On Finite Semifields with a Weak Nucleus and a Designed

Total Page:16

File Type:pdf, Size:1020Kb

On Finite Semifields with a Weak Nucleus and a Designed On finite semifields with a weak nucleus and a designed automorphism group A. Pi~nera-Nicol´as∗ I.F. R´uay Abstract Finite nonassociative division algebras S (i.e., finite semifields) with a weak nucleus N ⊆ S as defined by D.E. Knuth in [10] (i.e., satisfying the conditions (ab)c − a(bc) = (ac)b − a(cb) = c(ab) − (ca)b = 0, for all a; b 2 N; c 2 S) and a prefixed automorphism group are considered. In particular, a construction of semifields of order 64 with weak nucleus F4 and a cyclic automorphism group C5 is introduced. This construction is extended to obtain sporadic finite semifields of orders 256 and 512. Keywords: Finite Semifield; Projective planes; Automorphism Group AMS classification: 12K10, 51E35 1 Introduction A finite semifield S is a finite nonassociative division algebra. These rings play an important role in the context of finite geometries since they coordinatize projective semifield planes [7]. They also have applications on coding theory [4, 8, 6], combinatorics and graph theory [13]. During the last few years, computational efforts in order to clasify some of these objects have been made. For instance, the classification of semifields with 64 elements is completely known, [16], as well as those with 243 elements, [17]. However, many questions are open yet: there is not a classification of semifields with 128 or 256 elements, despite of the powerful computers available nowadays. The knowledge of the structure of these concrete semifields can inspire new general constructions, as suggested in [9]. In this sense, the work of Lavrauw and Sheekey [11] gives examples of constructions of semifields which are neither twisted fields nor two-dimensional over a nucleus starting from the classification of semifields with 64 elements. In particular, these are the semifields labelled as XIV, XXIV, XXVI and XXVII in [16]. On the other hand, the construction of semifields with a prescribed automorphism group has been carried out in references such as [3] and [14]. The present work is motivated by the behaviour of some semifields with 64 elements which also appear in the classification of [16]. In particular, semifields coordinatizing 18 planes in the Knuth classes XVII and XVIII and 27 in the Knuth class XXXIX (see Table 5 of [16]) have an automorphism group isomorphic to the group C5. Notice that the order of this group, 5, and the dimension of the semifields over their center, 6, are relatively prime (a fact that differs completely from the situation of the finite field F64). We will see in the next section that all these semifields can be additively described as a direct sum of two Galois fields of orders 4 and 16. Moreover, some of them can be seen as a 3−dimensional vector spaces over a so called weak nucleus, see [10]. ∗Institute of Mathematics (IMUVa) and Applied Mathematics Department, Universidad de Valladolid, [email protected] yDepartamento de Matem´aticas,Universidad de Oviedo, [email protected] 1 In the last part of the paper, we will use this concept in order to generalize the construction of such semifields. Exploring these ideas, we will be able to construct sporadic examples of semifields with 256 and 512 elements whose automorphism groups contain a subgroup of prescribed structure. These semifields are new, since they do not fall in the Knuth orbit of any finite semifield either listed in [12] or contructed by [18]. 2 Semifields of order 64 with a cyclic automorphism group C5 In this section we will study the structure of a semifield S with 64 elements with cyclic automorphism group C5. First of all, observe that the center of any such a finite semifield contains F2 = f0; 1g, and S is naturally a 6-dimensional F2−algebra. We will prove that it is possible to find a set of 4 elements fixed by the action of the automorphism group, which yields an alternative additive decomposition of S. Theorem 1. Let (S; +; ∗) be a semifield with 64 elements and automorphism group Aut(S) = h'i isomorphic to C5. Then, there exists an element a 6= 0; 1, such that (f0; 1; a; a + 1g; +; ∗) is a semifield isomorphic to F4 which is fixed by the automorphism group. Moreover, there exists an element b 2 i i j i+j S n f0; 1; a; a + 1g such that (f' (b) j i 2 Ng; +; ·), with ' (b) · ' (b) = ' (b), is isomorphic to the finite field F16. So, S can be seen as a F2-vector space isomorphic to the direct sum F4 ⊕ F16, with basis f1; a; b; '(b);'2(b);'3(b)g. Proof. Let us consider the set Fix(') = fx 2 S j '(x) = xg of fixed points under the action of Aut(S) over S. Since jAut(S)j = 5, we have 64 6= jFix(')j ≡ 64 (mod 5). So, jFix(')j = 4 and, because ∼ there is a unique semifield with four elements, (Fix('); +; ∗) = F4. Therefore, we can find an element a 2 S n f0; 1g such that Fix(') = f0; 1; a; a + 1g. 5 5 4 3 2 Since ' 6= I = ' and x + 1 = (x + 1)(x + x + x + x + 1), then the F2-irreducible polynomial x4 +x3 +x2 +x+1 divides the minimal polynomial of '. So, there exist an element b 2 S nf0; 1; a; a+ 2 3 1g such that the F2[x]−cyclic submodule generated by b, hb; '(b);' (b);' (b)iF2 , is isomorphic to 4 3 2 ∼ F2[x]=hx + x + x + x + 1i = F16. 2 3 Finally, notice that dimF2 S = 6, so the set f1; a; b; '(b);' (b);' (b)g, which is linearly independent over F2, is an F2−basis of S. Remark 1. The decomposition of S as F4 ⊕ F16 corresponds to the F2−module decomposition 2 4 3 2 (F2[x]=hx + 1i) ⊕ F2[x]=hx + x + x + x + 1i and that ' preserves this decomposition. Notice that the restriction of the product ∗ of S to Fix(') is the product of the field F4, but this does not happen with F16. However, ξ = '(b) 2 F16 can be identified with a 5th−primitive root of unity, and it can be assumed that the action of the automorphism ' over the elements of F16 is given by '(c) = ξ · c for all c 2 F16. From now on we shall simply write ξc instead of ξ · c. The next step in the description of semifields with 64 elements with cyclic automorphism group C5 consists on the introduction of the definition of weak nucleus in the sense of [10]. Definition 1. Let (S; +; ∗) be a semifield and let F ⊆ S be a field. Then, F is a weak nucleus for S if (a ∗ b) ∗ c = a ∗ (b ∗ c) whenever any two of a; b; c are in F. Notice that if there exists a weak nucleus F of S, then S can be written as an F-vector space. However, right and left multiplications (Ra(x) = x ∗ a; La(x) = a ∗ x; for all a; x 2 S) will not be, in general, F-linear transformations. Moreover, the weak nucleus is generally not preserved by isotopy. 2 In order to describe the structure of the semifields with weak nucleus presented in this section, we need the following result, which will be stated without proof. Lemma 1. [Theorem 4.1 of [15]] Let R = GR(qd; pd) be a Galois ring of order qd and characteristic d p (in particular a finite field). For any finite (R; R)-bimodule RMR there exist a generator system fµ1; : : : ; µkg (called distinguished basis) and a system of automorphism σ1; : : : ; σk 2 Aut(R) such that 8a 2 R; l 2 f1; : : : ; kg : µla = σl(a)µl and M = Rµ1 ⊕ · · · ⊕ µk is a direct sum of cyclic (R; R)-bimodules. ∼ Theorem 2. Let (S; +; ∗) be a semifield with 64 elements, automorphism group Aut(S) = h'i = C5 ∼ and weak nucleus F = Fix(') = F4. Then, there exists an element λ 2 S such that f1; λ, '(λ)g is an F4-basis of S. Moreover, either a ∗ λ = λ ∗ a for all a 2 F, and the basis is called of type A, or 2 a ∗ λ = λ ∗ a for all a 2 F, and it is called of type B. Proof. From Definition 1, it follows that the semifield S is a bimodule over the weak nucleus F. So, by Lemma 1, there exists a distinguished F-basis of S, that is, it is possible to find an F-basis fs1; s2; s3g of S such that, for 1 ≤ i ≤ 3, a ∗ si = si ∗ σi(a), with σi 2 Aut(F), for all a 2 F. Notice that we can always take s1 = 1 and σ1 = Id. If si = 1 for some i, the claim is trivial. Otherwise, it suffices to see that f1; s2; s3g is a generator system from S whith a ∗ 1 = 1 ∗ a for all a 2 F. Let us denote the element s2 by λ. Suppose that σ2 = Id and so, a ∗ λ = λ ∗ a for all a 2 F. Since S is isomorphic, as F2−vector space, to the direct sum F ⊕ F16, we can assume that λ 2 F16. Otherwise, λ = A + B, with A 2 F and B 2 F16, and f1; λ − A; s3g is also a distinguished F-basis of S. Under these assumptions, we claim that f1; λ, '(λ)g is an F−distinguished basis of S. Since λ 2 F16, 4 3 2 P4 k the minimal polynomial '−annihilating λ is x + x + x + x + 1, i.e, k=0 ' (λ) = 0.
Recommended publications
  • Adjacency Matrices of Zero-Divisor Graphs of Integers Modulo N Matthew Young
    inv lve a journal of mathematics Adjacency matrices of zero-divisor graphs of integers modulo n Matthew Young msp 2015 vol. 8, no. 5 INVOLVE 8:5 (2015) msp dx.doi.org/10.2140/involve.2015.8.753 Adjacency matrices of zero-divisor graphs of integers modulo n Matthew Young (Communicated by Kenneth S. Berenhaut) We study adjacency matrices of zero-divisor graphs of Zn for various n. We find their determinant and rank for all n, develop a method for finding nonzero eigen- values, and use it to find all eigenvalues for the case n p3, where p is a prime D number. We also find upper and lower bounds for the largest eigenvalue for all n. 1. Introduction Let R be a commutative ring with a unity. The notion of a zero-divisor graph of R was pioneered by Beck[1988]. It was later modified by Anderson and Livingston [1999] to be the following. Definition 1.1. The zero-divisor graph .R/ of the ring R is a graph with the set of vertices V .R/ being the set of zero-divisors of R and edges connecting two vertices x; y R if and only if x y 0. 2 D To each (finite) graph , one can associate the adjacency matrix A./ that is a square V ./ V ./ matrix with entries aij 1, if vi is connected with vj , and j j j j D zero otherwise. In this paper we study the adjacency matrices of zero-divisor graphs n .Zn/ of rings Zn of integers modulo n, where n is not prime.
    [Show full text]
  • Zero Divisor Conjecture for Group Semifields
    Ultra Scientist Vol. 27(3)B, 209-213 (2015). Zero Divisor Conjecture for Group Semifields W.B. VASANTHA KANDASAMY1 1Department of Mathematics, Indian Institute of Technology, Chennai- 600 036 (India) E-mail: [email protected] (Acceptance Date 16th December, 2015) Abstract In this paper the author for the first time has studied the zero divisor conjecture for the group semifields; that is groups over semirings. It is proved that whatever group is taken the group semifield has no zero divisors that is the group semifield is a semifield or a semidivision ring. However the group semiring can have only idempotents and no units. This is in contrast with the group rings for group rings have units and if the group ring has idempotents then it has zero divisors. Key words: Group semirings, group rings semifield, semidivision ring. 1. Introduction study. Here just we recall the zero divisor For notions of group semirings refer8-11. conjecture for group rings and the conditions For more about group rings refer 1-6. under which group rings have zero divisors. Throughout this paper the semirings used are Here rings are assumed to be only fields and semifields. not any ring with zero divisors. It is well known1,2,3 the group ring KG has zero divisors if G is a 2. Zero divisors in group semifields : finite group. Further if G is a torsion free non abelian group and K any field, it is not known In this section zero divisors in group whether KG has zero divisors. In view of the semifields SG of any group G over the 1 problem 28 of .
    [Show full text]
  • On the Cohen-Macaulay Modules of Graded Subrings
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 357, Number 2, Pages 735{756 S 0002-9947(04)03562-7 Article electronically published on April 27, 2004 ON THE COHEN-MACAULAY MODULES OF GRADED SUBRINGS DOUGLAS HANES Abstract. We give several characterizations for the linearity property for a maximal Cohen-Macaulay module over a local or graded ring, as well as proofs of existence in some new cases. In particular, we prove that the existence of such modules is preserved when taking Segre products, as well as when passing to Veronese subrings in low dimensions. The former result even yields new results on the existence of finitely generated maximal Cohen-Macaulay modules over non-Cohen-Macaulay rings. 1. Introduction and definitions The notion of a linear maximal Cohen-Macaulay module over a local ring (R; m) was introduced by Ulrich [17], who gave a simple characterization of the Gorenstein property for a Cohen-Macaulay local ring possessing a maximal Cohen-Macaulay module which is sufficiently close to being linear, as defined below. A maximal Cohen-Macaulay module (abbreviated MCM module)overR is one whose depth is equal to the Krull dimension of the ring R. All modules to be considered in this paper are assumed to be finitely generated. The minimal number of generators of an R-module M, which is equal to the (R=m)-vector space dimension of M=mM, will be denoted throughout by ν(M). In general, the length of a finitely generated Artinian module M is denoted by `(M)(orby`R(M), if it is necessary to specify the ring acting on M).
    [Show full text]
  • Modules and Lie Semialgebras Over Semirings with a Negation Map 3
    MODULES AND LIE SEMIALGEBRAS OVER SEMIRINGS WITH A NEGATION MAP GUY BLACHAR Abstract. In this article, we present the basic definitions of modules and Lie semialgebras over semirings with a negation map. Our main example of a semiring with a negation map is ELT algebras, and some of the results in this article are formulated and proved only in the ELT theory. When dealing with modules, we focus on linearly independent sets and spanning sets. We define a notion of lifting a module with a negation map, similarly to the tropicalization process, and use it to prove several theorems about semirings with a negation map which possess a lift. In the context of Lie semialgebras over semirings with a negation map, we first give basic definitions, and provide parallel constructions to the classical Lie algebras. We prove an ELT version of Cartan’s criterion for semisimplicity, and provide a counterexample for the naive version of the PBW Theorem. Contents Page 0. Introduction 2 0.1. Semirings with a Negation Map 2 0.2. Modules Over Semirings with a Negation Map 3 0.3. Supertropical Algebras 4 0.4. Exploded Layered Tropical Algebras 4 1. Modules over Semirings with a Negation Map 5 1.1. The Surpassing Relation for Modules 6 1.2. Basic Definitions for Modules 7 1.3. -morphisms 9 1.4. Lifting a Module Over a Semiring with a Negation Map 10 1.5. Linearly Independent Sets 13 1.6. d-bases and s-bases 14 1.7. Free Modules over Semirings with a Negation Map 18 2.
    [Show full text]
  • Irreducible Representations of Finite Monoids
    U.U.D.M. Project Report 2019:11 Irreducible representations of finite monoids Christoffer Hindlycke Examensarbete i matematik, 30 hp Handledare: Volodymyr Mazorchuk Examinator: Denis Gaidashev Mars 2019 Department of Mathematics Uppsala University Irreducible representations of finite monoids Christoffer Hindlycke Contents Introduction 2 Theory 3 Finite monoids and their structure . .3 Introductory notions . .3 Cyclic semigroups . .6 Green’s relations . .7 von Neumann regularity . 10 The theory of an idempotent . 11 The five functors Inde, Coinde, Rese,Te and Ne ..................... 11 Idempotents and simple modules . 14 Irreducible representations of a finite monoid . 17 Monoid algebras . 17 Clifford-Munn-Ponizovski˘ıtheory . 20 Application 24 The symmetric inverse monoid . 24 Calculating the irreducible representations of I3 ........................ 25 Appendix: Prerequisite theory 37 Basic definitions . 37 Finite dimensional algebras . 41 Semisimple modules and algebras . 41 Indecomposable modules . 42 An introduction to idempotents . 42 1 Irreducible representations of finite monoids Christoffer Hindlycke Introduction This paper is a literature study of the 2016 book Representation Theory of Finite Monoids by Benjamin Steinberg [3]. As this book contains too much interesting material for a simple master thesis, we have narrowed our attention to chapters 1, 4 and 5. This thesis is divided into three main parts: Theory, Application and Appendix. Within the Theory chapter, we (as the name might suggest) develop the necessary theory to assist with finding irreducible representations of finite monoids. Finite monoids and their structure gives elementary definitions as regards to finite monoids, and expands on the basic theory of their structure. This part corresponds to chapter 1 in [3]. The theory of an idempotent develops just enough theory regarding idempotents to enable us to state a key result, from which the principal result later follows almost immediately.
    [Show full text]
  • A Topology for Operator Modules Over W*-Algebras Bojan Magajna
    Journal of Functional AnalysisFU3203 journal of functional analysis 154, 1741 (1998) article no. FU973203 A Topology for Operator Modules over W*-Algebras Bojan Magajna Department of Mathematics, University of Ljubljana, Jadranska 19, Ljubljana 1000, Slovenia E-mail: Bojan.MagajnaÄuni-lj.si Received July 23, 1996; revised February 11, 1997; accepted August 18, 1997 dedicated to professor ivan vidav in honor of his eightieth birthday Given a von Neumann algebra R on a Hilbert space H, the so-called R-topology is introduced into B(H), which is weaker than the norm and stronger than the COREultrastrong operator topology. A right R-submodule X of B(H) is closed in the Metadata, citation and similar papers at core.ac.uk Provided byR Elsevier-topology - Publisher if and Connector only if for each b #B(H) the right ideal, consisting of all a # R such that ba # X, is weak* closed in R. Equivalently, X is closed in the R-topology if and only if for each b #B(H) and each orthogonal family of projections ei in R with the sum 1 the condition bei # X for all i implies that b # X. 1998 Academic Press 1. INTRODUCTION Given a C*-algebra R on a Hilbert space H, a concrete operator right R-module is a subspace X of B(H) (the algebra of all bounded linear operators on H) such that XRX. Such modules can be characterized abstractly as L -matricially normed spaces in the sense of Ruan [21], [11] which are equipped with a completely contractive R-module multi- plication (see [6] and [9]).
    [Show full text]
  • Modules Over the Steenrod Algebra
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Tcwhcv’ Vol. 10. PD. 211-282. Pergamon Press, 1971. Printed in Great Britain MODULES OVER THE STEENROD ALGEBRA J. F. ADAMS and H. R. MARGOLIS (Received 4 November 1970 ; revised 26 March 197 1) 90. INTRODUCTION IN THIS paper we will investigate certain aspects of the structure of the mod 2 Steenrod algebra, A, and of modules over it. Because of the central role taken by the cohomology groups of spaces considered as A-modules in much of recent algebraic topology (e.g. [ 11, [2], [7]), it is not unreasonable to suppose that the algebraic structure that we elucidate will be of benefit in the study of topological problems. The main result of this paper, Theorem 3.1, gives a criterion for a module !M to be free over the Steenrod algebra, or over some subHopf algebra B of A. To describe this criterion consider a ring R and a left module over R, M; for e E R we define the map e: M -+ M by e(m) = em. If the element e satisfies the condition that e2 = 0 then im e c ker e, therefore we can define the homology group H(M, e) = ker elime. Then, for example, H(R, e) = 0 implies that H(F, e) = 0 for any free R-module F. We can now describe the criterion referred to above: for any subHopf algebra B of A there are elements e,-with ei2 = 0 and H(B, ei) = O-such that a connected B-module M is free over B if and only if H(M, ei) = 0 for all i.
    [Show full text]
  • 6. Localization
    52 Andreas Gathmann 6. Localization Localization is a very powerful technique in commutative algebra that often allows to reduce ques- tions on rings and modules to a union of smaller “local” problems. It can easily be motivated both from an algebraic and a geometric point of view, so let us start by explaining the idea behind it in these two settings. Remark 6.1 (Motivation for localization). (a) Algebraic motivation: Let R be a ring which is not a field, i. e. in which not all non-zero elements are units. The algebraic idea of localization is then to make more (or even all) non-zero elements invertible by introducing fractions, in the same way as one passes from the integers Z to the rational numbers Q. Let us have a more precise look at this particular example: in order to construct the rational numbers from the integers we start with R = Z, and let S = Znf0g be the subset of the elements of R that we would like to become invertible. On the set R×S we then consider the equivalence relation (a;s) ∼ (a0;s0) , as0 − a0s = 0 a and denote the equivalence class of a pair (a;s) by s . The set of these “fractions” is then obviously Q, and we can define addition and multiplication on it in the expected way by a a0 as0+a0s a a0 aa0 s + s0 := ss0 and s · s0 := ss0 . (b) Geometric motivation: Now let R = A(X) be the ring of polynomial functions on a variety X. In the same way as in (a) we can ask if it makes sense to consider fractions of such polynomials, i.
    [Show full text]
  • A Gentle Introduction to Rings and Modules
    What We Need to Know about Rings and Modules Class Notes for Mathematics 700 by Ralph Howard October 31, 1995 Contents 1 Rings 1 1.1 The De¯nition of a Ring ::::::::::::::::::::::::::::::: 1 1.2 Examples of Rings :::::::::::::::::::::::::::::::::: 3 1.2.1 The Integers :::::::::::::::::::::::::::::::::: 3 1.2.2 The Ring of Polynomials over a Field :::::::::::::::::::: 3 1.2.3 The Integers Modulo n ::::::::::::::::::::::::::: 4 1.3 Ideals in Rings :::::::::::::::::::::::::::::::::::: 4 2 Euclidean Domains 5 2.1 The De¯nition of Euclidean Domain ::::::::::::::::::::::::: 5 2.2 The Basic Examples of Euclidean Domains ::::::::::::::::::::: 5 2.3 Primes and Factorization in Euclidean Domains :::::::::::::::::: 6 3 Modules 8 3.1 The De¯nition of a Module :::::::::::::::::::::::::::::: 8 3.2 Examples of Modules ::::::::::::::::::::::::::::::::: 9 3.2.1 R and its Submodules. :::::::::::::::::::::::::::: 9 3.2.2 The Coordinate Space Rn. :::::::::::::::::::::::::: 9 3.2.3 Modules over the Polynomial Ring F[x] De¯ned by a Linear Map. :::: 10 3.3 Direct Sums of Submodules ::::::::::::::::::::::::::::: 10 1 Rings 1.1 The De¯nition of a Ring We have been working with ¯elds, which are the natural generalization of familiar objects like the real, rational and complex numbers where it is possible to add, subtract, multiply and divide. However there are some other very natural objects like the integers and polynomials over a ¯eld where we can add, subtract, and multiply, but where it not possible to divide. We will call such rings. Here is the o±cial de¯nition: De¯nition 1.1 A commutative ring (R; +; ¢) is a set R with two binary operations + and ¢ (as usual we will often write x ¢ y = xy) so that 1 1.
    [Show full text]
  • On Coatomic Semimodules Over Commutative Semirings
    C¸ankaya University Journal of Science and Engineering Volume 8 (2011), No. 2, 189{200 On Coatomic Semimodules over Commutative Semirings S. Ebrahimi Atani1 and F. Esmaeili Khalil Saraei1;∗ 1Department of Mathematics, University of Guilan, P.O. Box 1914, Rasht, Iran ∗Corresponding author: [email protected] Ozet.¨ Bu makale, de˘gi¸smelihalkalar ¨uzerindekikoatomik mod¨ullerve yarıbasit mod¨uller hakkında iyi bilinen bazı sonu¸cları,de˘gi¸smeli yarıhalkalar ¨uzerindekikoatomik ve yarıbasit yarımod¨ulleregenelle¸stirmi¸stir.Benzer sonu¸claraula¸smadakitemel zorluk, altyarımod¨ulle- rin sa˘glaması gereken ekstra ¨ozellikleriortaya ¸cıkarmaktır. Yarı mod¨ullerin¸calı¸sılmasında yarımod¨ullerin k-altyarımod¨ullerinin¨onemlioldukları ispatlanmı¸stır.y Anahtar Kelimeler. Yarıhalka, koatomik yarımod¨uller, yarıbasit yarımod¨uller, k-t¨um- lenmi¸syarımod¨uller. Abstract. This paper generalizes some well known results on coatomic and semisimple modules in commutative rings to coatomic and semisimple semimodules over commutative semirings. The main difficulty is figuring out what additional hypotheses the subsemimod- ules must satisfy to get similar results. It is proved that k-subsemimodules of semimodules are important in the study of semimodules. Keywords. Semiring, coatomic semimodules, semisimple semimodules, k-supplemented semimodules. 1. Introduction Study of semirings has been carried out by several authors since there are numerous applications of semirings in various branches of mathematics and computer sciences (see [6],[7] and [9]). It is well known that for a finitely generated module M, every proper submodule of M is contained in a maximal submodule. As an attempt to generalize this property of finitely generated modules we have coatomic modules. In [12], Z¨oschinger calls a module M coatomic if every proper submodule of M is contained in a maximal submodule of M.
    [Show full text]
  • Rings of Quotients and Localization a Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Ar
    RINGS OF QUOTIENTS AND LOCALIZATION A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREME N TS FOR THE DEGREE OF MASTER OF ARTS IN MATHEMATICS IN THE GRADUATE SCHOOL OF THE TEXAS WOMAN'S UNIVERSITY COLLEGE OF ARTS AND SCIENCE S BY LILLIAN WANDA WRIGHT, B. A. DENTON, TEXAS MAY, l974 TABLE OF CONTENTS INTRODUCTION . J Chapter I. PRIME IDEALS AND MULTIPLICATIVE SETS 4 II. RINGS OF QUOTIENTS . e III. CLASSICAL RINGS OF QUOTIENTS •• 25 IV. PROPERTIES PRESERVED UNDER LOCALIZATION 30 BIBLIOGRAPHY • • • • • • • • • • • • • • • • ••••••• 36 iii INTRODUCTION The concept of a ring of quotients was apparently first introduced in 192 7 by a German m a thematician Heinrich Grell i n his paper "Bezeihungen zwischen !deale verschievener Ringe" [ 7 ] . I n his work Grelt observed that it is possible to associate a ring of quotients with the set S of non -zero divisors in a r ing. The elements of this ring of quotients a r e fractions whose denominators b elong to Sand whose numerators belong to the commutative ring. Grell's ring of quotients is now called the classical ring of quotients. 1 GrelL 1 s concept of a ring of quotients remained virtually unchanged until 1944 when the Frenchman Claude C hevalley presented his paper, "On the notion oi the Ring of Quotients of a Prime Ideal" [ 5 J. C hevalley extended Gre ll's notion to the case wher e Sis the compte- ment of a primt: ideal. (Note that the set of all non - zer o divisors and the set- theoretic c om?lement of a prime ideal are both instances of .multiplicative sets -- sets tha t are closed under multiplicatio n.) 1According to V.
    [Show full text]
  • Monoid Modules and Structured Document Algebra (Extendend Abstract)
    Monoid Modules and Structured Document Algebra (Extendend Abstract) Andreas Zelend Institut fur¨ Informatik, Universitat¨ Augsburg, Germany [email protected] 1 Introduction Feature Oriented Software Development (e.g. [3]) has been established in computer science as a general programming paradigm that provides formalisms, meth- ods, languages, and tools for building maintainable, customisable, and exten- sible software product lines (SPLs) [8]. An SPL is a collection of programs that share a common part, e.g., functionality or code fragments. To encode an SPL, one can use variation points (VPs) in the source code. A VP is a location in a pro- gram whose content, called a fragment, can vary among different members of the SPL. In [2] a Structured Document Algebra (SDA) is used to algebraically de- scribe modules that include VPs and their composition. In [4] we showed that we can reason about SDA in a more general way using a so called relational pre- domain monoid module (RMM). In this paper we present the following extensions and results: an investigation of the structure of transformations, e.g., a condi- tion when transformations commute, insights into the pre-order of modules, and new properties of predomain monoid modules. 2 Structured Document Algebra VPs and Fragments. Let V denote a set of VPs at which fragments may be in- serted and F(V) be the set of fragments which may, among other things, contain VPs from V. Elements of F(V) are denoted by f1, f2,... There are two special elements, a default fragment 0 and an error . An error signals an attempt to assign two or more non-default fragments to the same VP within one module.
    [Show full text]