RCBTB2 (NM 001268) Human Recombinant Protein – TP306560

Total Page:16

File Type:pdf, Size:1020Kb

RCBTB2 (NM 001268) Human Recombinant Protein – TP306560 OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for TP306560 RCBTB2 (NM_001268) Human Recombinant Protein Product data: Product Type: Recombinant Proteins Description: Recombinant protein of human regulator of chromosome condensation (RCC1) and BTB (POZ) domain containing protein 2 (RCBTB2) Species: Human Expression Host: HEK293T Tag: C-Myc/DDK Predicted MW: 60.1 kDa Concentration: >50 ug/mL as determined by microplate BCA method Purity: > 80% as determined by SDS-PAGE and Coomassie blue staining Buffer: 25 mM Tris.HCl, pH 7.3, 100 mM glycine, 10% glycerol Preparation: Recombinant protein was captured through anti-DDK affinity column followed by conventional chromatography steps. Storage: Store at -80°C. Stability: Stable for 12 months from the date of receipt of the product under proper storage and handling conditions. Avoid repeated freeze-thaw cycles. RefSeq: NP_001259 Locus ID: 1102 UniProt ID: O95199 RefSeq Size: 3280 Cytogenetics: 13q14.2 RefSeq ORF: 1653 Synonyms: CHC1L; RLG Summary: This gene encodes a protein containing two C-terminal BTB/POZ domains that is related to regulator of chromosome condensation (RCC). The encoded protein may act as a guanine nucleotide exchange factor. This gene is observed to be lost or underexpressed in prostate cancers. There is a pseudogene of this gene on chromosome 10. Alternative splicing results in multiple transcript variants. [provided by RefSeq, Nov 2013] This product is to be used for laboratory only. Not for diagnostic or therapeutic use. View online » ©2021 OriGene Technologies, Inc., 9620 Medical Center Drive, Ste 200, Rockville, MD 20850, US 1 / 2 RCBTB2 (NM_001268) Human Recombinant Protein – TP306560 Product images: Coomassie blue staining of purified RCBTB2 protein (Cat# TP306560). The protein was produced from HEK293T cells transfected with RCBTB2 cDNA clone (Cat# [RC206560]) using MegaTran 2.0 (Cat# [TT210002]). This product is to be used for laboratory only. Not for diagnostic or therapeutic use. ©2021 OriGene Technologies, Inc., 9620 Medical Center Drive, Ste 200, Rockville, MD 20850, US 2 / 2.
Recommended publications
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Goat Anti-RCBTB2 Antibody Size: 100Μg Specific Antibody in 200Μl
    EB09067 - Goat Anti-RCBTB2 Antibody Size: 100µg specific antibody in 200µl Target Protein Principal Names: RCBTB2, regulator of chromosome condensation (RCC1) and BTB (POZ) domain containing protein 2, CHC1L, OTTHUMP00000018399, RCC1-like G UK Office exchanging factor RLG, chromosome condensation 1-like, regulator of chromosome condensation and BTB domain containing protein 2 Everest Biotech Ltd Official Symbol: RCBTB2 Cherwell Innovation Centre Accession Number(s): NP_001259.1 77 Heyford Park Human GeneID(s): 1102 Upper Heyford Non-Human GeneID(s): 105670 (mouse), 290363 (rat) Oxfordshire Important Comments: This antibody is not expected to cross-react with RCBTB1. OX25 5HD UK Immunogen Peptide with sequence CEHFRSSLEDNEDD, from the internal region of the protein Enquiries: sequence according to NP_001259.1. [email protected] Sales: Please note the peptide is available for sale. [email protected] Tech support: Purification and Storage [email protected] Purified from goat serum by ammonium sulphate precipitation followed by antigen affinity chromatography using the immunizing peptide. Tel: +44 (0)1869 238326 Supplied at 0.5 mg/ml in Tris saline, 0.02% sodium azide, pH7.3 with 0.5% bovine serum Fax: +44 (0)1869 238327 albumin. Aliquot and store at -20°C. Minimize freezing and thawing. US Office Everest Biotech c/o Abcore Applications Tested 405 Maple Street, Suite A106 Peptide ELISA: antibody detection limit dilution 1:2000. Ramona, Western blot: Preliminary experiments gave an approx. 30kDa band in Human Liver, CA 92065 Lung and Tonsil lysates after 1µg/ml antibody staining. Please note that currently we USA cannot find an explanation in the literature for the band we observe given the calculated size of 60.3kDa according to NP_001259.1.
    [Show full text]
  • Rangap1 Induces Gtpase Activity of Nuclear Ras-Related Ran (Gtpase-Activating Protein/Rccl/TC4/G2 Checkpoint) F
    Proc. Nati. Acad. Sci. USA Vol. 91, pp. 2587-2591, March 1994 Biochemistry RanGAP1 induces GTPase activity of nuclear Ras-related Ran (GTPase-activating protein/RCCl/TC4/G2 checkpoint) F. RALF BISCHOFF*t, CHRISTIAN KLEBEt, JURGEN KRETSCHMER*, ALFRED WITrINGHOFERt, AND HERWIG PONSTINGL* *Division for Molecular Biology of Mitosis, German Cancer Research Center, D-69120 Heidelberg, Federal Republic of Germany; and *Abteilung Strukturelle Biologie, Max-Planck-Institut ffr Molekulare Physiologie, D-44139 Dortmund, Federal Republic of Germany Communicated by Hans Neurath, December 3, 1993 ABSTRACT The nuclear Ras-related protein Ran binds DMAE-650/M (Merck; Superformance, 26 x 115 mm) in 20 guanine nucleotide and is involved in cell cycle regulation. mM Bis-Tris-propane HCl, pH 7.0/1 mM DTT with a linear Models of the signal pathway predict Ran to be active as gradient of NaCl from 0.05 M to 1 M at a flow rate of 5 Ran GTP at the initiation of S phase upon activation by the ml/min. Fractions containing RanGAP were pooled and nucleotide exchange factor RCC1 and to be inactivated for the immediately applied to a hydroxylapatite column (Merck; onset of mitosis by hydrolysis of bound GTP. Here a nuclear Superformance, 10 x 150 mm) in 20 mM potassium phos- homodimeric 65-kDa protein, RanGAPl, is described, which phate, pH 7.0/1 mM DTT, with a linear gradient from 20 mM we believe to be the immediate antagonist of RCC1. It was to 1 M phosphate at a flow rate of 2 ml/min. To fractions purified from HeLa cell lysates and induces GTPase activity of containing RanGAP, ammonium sulfate in 20 mM Bis-Tris- Ran, but not Ras, by more than 3 orders of magnitude.
    [Show full text]
  • Association of Gene Ontology Categories with Decay Rate for Hepg2 Experiments These Tables Show Details for All Gene Ontology Categories
    Supplementary Table 1: Association of Gene Ontology Categories with Decay Rate for HepG2 Experiments These tables show details for all Gene Ontology categories. Inferences for manual classification scheme shown at the bottom. Those categories used in Figure 1A are highlighted in bold. Standard Deviations are shown in parentheses. P-values less than 1E-20 are indicated with a "0". Rate r (hour^-1) Half-life < 2hr. Decay % GO Number Category Name Probe Sets Group Non-Group Distribution p-value In-Group Non-Group Representation p-value GO:0006350 transcription 1523 0.221 (0.009) 0.127 (0.002) FASTER 0 13.1 (0.4) 4.5 (0.1) OVER 0 GO:0006351 transcription, DNA-dependent 1498 0.220 (0.009) 0.127 (0.002) FASTER 0 13.0 (0.4) 4.5 (0.1) OVER 0 GO:0006355 regulation of transcription, DNA-dependent 1163 0.230 (0.011) 0.128 (0.002) FASTER 5.00E-21 14.2 (0.5) 4.6 (0.1) OVER 0 GO:0006366 transcription from Pol II promoter 845 0.225 (0.012) 0.130 (0.002) FASTER 1.88E-14 13.0 (0.5) 4.8 (0.1) OVER 0 GO:0006139 nucleobase, nucleoside, nucleotide and nucleic acid metabolism3004 0.173 (0.006) 0.127 (0.002) FASTER 1.28E-12 8.4 (0.2) 4.5 (0.1) OVER 0 GO:0006357 regulation of transcription from Pol II promoter 487 0.231 (0.016) 0.132 (0.002) FASTER 6.05E-10 13.5 (0.6) 4.9 (0.1) OVER 0 GO:0008283 cell proliferation 625 0.189 (0.014) 0.132 (0.002) FASTER 1.95E-05 10.1 (0.6) 5.0 (0.1) OVER 1.50E-20 GO:0006513 monoubiquitination 36 0.305 (0.049) 0.134 (0.002) FASTER 2.69E-04 25.4 (4.4) 5.1 (0.1) OVER 2.04E-06 GO:0007050 cell cycle arrest 57 0.311 (0.054) 0.133 (0.002)
    [Show full text]
  • Literature Mining Sustains and Enhances Knowledge Discovery from Omic Studies
    LITERATURE MINING SUSTAINS AND ENHANCES KNOWLEDGE DISCOVERY FROM OMIC STUDIES by Rick Matthew Jordan B.S. Biology, University of Pittsburgh, 1996 M.S. Molecular Biology/Biotechnology, East Carolina University, 2001 M.S. Biomedical Informatics, University of Pittsburgh, 2005 Submitted to the Graduate Faculty of School of Medicine in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Pittsburgh 2016 UNIVERSITY OF PITTSBURGH SCHOOL OF MEDICINE This dissertation was presented by Rick Matthew Jordan It was defended on December 2, 2015 and approved by Shyam Visweswaran, M.D., Ph.D., Associate Professor Rebecca Jacobson, M.D., M.S., Professor Songjian Lu, Ph.D., Assistant Professor Dissertation Advisor: Vanathi Gopalakrishnan, Ph.D., Associate Professor ii Copyright © by Rick Matthew Jordan 2016 iii LITERATURE MINING SUSTAINS AND ENHANCES KNOWLEDGE DISCOVERY FROM OMIC STUDIES Rick Matthew Jordan, M.S. University of Pittsburgh, 2016 Genomic, proteomic and other experimentally generated data from studies of biological systems aiming to discover disease biomarkers are currently analyzed without sufficient supporting evidence from the literature due to complexities associated with automated processing. Extracting prior knowledge about markers associated with biological sample types and disease states from the literature is tedious, and little research has been performed to understand how to use this knowledge to inform the generation of classification models from ‘omic’ data. Using pathway analysis methods to better understand the underlying biology of complex diseases such as breast and lung cancers is state-of-the-art. However, the problem of how to combine literature- mining evidence with pathway analysis evidence is an open problem in biomedical informatics research.
    [Show full text]
  • Cytogenetic Analysis of a Pseudoangiomatous Pleomorphic/Spindle Cell Lipoma
    ANTICANCER RESEARCH 37 : 2219-2223 (2017) doi:10.21873/anticanres.11557 Cytogenetic Analysis of a Pseudoangiomatous Pleomorphic/Spindle Cell Lipoma IOANNIS PANAGOPOULOS 1, LUDMILA GORUNOVA 1, INGVILD LOBMAIER 2, HEGE KILEN ANDERSEN 1, BODIL BJERKEHAGEN 2 and SVERRE HEIM 1,3 1Section for Cancer Cytogenetics, Institute for Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway; 2Department of Pathology, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway; 3Faculty of Medicine, University of Oslo, Oslo, Norway Abstract. Background: Pseudoangiomatous pleomorphic/ appearance’ (1). To date, only 20 patients have been described spindle cell lipoma is a rare subtype of pleomorphic/spindle in the literature with this diagnosis, 15 of whom were males cell lipoma. Only approximately 20 such tumors have been (1-10). The pseudoangiomatous pleomorphic/spindle cell described. Genetic information on pseudoangiomatous lipomas were mostly found in the neck (seven patients) and pleomorphic/spindle cell lipoma is restricted to a single case shoulders (four patients), but have also been seen in the in which deletion of the forkhead box O1 (FOXO1) gene was cheek, chest, chin, elbow, finger, subscapular region, and found, using fluorescence in situ hybridization (FISH). thumb. Genetic information on pseudoangiomatous Materials and Methods: G-banding and FISH analyses were pleomorphic/ spindle cell lipoma is restricted to one case only performed on a pseudoangiomatous pleomorphic/spindle cell (8) in which fluorescence in situ hybridization (FISH) with a lipoma. Results: G-banding of tumor cells showed complex probe for the forkhead box O1 ( FOXO1 ) gene, which maps karyotypic changes including loss of chromosome 13. FISH to chromosome sub-band 13q14.11, showed a signal pattern analysis revealed that the deleted region contained the RB1 indicating monoallelic loss of the gene in 57% of the gene (13q14.2) and the part of chromosome arm 13q (q14.2- examined cells.
    [Show full text]
  • Small Gtpase Ran and Ran-Binding Proteins
    BioMol Concepts, Vol. 3 (2012), pp. 307–318 • Copyright © by Walter de Gruyter • Berlin • Boston. DOI 10.1515/bmc-2011-0068 Review Small GTPase Ran and Ran-binding proteins Masahiro Nagai 1 and Yoshihiro Yoneda 1 – 3, * highly abundant and strongly conserved GTPase encoding ∼ 1 Biomolecular Dynamics Laboratory , Department a 25 kDa protein primarily located in the nucleus (2) . On of Frontier Biosciences, Graduate School of Frontier the one hand, as revealed by a substantial body of work, Biosciences, Osaka University, 1-3 Yamada-oka, Suita, Ran has been found to have widespread functions since Osaka 565-0871 , Japan its initial discovery. Like other small GTPases, Ran func- 2 Department of Biochemistry , Graduate School of Medicine, tions as a molecular switch by binding to either GTP or Osaka University, 2-2 Yamada-oka, Suita, Osaka 565-0871 , GDP. However, Ran possesses only weak GTPase activ- Japan ity, and several well-known ‘ Ran-binding proteins ’ aid in 3 Japan Science and Technology Agency , Core Research for the regulation of the GTPase cycle. Among such partner Evolutional Science and Technology, Osaka University, 1-3 molecules, RCC1 was originally identifi ed as a regulator of Yamada-oka, Suita, Osaka 565-0871 , Japan mitosis in tsBN2, a temperature-sensitive hamster cell line (3) ; RCC1 mediates the conversion of RanGDP to RanGTP * Corresponding author in the nucleus and is mainly associated with chromatin (4) e-mail: [email protected] through its interactions with histones H2A and H2B (5) . On the other hand, the GTP hydrolysis of Ran is stimulated by the Ran GTPase-activating protein (RanGAP) (6) , in con- Abstract junction with Ran-binding protein 1 (RanBP1) and/or the large nucleoporin Ran-binding protein 2 (RanBP2, also Like many other small GTPases, Ran functions in eukaryotic known as Nup358).
    [Show full text]
  • Distinct Ranbp1 Nuclear Export and Cargo Dissociation Mechanisms
    RESEARCH ARTICLE Distinct RanBP1 nuclear export and cargo dissociation mechanisms between fungi and animals Yuling Li1†, Jinhan Zhou1†, Sui Min1†, Yang Zhang2, Yuqing Zhang1, Qiao Zhou1, Xiaofei Shen3, Da Jia3, Junhong Han2, Qingxiang Sun1* 1Department of Pathology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Centre of Biotherapy, Chengdu, China; 2Division of Abdominal Cancer, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Centre for Biotherapy, Chengdu, China; 3Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Paediatrics, Division of Neurology, West China Second University Hospital, Sichuan University, Chengdu, China Abstract Ran binding protein 1 (RanBP1) is a cytoplasmic-enriched and nuclear-cytoplasmic shuttling protein, playing important roles in nuclear transport. Much of what we know about RanBP1 is learned from fungi. Intrigued by the long-standing paradox of harboring an extra NES in animal RanBP1, we discovered utterly unexpected cargo dissociation and nuclear export mechanisms for animal RanBP1. In contrast to CRM1-RanGTP sequestration mechanism of cargo dissociation in fungi, animal RanBP1 solely sequestered RanGTP from nuclear export complexes. In fungi, RanBP1, CRM1 and RanGTP formed a 1:1:1 nuclear export complex; in contrast, animal RanBP1, CRM1 and RanGTP formed a 1:1:2 nuclear export complex. The key feature for the two mechanistic changes from fungi to animals was the loss of affinity between RanBP1-RanGTP and *For correspondence: CRM1, since residues mediating their interaction in fungi were not conserved in animals. The [email protected] biological significances of these different mechanisms in fungi and animals were also studied.
    [Show full text]
  • Rabbit Anti-Ranbp3/FITC Conjugated Antibody
    SunLong Biotech Co.,LTD Tel: 0086-571- 56623320 Fax:0086-571- 56623318 E-mail:[email protected] www.sunlongbiotech.com Rabbit Anti-RanBP3/FITC Conjugated antibody SL20113R-FITC Product Name: Anti-RanBP3/FITC Chinese Name: FITC标记的RANBinding protein3抗体 Alias: Ran BP-3; Ran binding protein 3; Ran-binding protein 3; RANB3_HUMAN; RanBP3. Organism Species: Rabbit Clonality: Polyclonal React Species: Human,Mouse,Rat,Chicken,Dog,Pig, ICC=1:50-200IF=1:50-200 Applications: not yet tested in other applications. optimal dilutions/concentrations should be determined by the end user. Molecular weight: 60kDa Form: Lyophilized or Liquid Concentration: 1mg/ml immunogen: KLH conjugated synthetic peptide derived from human RanBP3 Lsotype: IgG Purification: affinity purified by Protein A Storage Buffer: 0.01M TBS(pH7.4) with 1% BSA, 0.03% Proclin300 and 50% Glycerol. Store at -20 °C for one year. Avoid repeated freeze/thaw cycles. The lyophilized antibodywww.sunlongbiotech.com is stable at room temperature for at least one month and for greater than a year Storage: when kept at -20°C. When reconstituted in sterile pH 7.4 0.01M PBS or diluent of antibody the antibody is stable for at least two weeks at 2-4 °C. background: Acts as a cofactor for XPO1/CRM1-mediated nuclear export, perhaps as export complex scaffolding protein. Bound to XPO1/CRM1, stabilizes the XPO1/CRM1-cargo interaction. In the absence of Ran-bound GTP prevents binding of XPO1/CRM1 to the nuclear pore complex. Binds to CHC1/RCC1 and increases the guanine nucleotide Product Detail: exchange activity of CHC1/RCC1. Recruits XPO1/CRM1 to CHC1/RCC1 in a Ran- dependent manner.
    [Show full text]
  • Downloaded from Here
    bioRxiv preprint doi: https://doi.org/10.1101/017566; this version posted November 19, 2015. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 1 Testing for ancient selection using cross-population allele 2 frequency differentiation 1;∗ 3 Fernando Racimo 4 1 Department of Integrative Biology, University of California, Berkeley, CA, USA 5 ∗ E-mail: [email protected] 6 1 Abstract 7 A powerful way to detect selection in a population is by modeling local allele frequency changes in a 8 particular region of the genome under scenarios of selection and neutrality, and finding which model is 9 most compatible with the data. Chen et al. [2010] developed a composite likelihood method called XP- 10 CLR that uses an outgroup population to detect departures from neutrality which could be compatible 11 with hard or soft sweeps, at linked sites near a beneficial allele. However, this method is most sensitive 12 to recent selection and may miss selective events that happened a long time ago. To overcome this, 13 we developed an extension of XP-CLR that jointly models the behavior of a selected allele in a three- 14 population tree. Our method - called 3P-CLR - outperforms XP-CLR when testing for selection that 15 occurred before two populations split from each other, and can distinguish between those events and 16 events that occurred specifically in each of the populations after the split.
    [Show full text]
  • Genotype-Phenotype Correlations in Patients with Retinoblastoma And
    Genotype-phenotype correlations in patients with Retinoblastoma and an interstitial 13q deletion Diana Mitter, Reinhard Ullmann, Artur Muradyan, Ludger Klein-Hitpaß, Deniz Kanber, Dietmar R Lohmann, Katrin Ounap, Marc Kaulisch To cite this version: Diana Mitter, Reinhard Ullmann, Artur Muradyan, Ludger Klein-Hitpaß, Deniz Kanber, et al.. Genotype-phenotype correlations in patients with Retinoblastoma and an interstitial 13q deletion. European Journal of Human Genetics, Nature Publishing Group, 2011, 10.1038/ejhg.2011.58. hal- 00633984 HAL Id: hal-00633984 https://hal.archives-ouvertes.fr/hal-00633984 Submitted on 20 Oct 2011 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 Genotype-phenotype correlations in patients with Retinoblastoma and interstitial 13q deletions 1, *Diana Mitter, 2Reinhard Ullmann, 2Artur Muradyan, 3Ludger Klein-Hitpaß, 1Deniz Kanber, 4Katrin Õunap, 5Marc Kaulisch, 1Dietmar Lohmann 1Institut für Humangenetik, Universitätsklinikum Essen, Germany; 2Max-Planck- Institute of Molecular Genetic, Berlin, Germany; 3Institute for Cell Biology (Tumor Research), University of Duisburg-Essen, Germany; 4Department of Genetics, United Laboratories, Tartu University Hospital, Estonia; 5Institute for Research Information and Quality Assurance, Germany. *Correspondence and present address: Diana Mitter, Institut für Humangenetik, Universitätsklinikum Leipzig, Philipp-Rosenthal-Str.
    [Show full text]
  • Human Social Genomics in the Multi-Ethnic Study of Atherosclerosis
    Getting “Under the Skin”: Human Social Genomics in the Multi-Ethnic Study of Atherosclerosis by Kristen Monét Brown A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Epidemiological Science) in the University of Michigan 2017 Doctoral Committee: Professor Ana V. Diez-Roux, Co-Chair, Drexel University Professor Sharon R. Kardia, Co-Chair Professor Bhramar Mukherjee Assistant Professor Belinda Needham Assistant Professor Jennifer A. Smith © Kristen Monét Brown, 2017 [email protected] ORCID iD: 0000-0002-9955-0568 Dedication I dedicate this dissertation to my grandmother, Gertrude Delores Hampton. Nanny, no one wanted to see me become “Dr. Brown” more than you. I know that you are standing over the bannister of heaven smiling and beaming with pride. I love you more than my words could ever fully express. ii Acknowledgements First, I give honor to God, who is the head of my life. Truly, without Him, none of this would be possible. Countless times throughout this doctoral journey I have relied my favorite scripture, “And we know that all things work together for good, to them that love God, to them who are called according to His purpose (Romans 8:28).” Secondly, I acknowledge my parents, James and Marilyn Brown. From an early age, you two instilled in me the value of education and have been my biggest cheerleaders throughout my entire life. I thank you for your unconditional love, encouragement, sacrifices, and support. I would not be here today without you. I truly thank God that out of the all of the people in the world that He could have chosen to be my parents, that He chose the two of you.
    [Show full text]