Australian Public Assessment Report for Degarelix
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Personalized ADT
Personalized ADT Thomas Keane MD Conflicts • Ferring • Tolemar • Bayer • Astellas • myriad Personalized ADT for the Specific Paent • Cardiac • OBesity and testosterone • Fsh • High volume metastac disease • Docetaxol • Significant LUTS Cardiovascular risk profile and ADT Is there a difference? Degarelix Belongs to a class of synthe@c drug, GnRH antagonist (Blocker) GnRH pGlu His Trp Ser Tyr Gly Leu Arg Pro Gly NH2 Leuprolide D-Leu NEt Goserelin D-Ser NH2 LHRH agonists Triptorelin D-Trp NH2 Buserelin D-Ser NEt Degarelix D-NaI D-Cpa D-PaI Aph D-Aph D-Ala NH2 N-Me ABarelix D-NaI D-Cpa D-PaI D-Asn Lys D-Ala NH2 Tyr GnRH antagonists Cetrorelix D-NaI D-Cpa D-PaI D-Cit D-Ala NH2 Ganirelix D-NaI D-CPa D-PaI D-hArg D-hArg D-Ala NH2 Millar RP, et al. Endocr Rev 2004;25:235–75 Most acute CVD events are caused By rupture of a vulnerable atherosclero@c plaque The vulnerable plaque – thin cap with inflammaon Inflammation Plaque instability is at the heart of cardiovascular disease Stable plaque Vulnerable plaque Lumen Lumen Lipid core Lipid core FiBrous cap FiBrous cap Thick Cap Thin Rich in SMC and matrix Composion Rich in inflammatory cells: proteoly@c ac@vity Poor Lipid Rich Inflammatory Inflammatory state Highly inflammatory LiBBy P. Circulaon 1995;91:2844-2850 Incidence of Both prostate cancer and CV events is highest in older men Prostate cancer CV events 3500 3500 Prostate cancer All CV disease Major CV events 3000 3000 2827.1 2500 2500 2338.9 2000 2000 1719.7 1500 1500 1152.6 1008.7 1038.7 1000 1000 641.2 545.2 571.1 Age-specific incidence per 100,000 person-years 500 500 246.9 133.7 4.3 0 0 40-49 50-59 60-69 70-79 80-89 90-99 40-49 50-59 60-69 70-79 80-89 90-99 CV, cardiovascular Major CV events = myocardial infarc@on, stroke, or death due to CV disease All CV disease = major CV events + self-reported angina or revascularisaon procedures Driver, et al. -
Challenges and Approaches for the Development of Safer Immunomodulatory Biologics
REVIEWS Challenges and approaches for the development of safer immunomodulatory biologics Jean G. Sathish1*, Swaminathan Sethu1*, Marie-Christine Bielsky2, Lolke de Haan3, Neil S. French1, Karthik Govindappa1, James Green4, Christopher E. M. Griffiths5, Stephen Holgate6, David Jones2, Ian Kimber7, Jonathan Moggs8, Dean J. Naisbitt1, Munir Pirmohamed1, Gabriele Reichmann9, Jennifer Sims10, Meena Subramanyam11, Marque D. Todd12, Jan Willem Van Der Laan13, Richard J. Weaver14 and B. Kevin Park1 Abstract | Immunomodulatory biologics, which render their therapeutic effects by modulating or harnessing immune responses, have proven their therapeutic utility in several complex conditions including cancer and autoimmune diseases. However, unwanted adverse reactions — including serious infections, malignancy, cytokine release syndrome, anaphylaxis and hypersensitivity as well as immunogenicity — pose a challenge to the development of new (and safer) immunomodulatory biologics. In this article, we assess the safety issues associated with immunomodulatory biologics and discuss the current approaches for predicting and mitigating adverse reactions associated with their use. We also outline how these approaches can inform the development of safer immunomodulatory biologics. Immunomodulatory Biologics currently represent more than 30% of licensed The high specificity of the interactions of immu- biologics pharmaceutical products and have expanded the thera- nomodulatory biologics with their relevant immune Biotechnology-derived peutic options available -
Ganirelix) May Prevent Ovarian Hyperstimulation Syndrome Caused by Ovarian Stimulation for In-Vitro Fertilization
Human Reproduction vol.13 no.3 pp.573–575, 1998 CASE REPORT High dose gonadotrophin-releasing hormone antagonist (ganirelix) may prevent ovarian hyperstimulation syndrome caused by ovarian stimulation for in-vitro fertilization D.de Jong1, N.S.Macklon1, B.M.J.L.Mannaerts2, releasing hormone (GnRH) agonists in order to prevent H.J.T.Coelingh Bennink2 and B.C.J.M.Fauser1,3 unpredictable changes in release of endogenous gonadotrophins. However, it has been reported that the continued administration 1Division of Reproductive Medicine, Department of Obstetrics and Gynaecology, Dijkzigt Academic Hospital and Erasmus University of GnRH agonists does not affect subsequent ovarian quiescence Medical School, Dr. Molewaterplein 40, 3015 GD, Rotterdam and (Wadaet al., 1992). This may be related to prolonged suppression 2Scientific Development Group, NV Organon, Oss, The Netherlands of pituitary function due to slow recovery from down-regulation 3To whom correspondence should be addressed (Donderwinkel et al., 1993). Some residual gonadotrophin release may remain during GnRH agonist suppression, whereas This case report describes the first attempt to treat pituitary release of LH and follicle-stimulating hormone (FSH) imminent ovarian hyperstimulation syndrome (OHSS) by may be virtually abolished with the sustained use of a high dose using a gonadotrophin-releasing hormone (GnRH) of GnRH antagonist. In this case report we describe an alternative antagonist. A 33 year old, normo-ovulatory woman under- method, using a high dose of a GnRH antagonist which may going in-vitro fertilization received daily subcutaneous decrease the risk of a severe OHSS. injections of 150 IU of recombinant follicle-stimulating hormone (recFSH) from cycle day 2, together with GnRH antagonist (ganirelix) 0.125 mg from cycle day 7 onwards. -
Degarelix for Treating Advanced Hormone- Dependent Prostate Cancer
CONFIDENTIAL UNTIL PUBLISHED NATIONAL INSTITUTE FOR HEALTH AND CARE EXCELLENCE Final appraisal determination Degarelix for treating advanced hormone- dependent prostate cancer This guidance was developed using the single technology appraisal (STA) process 1 Guidance 1.1 Degarelix is recommended as an option for treating advanced hormone-dependent prostate cancer, only in adults with spinal metastases who present with signs or symptoms of spinal cord compression. 1.2 People currently receiving treatment initiated within the NHS with degarelix that is not recommended for them by NICE in this guidance should be able to continue treatment until they and their NHS clinician consider it appropriate to stop. 2 The technology 2.1 Degarelix (Firmagon, Ferring Pharmaceuticals) is a selective gonadotrophin-releasing hormone antagonist that reduces the release of gonadotrophins by the pituitary, which in turn reduces the secretion of testosterone by the testes. Gonadotrophin- releasing hormone is also known as luteinising hormone-releasing hormone (LHRH). Because gonadotrophin-releasing hormone antagonists do not produce a rise in hormone levels at the start of treatment, there is no initial testosterone surge or tumour stimulation, and therefore no potential for symptomatic flares. National Institute for Health and Care Excellence Page 1 of 71 Final appraisal determination – Degarelix for treating advanced hormone-dependent prostate cancer Issue date: April 2014 CONFIDENTIAL UNTIL PUBLISHED Degarelix has a UK marketing authorisation for the ‘treatment of adult male patients with advanced hormone-dependent prostate cancer’. It is administered as a subcutaneous injection. 2.2 The most common adverse reactions with degarelix are related to the effects of testosterone suppression, including hot flushes and weight increase, or injection site reactions (such as pain and erythema). -
This Thesis Has Been Submitted in Fulfilment of the Requirements for a Postgraduate Degree (E.G
This thesis has been submitted in fulfilment of the requirements for a postgraduate degree (e.g. PhD, MPhil, DClinPsychol) at the University of Edinburgh. Please note the following terms and conditions of use: • This work is protected by copyright and other intellectual property rights, which are retained by the thesis author, unless otherwise stated. • A copy can be downloaded for personal non-commercial research or study, without prior permission or charge. • This thesis cannot be reproduced or quoted extensively from without first obtaining permission in writing from the author. • The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the author. • When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given. Bio-Oligomers as Antibacterial Agents and Strategies for Bacterial Detection Jagath C. Kasturiarachchi Ph.D. The University of Edinburgh College of Medicine & Veterinary Medicine 2014 i Declaration This thesis represents my own work. All of the experiments described herein were performed by me. I received technical assistance to perform flow cytometry and confocal analysis as declared in the acknowledgements. All chemical .entities were synthesised by the Department of Chemistry at University of Edinburgh. …………………………………………. J C Kasturiarachchi ii Acknowledgements I am very grateful to Dr Kev Dhaliwal, Professor Mark Bradley and Professor Chris Haslett for their supervision and support. I would like to thank Dr Jeff Walton and Dr Nicos Avlonitis designing and synthesis of peptoid library. I would like to thank Dr Nicos Avlonitis, Dr Marc Vendrell and Miss Alize Marangoz for their support for the synthesis of peptide probes. -
The Nuremberg Code Subverts Human Health and Safety by Requiring Animal Modeling
UC San Diego UC San Diego Previously Published Works Title The Nuremberg Code subverts human health and safety by requiring animal modeling Permalink https://escholarship.org/uc/item/2947x3sq Journal BMC Medical Ethics, 13(1) ISSN 1472-6939 Authors Greek, Ray Pippus, Annalea Hansen, Lawrence A Publication Date 2012-07-08 DOI http://dx.doi.org/10.1186/1472-6939-13-16 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Greek et al. BMC Medical Ethics 2012, 13:16 http://www.biomedcentral.com/1472-6939/13/16 DEBATE Open Access The Nuremberg Code subverts human health and safety by requiring animal modeling Ray Greek1*, Annalea Pippus1 and Lawrence A Hansen2 Abstract Background: The requirement that animals be used in research and testing in order to protect humans was formalized in the Nuremberg Code and subsequent national and international laws, codes, and declarations. Discussion: We review the history of these requirements and contrast what was known via science about animal models then with what is known now. We further analyze the predictive value of animal models when used as test subjects for human response to drugs and disease. We explore the use of animals for models in toxicity testing as an example of the problem with using animal models. Summary: We conclude that the requirements for animal testing found in the Nuremberg Code were based on scientifically outdated principles, compromised by people with a vested interest in animal experimentation, serve no useful function, increase the cost of drug development, and prevent otherwise safe and efficacious drugs and therapies from being implemented. -
Fertility Medications: Bravelle®, Cetrotide®, Clomid, Clomiphene, Follistim AQ®, Ganirelix®, Gonal-F®, Human Chorionic Gonadotropin, Leuprolide
Drug Therapy Guidelines Fertility Medications: Bravelle®, Cetrotide®, Clomid, clomiphene, Follistim AQ®, Ganirelix®, Gonal-F®, human chorionic gonadotropin, leuprolide, Menopur®, Novarel®, Ovidrel®, Pregnyl®, Crinone®, Applicable* Endometrin®, First-Progesterone®, progesterone in oil Medical Benefit x Effective: 08/03/2021 Pharmacy- Formulary 1 x Next Review: 6/22 Pharmacy- Formulary 2 x Date of Origin: 7/00 Pharmacy- Formulary 3/Exclusive x Review Dates: 7/12/00, 5/8/01, 1/15/02, 5/6/03, 12/16/03, 6/8/04, Pharmacy- Formulary 4/AON x 12/16/05, 2/1/06, 10/15/06, 7/20/07, 11/5/07, 12/15/08, 12/09, 9/10, 1/11, 9/11, 9/12, 9/13, 9/14, 6/15, 6/16, 6/17, 6/18, 6/19, 9/19, 3/20, 6/20, 9/20, 3/21, 6/21 I. Medication Description Gonadotropin Releasing Hormone (GnRH) Agonists are indicated for the inhibition of premature luteinizing hormone (LH) surges in women undergoing controlled ovarian stimulation. GnRH Antagonists are indicated for inhibition of premature luteinizing hormone (LH) surges in women undergoing controlled ovarian stimulation. Gonadotropins, FSH, or combination of FSH/LH are indicated for stimulation of ovarian follicular growth. Human chorionic gonadotropins (hCG) are indicated for inducing ovulation. Clomiphene is a selective-estrogen receptor-modulator (SERM) used for inducing ovulation. Therapeutic Class Agents GnRH Agonists leuprolide GnRH Antagonists Cetrotide®, Ganirelix® Gonadotropins Follitropin alfa: Gonal-F®, Gonal-F RFF® (non-preferred) Follitropin beta: Follistim AQ® (preferred) Menotropins: Menopur® Urofollitropins: Bravelle® hCG human chorionic gonadotropin, Novarel®, Ovidrel®, Pregnyl® Progestin Injection progesterone oil for injection Vaginal Progesterone Crinone, Endometrin, First-Progesterone Selective-estrogen receptor- Clomid*, Clomiphene* modulator (SERM) II. -
Pharmacokinetics and Bioavailability of the Gnrh Analogs in the Form of Solution and Zn2+-Suspension After Single Subcutaneous Injection in Female Rats
Eur J Drug Metab Pharmacokinet (2017) 42:251–259 DOI 10.1007/s13318-016-0342-5 ORIGINAL RESEARCH ARTICLE Pharmacokinetics and Bioavailability of the GnRH Analogs in the Form of Solution and Zn2+-Suspension After Single Subcutaneous Injection in Female Rats 1 2 3 Aleksandra Suszka-S´witek • Florian Ryszka • Barbara Dolin´ska • 4 5 1 1 Renata Dec • Alojzy Danch • Łukasz Filipczyk • Ryszard Wiaderkiewicz Published online: 14 May 2016 Ó The Author(s) 2016. This article is published with open access at Springerlink.com Abstract Follicle-stimulating hormone (FSH) and 17b-estradiol in the Background and Objectives Although many synthetic serum was measured by radioimmunological method. gonadoliberin analogs have been developed, only a few of Results The Extent of Biological Availability (EBA), calcu- them, including buserelin, were introduced into clinical lated on the base of AUC0-?, showed that in the form of practice. Dalarelin, which differs from buserelin by just solution buserelin and dalarelin display, respectively, only 13 one aminoacid in the position 6 (D-Ala), is not widely used and 8 % of biological availability of their suspension coun- so far. Gonadotropin-releasing hormone (GnRH) analogs terparts. Comparing both analogs, the EBA of dalarelin was are used to treat many different illnesses and are available half (53 %) that of buserelin delivered in the form of solution in different forms like solution for injection, nasal spray, and 83 % when they were delivered in the form of suspension. microspheres, etc. Unfortunately, none of the above drug The injection of buserelin or dalarelin, in the form of solution formulations can release the hormones for 24 h. -
Half 1 3:50PM — 4:50PM in Vivo and in Vitro Activities of Auranofin Against Vancomycin-Resistant Enterococci
Half 1 3:50PM — 4:50PM In vivo and in vitro activities of auranofin against vancomycin-resistant enterococci 1 1 1 Nader S. Abutaleb , Marwa Alhashimi , Ahmed Elkashif , and Mohamed N. Seleem1 1 Department of Comparative Pathobiology, Purdue University, WL, IN, 47905, US Vancomycin-resistant enterococci (VRE) are the second-most common cause of nosocomial infections causing more than 5% of all deaths attributed to antibiotic-resistant infections in USA. VRE acquired resistance to all antibiotics used for treatment, severely limiting the number of available effective therapeutic options. Consequently, novel antimicrobials are urgently needed. However, new antimicrobials are becoming difficult to develop. Repurposing FDA-approved drugs, with well-characterized toxicology and pharmacology, to find new applications outside the scope of their original medical indication is a novel way to reduce time and cost associated with antimicrobial innovation. In an intensive search for antimicrobial activity among FDA approved drugs, we identified auranofin as a potent drug against VRE. It demonstrated a potent activity against 30 clinical drug-resistant VRE isolates with MIC90(1μg/mL) Additionally, no enterococci resistant mutants could be developed against auranofin after 14 passages. It also, inhibited highly resistant stationary phase cells, biofilm formation on urinary catheters, protease, lipase and haemagglutinins production at sub-inhibitory concentrations. The promising features and the potent antimicrobial activity of auranofin prompted us to evaluate its in vivo efficacy against drug-of-choice, linezolid, in our established lethal VRE septicemia mouse model. Both drugs protected 100% of mice against a lethal VRE dose. However, auranofin was superior to linezolid in reducing the bacterial load in internal organs (liver, kidney and spleen). -
Measuring Ligand Efficacy at the Mu- Opioid Receptor Using A
RESEARCH ARTICLE Measuring ligand efficacy at the mu- opioid receptor using a conformational biosensor Kathryn E Livingston1,2, Jacob P Mahoney1,2, Aashish Manglik3, Roger K Sunahara4, John R Traynor1,2* 1Department of Pharmacology, University of Michigan Medical School, Ann Arbor, United States; 2Edward F Domino Research Center, University of Michigan, Ann Arbor, United States; 3Department of Pharmaceutical Chemistry, School of Pharmacy, University of California San Francisco, San Francisco, United States; 4Department of Pharmacology, University of California San Diego School of Medicine, La Jolla, United States Abstract The intrinsic efficacy of orthosteric ligands acting at G-protein-coupled receptors (GPCRs) reflects their ability to stabilize active receptor states (R*) and is a major determinant of their physiological effects. Here, we present a direct way to quantify the efficacy of ligands by measuring the binding of a R*-specific biosensor to purified receptor employing interferometry. As an example, we use the mu-opioid receptor (m-OR), a prototypic class A GPCR, and its active state sensor, nanobody-39 (Nb39). We demonstrate that ligands vary in their ability to recruit Nb39 to m- OR and describe methadone, loperamide, and PZM21 as ligands that support unique R* conformation(s) of m-OR. We further show that positive allosteric modulators of m-OR promote formation of R* in addition to enhancing promotion by orthosteric agonists. Finally, we demonstrate that the technique can be utilized with heterotrimeric G protein. The method is cell- free, signal transduction-independent and is generally applicable to GPCRs. DOI: https://doi.org/10.7554/eLife.32499.001 *For correspondence: [email protected] Competing interests: The authors declare that no Introduction competing interests exist. -
Degarelix Acetate (Firmagon) Reference Number: PA.CP.PHAR.170 Effective Date: 01/18 Last Review Date: 10/18 Revision Log
Clinical Policy: Degarelix Acetate (Firmagon) Reference Number: PA.CP.PHAR.170 Effective Date: 01/18 Last Review Date: 10/18 Revision Log Description The intent of the criteria is to ensure that patients follow selection elements established by Pennsylvania Health and Wellness® clinical policy for the use of Degarelix Acetate (Firmagon®). FDA Approved Indication(s) Firmagon is indicated for treatment of advanced prostate cancer. Policy/Criteria It is the policy of Pennsylvania Health and Wellness that Firmagon is medically necessary when the following criteria are met: I. Initial Approval Criteria A. Prostate Cancer (must meet all): 1. Diagnosis of prostate cancer; 2. Prescribed by or in consultation with an oncologist; 3. Request meets one of the following (a, b or c): a. Starting dose does not exceed 240 mg given as two injections of 120 mg each; b. Maintenance dose does not exceed 80 mg as a single injection per 28 days; c. Dose is supported by practice guidelines or peer-reviewed literature for the relevant off- label use (prescriber must submit supporting evidence). Approval duration: 12 months B. Other diagnoses/indications: Refer to PA.CP.PMN.53 1. The following NCCN recommended uses for Firmagon, meeting NCCN categories 1, 2a, or 2b, are approved per the PA.CP.PMN.53: II. Continued Approval A. Prostate Cancer (must meet all): 1. Currently receiving medication via Pennsylvania Health and Wellness benefit or member has previously met approval criteria or the Continuity of Care policy (PA.LTSS.PHAR.01) applies; 2. Member is responding positively to therapy; 3. If request is for a dose increase, request meets one of the following: a. -
Follicular and Endocrine Profiles Associated with Different Gnrh
Reproductive BioMedicine Online (2012) 24, 153– 162 www.sciencedirect.com www.rbmonline.com ARTICLE Follicular and endocrine profiles associated with different GnRH-antagonist regimens: a randomized controlled trial Juan Antonio Garcı´a-Velasco a, Sanja Kupesic b, Antonio Pellicer c, Claire Bourgain d, Carlos Simo´n e, Milan Mrazek f, Paul Devroey g, Joan-Carles Arce h,* a IVI Foundation, Reproductive Endocrinology, Madrid, Spain; b Texas Tech University Health Sciences Center, Department of Obstetrics and Gynecology, El Paso, TX, USA; c IVI Foundation, Reproductive Endocrinology, Valencia, Spain; d UZ Brussel, Department of Pathology, Brussels, Belgium; e IVI Foundation, Research Department, Valencia, Spain; f ISCARE IVF a.s., Lighthouse, Prague, Czech Republic; g UZ Brussel, Centre for Reproductive Medicine, Brussels, Belgium; h Reproductive Health, Global Clinical and Non-Clinical R & D, Ferring Pharmaceuticals, Copenhagen, Denmark * Corresponding author. E-mail address: [email protected] (J.-C. Arce). Dr Juan Garcı´a-Velasco did his training in obstetrics and gynaecology at Madrid Autonoma University, and then his reproductive endocrinology and infertility fellowship at Yale University, USA (1997–1998). He is now Director of IVI-Madrid and Associate Professor at Rey Juan Carlos University. He has published over 100 peer- reviewed articles. He is an ad-hoc reviewer for the main journals in the field and serves on the editorial board of Reproductive BioMedicine Online. His main research interests are endometriosis, ovarian hyperstimulation syndrome, low responders and human implantation. Abstract This trial assessed the impact of early initiation of gonadotrophin-releasing hormone (GnRH) antagonist on follicular and endocrine profiles compared with the fixed GnRH-antagonist protocol.