Neuroinflammatory Mechanisms of Post-Traumatic Epilepsy

Total Page:16

File Type:pdf, Size:1020Kb

Neuroinflammatory Mechanisms of Post-Traumatic Epilepsy Mukherjee et al. Journal of Neuroinflammation (2020) 17:193 https://doi.org/10.1186/s12974-020-01854-w REVIEW Open Access Neuroinflammatory mechanisms of post- traumatic epilepsy Sanjib Mukherjee1†, Gabriel M. Arisi2*†, Kaley Mims3, Gabriela Hollingsworth3, Katherine O’Neil3 and Lee A. Shapiro1* Abstract Background: Traumatic brain injury (TBI) occurs in as many as 64–74 million people worldwide each year and often results in one or more post-traumatic syndromes, including depression, cognitive, emotional, and behavioral deficits. TBI can also increase seizure susceptibility, as well as increase the incidence of epilepsy, a phenomenon known as post-traumatic epilepsy (PTE). Injury type and severity appear to partially predict PTE susceptibility. However, a complete mechanistic understanding of risk factors for PTE is incomplete. Main body: From the earliest days of modern neuroscience, to the present day, accumulating evidence supports a significant role for neuroinflammation in the post-traumatic epileptogenic progression. Notably, substantial evidence indicates a role for astrocytes, microglia, chemokines, and cytokines in PTE progression. Although each of these mechanistic components is discussed in separate sections, it is highly likely that it is the totality of cellular and neuroinflammatory interactions that ultimately contribute to the epileptogenic progression following TBI. Conclusion: This comprehensive review focuses on the neuroinflammatory milieu and explores putative mechanisms involved in the epileptogenic progression from TBI to increased seizure-susceptibility and the development of PTE. Keywords: Traumatic brain injury, TBI, Astrocytes, Microglia, Cytokines, Chemokines, Epileptogenesis, Inflammation Introduction are lacking, as is a clear mechanistic understanding of Traumatic brain injury (TBI) occurs in as many as 64-74 the epileptogenic factors that may contribute to the on- million people worldwide each year [1]. TBI severity set of PTE. ranges from mild to severe, and may cause post- While injury type and severity appear to partially pre- traumatic syndromes, including depression, cognitive, dict PTE susceptibility, similar injuries in people do not emotional, and behavioral deficits. TBI may also cause always cause PTE [2]. Lesion location may influence the post-traumatic seizures (PTS), increase seizure risk of PTE, as temporal lobe lesions following TBI are susceptibility and increase the incidence of epilepsy, a related to both a high incidence of early seizures and phenomenon known as post-traumatic epilepsy (PTE). longitudinal development of PTE [3]. Penetrating lesions Despite intensive research, biomarkers and treatments in motor areas and the parietal lobe are also associated with an increased risk of PTE [4]. Importantly, some risk factors have been suggested to be neuropathologically * Correspondence: [email protected]; [email protected] †Sanjib Mukherjee and Gabriel M. Arisi contributed equally to this work. relevant in PTE development in humans, such as age, 2Department of Physiology, Federal University of Sao Paulo – Escola Paulista early seizures after TBI, and trauma severity [5]. de Medicina, Sao Paulo, Brazil Following TBI, a neuroinflammatory response is rap- 1Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX, USA idly initiated and mounting evidence from human and Full list of author information is available at the end of the article animal studies support a pro-epileptogenic role of the © The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data. Mukherjee et al. Journal of Neuroinflammation (2020) 17:193 Page 2 of 11 neuroinflammatory response in the development of PTE seizure medications like levetiracetam and phenytoin [6]. In general, following TBI, there is a rapid release of [32], such treatments do not necessarily ameliorate the inflammatory cytokines, chemokines and complement risk to develop PTE [33, 34]. Recurrent spontaneous sei- proteins. This immune response signals a variety of zures that define PTE are resistant to anti-epileptic treat- cellular mediators and also can initiate the acute phase ments in about one-third of patients [34–36], and the response [7–13]. Following these signals, astrocytes and side-effects from anti-epileptic drugs are found to be resident microglial cells are induced to become acti- more severe in PTE patients [37]. Thus, understanding vated, proliferate, and migrate to the injury site [14, 15]. the pro-epileptogenic mechanisms of TBI is vital for the Peripheral immune cells are also described to infiltrate diagnosis and treatment of PTE and for improving into the brain in response to TBI. Once this immune/ quality-of-life measures in these patients. neuroimmune response is activated to re-establish tissue homeostasis, these immune cells remove debris and Astrocytes and PTE: support cell, inflammatory identify potentially pathogenic signaling. Interestingly, mediator, or pathological nexus? while the most intense neuroinflammatory response Transformative studies have re-defined the classical role occurs relatively early (within hours and days after the of astrocytes in the brain. Astrocytes were initially con- injury), a low-level of neuroinflammation often chronic- sidered to be primarily support cells [38], sub serving ally persists [14, 16–20]. Both the acute/early and the neuronal function and helping to maintain brain homeo- chronic neuroinflammation have been implicated in stasis. Although there was early recognition of the role epileptogenesis, and herein, the evidence for pro- of astrocytes in the response to injury [21], in the de- epileptogenic contributions of neuroinflammation will cades since, the extensive roles that astrocytes play in be reviewed. the pathogenic inflammatory response continues to be Some of the earliest neuropathological reports recog- appreciated and explored [39]. Thus, it is abundantly nized that a progressive gliosis at the site of a brain clear, that far from their classification as merely support injury was a major component of the development of an cells, astrocytes are actively and directly involved in mul- epileptogenic focus [4, 21]. Accumulating evidence con- tiple aspects of neuronal function. tinues to support glial scarring and other neuroinflam- Astrocytes are the most abundant cell type in the brain matory mechanisms in PTE. In 2004, the founding of [40] and are now known to be involved in regulating ion the Journal of Neuroinflammation by Drs. Sue T. Griffin homeostasis, maintaining blood-brain barrier function, and Robert E. Mrak, provided a platform that sparked a metabolizing neurotransmitters, as well as providing reinvigorated focus on mechanisms of neuroinflamma- nutrient and energy support for neuronal function. tion in neuropathological disorders. To pay tribute to Astrocytes are key components in learning and memory, Dr. Mrak’s role in ushering in a new era of neuroscience, sleep, and other fundamental brain functions [41, 42] an overarching review of neuroinflammation following and are important components of the neuroinflamma- TBI is discussed, with a specific focus on neuroinflam- tory response. matory mechanisms that can promote seizures, epilepto- Astrocytes play a key role in regulating neuronal activ- genesis and the development of PTE. ity, energizing neuronal metabolism by exchanging neur- onal pyruvate for astrocytic lactate, and increasing Etiology and incidence of PTE NADH levels in neurons [43]. Astrocytes are active in The incidence of epilepsy is estimated to be approxi- neuronal information processing, and their processes en- mately 0.5–2% of the general population. This incidence velop thousands of synapses to control neuronal activity rate increases to approximately 5–7% in patients who through neurotransmitter uptake and release [41, 42]. experienced a precipitating head injury [22–24] and/or Astrocytes also regulate the availability of glutamate and have been hospitalized for TBI [2, 25, 26]. A greater in- GABA in the synaptic cleft, thereby modulating synaptic jury severity has been correlated with a higher PTE risk transmission [44–46]. Thus, there are numerous [27], and this risk increases up to 10-fold in military pa- mechanisms by which astrocytes might contribute to tients with penetrating head wounds. At the extreme, post-traumatic epileptogenesis. Here, we focus on those some estimates have suggested that the incidence of mechanisms that are related to neuroinflammation.
Recommended publications
  • CRF Mediates Stress-Induced Pathophysiological High-Frequency Oscillations in Traumatic Brain Injury
    New Research Disorders of the Nervous System CRF Mediates Stress-Induced Pathophysiological High-Frequency Oscillations in Traumatic Brain Injury Chakravarthi Narla,1 Paul S. Jung,1 Francisco Bautista Cruz,1 Michelle Everest,1 Julio Martinez-Trujillo,1 and Michael O. Poulter1 https://doi.org/10.1523/ENEURO.0334-18.2019 1Robarts Research Institute, Schulich School of Medicine, University of Western Ontario, London, Ontario N6A 5K8, Canada Abstract It is not known why there is increased risk to have seizures with increased anxiety and stress after traumatic brain injury (TBI). Stressors cause the release of corticotropin-releasing factor (CRF) both from the hypothalamic pituitary adrenal (HPA) axis and from CNS neurons located in the central amygdala and GABAergic interneurons. We have previously shown that CRF signaling is plastic, becoming excitatory instead of inhibitory after the kindling model of epilepsy. Here, using Sprague Dawley rats we have found that CRF signaling increased excitability after TBI. Following TBI, CRF type 1 receptor (CRFR1)-mediated activity caused abnormally large electrical responses in the amygdala, including fast ripples, which are considered to be epileptogenic. After TBI, we also found the ripple (120–250 Hz) and fast ripple activity (Ͼ250 Hz) was cross-frequency coupled with ␪ (3–8 Hz) oscillations. CRFR1 antagonists reduced the incidence of phase coupling between ripples and fast ripples. Our observations indicate that pathophysiological signaling of the CRFR1 increases the incidence of epileptiform activity after TBI. The use for CRFR1 antagonist may be useful to reduce the severity and frequency of TBI associated epileptic seizures. Key words: traumatic brain injury; stress; voltage sensitive dye imaging ripples; epilepsy; rat Significance Statement The combination of traumatic brain injury (TBI) and stress is known to increase the likelihood of posttrau- matic epilepsy (PTE).
    [Show full text]
  • The Kainic Acid Models of Temporal Lobe Epilepsy
    Review | Disorders of the Nervous System The Kainic acid models of Temporal Lobe Epilepsy https://doi.org/10.1523/ENEURO.0337-20.2021 Cite as: eNeuro 2021; 10.1523/ENEURO.0337-20.2021 Received: 3 August 2020 Revised: 14 January 2021 Accepted: 24 January 2021 This Early Release article has been peer-reviewed and accepted, but has not been through the composition and copyediting processes. The final version may differ slightly in style or formatting and will contain links to any extended data. Alerts: Sign up at www.eneuro.org/alerts to receive customized email alerts when the fully formatted version of this article is published. Copyright © 2021 Rusina et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license, which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed. 1 2 Manuscript Title Page 3 1. Manuscript title: The Kainic acid models of Temporal Lobe Epilepsy 4 2. Abbreviated title: Kainic Acid Review in Epilepsy: Perspective 5 3. Author list: 6 • Evgeniia Rusina*1 7 • Christophe Bernard*1 8 • AdamWilliamson1,2 9 1Institute de Neurosciences des Systèmes (INS), INSERM, UMR_1106, Aix-Marseille Uni 10 versité, 27 Bd Jean Moulin 13005, Marseille, France 11 2Laboratory of Organic Electronics, Campus Norrköping, Linköping University, 581 83, 12 Norrköping, Sweden 13 4. Author contribution: AW conceived the idea; ER and CB wrote the paper; ER* and CB* are 14 equally first contributing authors. 15 5. Correspondence should be addressed to [email protected] 16 Faculté de Médecine, 27 Boulevard Jean Moulin, 13005, Marseille, France 17 6.
    [Show full text]
  • Animal Models of Metabolic Epilepsy and Epilepsy Associated Metabolic Dysfunction: a Systematic Review
    pharmaceuticals Review Animal Models of Metabolic Epilepsy and Epilepsy Associated Metabolic Dysfunction: A Systematic Review Uday Praful Kundap 1,2 , Yam Nath Paudel 1 and Mohd. Farooq Shaikh 2,* 1 Research Center of the University of Montreal Hospital Center (CRCHUM), Department of Neurosciences, Université de Montréal, Montréal, QC H2X 0A9, Canada; [email protected] (U.P.K.); [email protected] (Y.N.P.) 2 Neuropharmacology Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor 47500, Malaysia * Correspondence: [email protected]; Tel.: +60-3-551-44-483 Received: 8 May 2020; Accepted: 23 May 2020; Published: 26 May 2020 Abstract: Epilepsy is a serious neurological disorder affecting around 70 million people globally and is characterized by spontaneous recurrent seizures. Recent evidence indicates that dysfunction in metabolic processes can lead to the alteration of neuronal and network excitability, thereby contributing to epileptogenesis. Developing a suitable animal model that can recapitulate all the clinical phenotypes of human metabolic epilepsy (ME) is crucial yet challenging. The specific environment of many symptoms as well as the primary state of the applicable neurobiology, genetics, and lack of valid biomarkers/diagnostic tests are the key factors that hinder the process of developing a suitable animal model. The present systematic review summarizes the current state of available animal models of metabolic dysfunction associated with epileptic disorders. A systematic search was performed by using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) model. A range of electronic databases, including google scholar, Springer, PubMed, ScienceDirect, and Scopus, were scanned between January 2000 and April 2020.
    [Show full text]
  • Afterdischarge Threshold Reouction in the Kindling
    AFTERDISCHARGETHRESHOLD REOUCTION IN THE KINDLINGMODEL OF EPILEPSY Min-Sun Mark Ng A thesis submitted in conformity with the Requirernents for the degree of Master of Science Graduate Department of Pharmacology University of Toronto @ Copyright by Min-Sun Mark Ng (1 997) National Library Bibliothèque nationale I*I of Canada du Canada Acquisitions and Acquisitions et Bibliographie Services services bibliographiques 395 Wellington Street 395. nie Wellington Ottawa ON KIA ON4 Ottawa ON KIA ON4 canada Canada The author has granted a non- L'auteur a accordé une Licence non exclusive licence allowing the exclusive permettant a la National Library of Canada to Bibliothèque nationale du Canada de reproduce, loan, distribute or seil reproduire, prêter, distribuer ou copies of this thesis in rnicroform, vendre des copies de cette thèse sous paper or electronic formats. la forme de rnicrofiche/film, de reproduction sur papier ou sur format électronique. The author retains ownership of the L'auteur conserve la propriété du copyright in ths thesis. Neither the droit d'auteur qui protège cette thèse. thesis nor substantial extracts fkom it Ni la thèse ni des extraits substantiels may be printed or otherwise de celle-ci ne doivent être imprimés reproduced without the author's ou autrement reproduits sans son permission. automation. ABSTRACT Afterdischarge threshold (ADT) changes were studied in the amygdala kindling mode1 of epilepsy. Racine (1972a) reported that electrical stimulation lowers the ADT in amygdala-kindled rats, and that the presence of electrodes alone has no effect. More recently, however, Loscher et al. (1993. 1995) have produced data that suggest that ADT drop results from the presence of electrodes alone and that electrical stimulation may have no effect on ADTs.
    [Show full text]
  • Targeting Neurodegeneration to Prevent Post-Traumatic Epilepsy T Idrish Alia,B, Juliana C
    Neurobiology of Disease 123 (2019) 100–109 Contents lists available at ScienceDirect Neurobiology of Disease journal homepage: www.elsevier.com/locate/ynbdi Review Targeting neurodegeneration to prevent post-traumatic epilepsy T Idrish Alia,b, Juliana C. Silvaa,b, Shijie Liua,b, Sandy R. Shultza,b, Patrick Kwana,b, ⁎ Nigel C. Jonesa,b, Terence J. O'Briena,b, a Department of Neuroscience, Central Clinical School, Monash University, The Alfred Hospital, Melbourne, Australia b Department of Medicine (Royal Melbourne Hospital), The University of Melbourne, Melbourne, Australia ARTICLE INFO ABSTRACT Keywords: In the quest for developing new therapeutic targets for post-traumatic epilepsies (PTE), identifying mechanisms Neurodegeneration relevant to development and progression of disease is critical. A growing body of literature suggests involvement Tauopathies of neurodegenerative mechanisms in the pathophysiology of acquired epilepsies, including following traumatic β amyloid brain injury (TBI). In this review, we discuss the potential of some of these mechanisms to be targets for the Neuroinflammation development of a therapy against PTE. Traumatic brain injury Post-traumatic epilepsy 1. Introduction In the quest to develop antiepileptic treatments that are disease- modifying - as opposed to those providing only symptomatic relief - it is Epilepsy is a common chronic group of neurological disorders that is necessary to identify new biological targets that are critical to the de- characterized by the occurrence of recurrent unprovoked seizures. Post- velopment and maintenance of the epileptic state. In this regard, new traumatic epilepsy (PTE) accounts for up to 20% of epilepsies due to an insights can be obtained from the overlapping mechanisms of neuro- identifiable acquired cause, i.e.
    [Show full text]
  • Synaptic Vesicle Glycoprotein 2A Ligands in the Treatment of Epilepsy and Beyond
    CNS Drugs DOI 10.1007/s40263-016-0384-x REVIEW ARTICLE Synaptic Vesicle Glycoprotein 2A Ligands in the Treatment of Epilepsy and Beyond 1,2 3 3 3 Wolfgang Lo¨scher • Michel Gillard • Zara A. Sands • Rafal M. Kaminski • Henrik Klitgaard3 Ó The Author(s) 2016. This article is published with open access at Springerlink.com Abstract The synaptic vesicle glycoprotein SV2A belongs to understanding of its role in epilepsy and other neurological the major facilitator superfamily (MFS) of transporters and is an diseases, aiding in further defining the full therapeutic potential integral constituent of synaptic vesicle membranes. SV2A has of SV2A modulation. been demonstrated to be involved in vesicle trafficking and exocytosis, processes crucial for neurotransmission. The anti- seizure drug levetiracetam was the first ligand to target SV2A Key Points and displays a broad spectrum of anti-seizure activity in various preclinical models. Several lines of preclinical and clinical Synaptic vesicle glycoprotein SV2A is involved in evidence, including genetics and protein expression changes, vesicle trafficking and exocytosis, and appears to support an important role of SV2A in epilepsy pathophysiol- exert a role in epilepsy pathophysiology. ogy. While the functional consequences of SV2A ligand binding are not fully elucidated, studies suggest that subsequent Levetiracetam was the first anti-seizure drug to target SV2A conformational changes may contribute to seizure pro- SV2A, followed by brivaracetam, which selectively tection. Conversely, the recently discovered negative SV2A targets SV2A. modulators, such as UCB0255, counteract the anti-seizure SV2A and its isoforms, SV2B and SV2C, may also effect of levetiracetam and display procognitive properties in be involved in the pathogenesis of other preclinical models.
    [Show full text]
  • Post-Traumatic Epilepsy and Treatment
    Post-Traumatic Epilepsy and Treatment James W.Y. Chen, M.D, Ph.D. Director, WLAVA Epilepsy Center of Excellence Associate Professor of Neurology, UCLA Staff Neurologist, VAGLAHS May 2, 2012 Friday, April 27, 12 Phineas P. Gage: PTE and SE 1848 Friday, April 27, 12 Introduction of PTE o a major long-term complication of traumatic brain injury (TBI) o usually develops within 5 years of head injury o may not be present during the initial rehabilitation o risk for developing post-traumatic epilepsy (PTE) varies with the type of TBI Friday, April 27, 12 Risk of Developing PTE o between 10-25% in combat associated closed-head trauma with positive brain imaging o about 5% in moderately severe closed- head injury without imaging finding o about 53% in Korean and Vietnam War veterans with penetrating brain injuries o unknown risk for OIF/OEF veterans with minimal TBI due to blast exposure, but could be around 1% o unknown whether repeated minimal TBI increases the risk of PTE Friday, April 27, 12 Important Issues of PTE o d/d of complex partial seizure vs. Posttraumatic stress disorder o Accidents: drowning, burning, aspiration, fractures o medical complications: pneumonia, hypertension, hypoxia, cardiac arrhythmias o SUDEP, sudden unexpected death in epilepsy o seizures becomes refractory to medical treatment years after TBI. Friday, April 27, 12 Social Consequences of PTE o social stigma that compromises patients’ re-integration into society o driving issue and maintaining employment o optimal seizure control is essential to the physical and emotional health of patients with TBI Friday, April 27, 12 Definition of PTE o two or more unprovoked seizures after a head injury o seizures that occur within the first 7 days after TBI are defined as provoked seizures o The pathogenesis, clinical presentation and long-term outcome of provoked and unprovoked seizures may be different.
    [Show full text]