storage media. Other than these conditions, all rights remain with the author(s). When material is submitted for publication, this is also taken as indicating that the author(s) claim(s) the right to grant the permissions described above. The reader is granted permission to make unaltered copies of any part of the document for personal use, as well as for non-commercial and unpaid sharing of the information with third parties, provided the source and publisher are mentioned. For any other type of copying or distribution, prior written permission from the publisher is mandatory. -
David Levy's Guide to the Night Sky Da
Cambridge University Press 0521797535 - David Levy’s Guide to the Night Sky David H. Levy Index More information INDEX AAVSO, 200–201, 331, 332 binoculars, 57–59 absolute magnitudes, 36 Bobrovnikoff method, estimating comet Adams, John Couch, 156 brightness, 178 aetheria darkening, 138 Bode, Johann, 163 Alcock, George, 44, 185 Bode’s Law, 163–165 Algol, 325 Brahe, Tycho, 81 aligning, 67 Brasch, Klaus, 126 Alpha Capricornids, 47 Brashear, John, 60 altazimuth, 62, 65 bright nebulae, 232–233 altitude, 67 Brooks, William, 182 Amalthea, 111 Burnham, Sherbourne Wesley, 193 amateur astronomy, introduced, xvii, xviii Andromedids, 48, 49, 68 Callisto, 111, 119, 121 Antoniadi, Eugenios, 112 Carrington, Christopher, 103 aphelic oppositions, 134 Cassini spacecraft, 130 aphelion, 134 Cassini, Giovanni, 81, 124 apochromat, 60 Cassini’s Division, 124, 125 apparent magnitude, 36 CCD technology, 275–280 apparitions, of comets, 134, 135 CCDs, for astrometry, 283 Arago, Francois, 156 Celestial Police, 163–164 Ariel, 159 celestial equator, 8 ashen light, Venus, 152 Central Bureau for Astronomical Association of Lunar and Planetary Telegrams,120, 121, 186–187, 280 Observers, 331, 332 Challis, James, 156 Asteroids, 163–172 Chapman, Clark, 170 naming of, 165–166 Chaucer, Geoffrey, 318 Astronomical League, 333 chromosphere, 293 astrophotography, 262 Clark, Alvin, 60 Aurigids, 46 Clavius, Christopher, 82 Aurora, 28–33 Collins, Peter, 158, 217 Auroral Data Center in the US, 29 Coma Berenicids, 50 averted vision, 41 comets, 172–189, 294 azimuth, 67 Arend–Roland, 43 Biela, 49, 68 Baker, Lonny, xxii Bradfield, 69 Barnard, E. E. 111, 181–182 Denning–Fujikawa, 181 Beyer method, estimating comet brightness, Encke, 49, 175 179 Giacobini–Zinner, 48 Beyond the Observatory (Shapley), 35 Halley, 44, 46, 48, 55, 78, 175, 225 big bang, 65 Hartley–IRAS, 175 339 © Cambridge University Press www.cambridge.org Cambridge University Press 0521797535 - David Levy’s Guide to the Night Sky David H. -
PROBING the DEAD COMETS THAT CAUSE OUR METEOR SHOWERS. P. Jenniskens, SETI Insti- Tute (515 N. Whisman Road, Mountain View, CA 94043; [email protected])
Spacecraft Reconnaissance of Asteroid and Comet Interiors (2006) 3036.pdf PROBING THE DEAD COMETS THAT CAUSE OUR METEOR SHOWERS. P. Jenniskens, SETI Insti- tute (515 N. Whisman Road, Mountain View, CA 94043; [email protected]). Introduction: In recent years, a number of mi- the lack of current activity of 2003 EH1, the nor planets have been identified that are the par- stream was probably formed in a fragmentation ent bodies of meteor showers on Earth. These event about 500 years ago. Chinese observers are extinct or mostly-dormant comets. They make noticed a comet in A.D. 1490/91 (C/1490 Y1) that interesting targets for spacecraft reconnaissance, could have marked the moment that the stream because they are impact hazards to our planet. was formed. These Near-Earth Objects have the low tensile In 2005, a small minor planet 2003 WY25 was strength of comets but, due to their low activity, discovered to move in the orbit of comet D/1819 they are safer to approach and study than volatile W1 (Blanpain). This formerly lost comet was only rich active Jupiter-family comets. More over, fly- seen in 1819. A meteor outburst was observed in by missions can be complimented by studies of 1956, the meteoroids of which were traced back elemental composition and morphology of the to a fragmentation event in or shortly before 1819 dust from meteor shower observations. [3]. It was subsequently found that 2003 WY25 Meteor shower parent bodies: The first object had been weakly active when it passed perihelion of this kind was identified by Fred Whipple in [4]. -
3D/Biela and the Andromedids: Fragmenting Versus Sublimating Comets P
The Astronomical Journal, 134:1037 Y 1045, 2007 September # 2007. The American Astronomical Society. All rights reserved. Printed in U.S.A. 3D/BIELA AND THE ANDROMEDIDS: FRAGMENTING VERSUS SUBLIMATING COMETS P. Jenniskens1 and J. Vaubaillon2 Received 2007 January 3; accepted 2007 April 22 ABSTRACT Comet 3D/Biela broke up in 1842/1843 and continued to disintegrate in the returns of 1846 and 1852. When meteor storms were observed in November of 1872 and 1885, it was surmised that those showers were the debris from that breakup. This could have come from one of two sources: (1) the initial separation of fragments near aphelion or (2) the continued disintegration of the fragments afterward. Alternatively, the meteoroids could simply have come from water vapor drag when the fragments approached perihelion (option 3). We investigated the source of the Andromedid storms by calculating the dynamical evolution of dust ejected in a normal manner by water vapor drag in the returns from 1703 to 1866, assuming that the comet would have remained similarly active over each return. In addition, we simulated the isotropic ejection of dust during the initial fragmentation event at aphelion in December of 1842. We conclude that option 2 is the most likely source of meteoroids encountered during the 1872 and 1885 storms, but this accounts for only a relatively small amount of mass lost in a typical comet breakup. Key words: comets: individual (3D/Biela) — meteors, meteoroids — minor planets, asteroids 1. INTRODUCTION 2. THE COMET AND ITS SHOWER Ever since Whipple (1951) showed that water vapor can ac- 2.1.