Antibiotics and the Mechanisms of Resistance to Antibiotics

Total Page:16

File Type:pdf, Size:1020Kb

Antibiotics and the Mechanisms of Resistance to Antibiotics Review Article Pharmacology ANTIBIOTICS AND THE MECHANISMS OF RESISTANCE TO ANTIBIOTICS SALİH CESUR* ALİ P. DEMİRÖZ* SUMMARY: Microorganisms can develop resistance to antibiotics used in the treatment with a variety of mechanisms. In this article, the general mechanisms of resistance to antibiotics and resistance mechanisms that are frequently encountered in antibiotic groups were summarized. Key words: Antibiotics, antibiotic resistance, mechanisms. Resistance is the ability of a bacteria against the It has no hereditary property. It develops as result of the antogonizing effect of an antibacterial agent upon repro- natural resistance, or the microorganisms not including the duction prevention or bactericidal. The development of structure of the target antibiotic, or antibiotics not reaching resistance to antibiotics in bacteria often develop as a to its target due to its characteristics. For example, Gram- result of unnecessary and inappropriate use of antibiotics. negative bacteria vancomycin does not pass in the outer Through the intense use of antibiotics, resistant membrane so Gram-negative bacteria is naturally resist- microorganisms have emerged over the years, and ant to vancomycin. Similarly, L-form shape of bacteria problems were started to be experienced for the treatr- which are wall-less forms of the bacteria, and the bacteria ment of these infections emerged with these resistant such as cell wall-less cell Mycoplasma and Ureaplasma microorganisms. Today, on the one hand trying to are naturally resistant to beta-lactam antibiotics that inhibit develop new drugs, on the other hand, there are difficul- the cell wall synthesis (1,4-6). ties in treatment as a result of development of resistance 2. Acquired resistance: As result of the changes in to these drugs rapidly. The development of resistance to the genetic characteristics of bacteria, an acquired antibiotics is a major public health problem in all over the resistance occurs due to its not being affected from the world (1-3). antibiotics it has been responsive before. This kind of The main four types of resistance to antibiotics resistance occurs due to mainly structures of chromo- develops; some or extrachromosomal (plasmid, transposon, etc.). 1. Natural (Intrensic) resistance a. Chromosomal resistance arise from mutations in 2. Acquired resistance developing in spontaneous bacterial chromosome 3. Cross-resistance (spontaneous). Such mutations may occur according to 4. Multi-drug resistance and pan-resistance some physical (ultraviolet, etc.) and chemical factors. 1. Natural (Intrensic, Structural) resistance: This kind This can be a result of structural changes in bacterial of resistance is caused by the structural characteristics of cells. The result may be reduced permeability of bacter- bacteria and it is not associated with the use of antibiotics. ial drug or changes of the target of the drug may be in *From Department of Infectious Diseases and Clinical Microbiology, the cell. Streptomycin, aminoglycosides, erythromycin, Ankara Training and Research Hospital, Ankara, Turkey. lincomycin can develop resistance against these types. 138 Medical Journal of Islamic World Academy of Sciences 21:4, 138-142, 2013 ANTIBIOTICS AND THE MECHANISMS OF RESISTANCE TO ANTIBIOTICS CESUR, DEMİRÖZ Spontaneous chromosomal mutations are 10-7-10-12. in the structure of the target etc. If the bacterial strains Therefore such resistance in the clinic are less and often resistant to three or more classes of antimicrobials, it is does not cause a problem (1,4). considered as multi-drug resistant. If the strains, resistant b. Extrachromosomal resistance, depends extra- to all but one or two antibiotic gruops, they are considered chromosomal genetic elements that can be transferred as extensively-drug-resistant, if the strains resistant to all in various ways like plasmids, transposons and integro. available antibiotic, they are classified as pan-drug-resist- Plasmids are extrachromosomal DNA fragments ant. For example, multidrug resistance (MDR) Acineto- that can replicate independently from chromosome. bacter species (spp.) can be defined as the isolate Plasmid genes are usually responsible for the genera- resistant to at least three classes of antimicrobial agents tion of enzymes which inactive antibiotics. Resistance (namely, all penicillins and cephalosporins (including genes and plasmids carrying the genetic material from a inhibitor combinations), fluroquinolones, and aminoglyco- bacterium in three ways those are transduction, transfor- sides). Extensive drug resistant (XDR) Acinetobacter mation, conjugation, and transposition mechanism. spp.’ shall be the Acinetobacter spp. isolate that is resist- Transduction by bacteriophage resistance genes, ant to the three classes of antimicrobials described above transformation via DNA binding protein called compe- (MDR) and shall also be resistant to carbapenems. Pan- tence factor, conjugation via sex pilus between two live drug resistant or pan-resistant (PDR) Acinetobacter spp. bacteria through transfer of resistance genes. Antibiotic shall be the XDR Acinetobacter spp. that is resistant to resistance genes on the chromosome or plasmid is inter- polymyxins (colistin) and tigecycline (6-8). connected with each other and located near the start of specific units of integration is called integrons. Integrons MECHANISMS OF RESISTANCE TO ANTIBIOTICS are in warm regions where recombination (re-edited) is a. The changes that occur in the receptor that con- very common (1,4,5). nected to the drug and the region of the connection ‘Con- 3. Cross resistance: Some microorganisms which nection of the antibiotics’ target areas are different. They are resistant to a certain drug, that acts with the same or can be various enzymes and ribosomes. Resistance similar mechanism and also resistant to other drugs. associated with alterations in the ribosomal target are the This condition is usually observed in antibiotics whose most frequently observed in macrolide antibiotics. Muta- structures are similar: such as resistance between eryth- tions in penicillin-binding proteins (beta-lactamase romycin, neomycin-kanamycin or resistance between enzymes) and Staphylococcus aureus, Streptococcus cephalosporins and penicillins. However, sometimes it pneumoniae, Neisseria meningitidis and Enterococcus can also be seen in a completely unrelated drug groups. faecium strains can develop resistance to penicillin . There is an example of cross-resistance between eryth- Changes in the structure of the target, beta-laktam, romycin-lincomycin. This may be chromosomal or extra- quinolones, glycopeptides, macrolides, tetracycline and chromosomal origin (4,5). rifampicin resistance is an important mechanism in the 4. Multi-drug resistance and pan-resistance: Multi- development (10-13). drug-resistant organisms are usually bacteria that have b. Enzymatic inactivation of antibiotics: Most of become resistant to the antibiotics used to treat them. Gram-positive and Gram-negative bacterias synthesize This means that a particular drug is no longer able to kill enzymes that degrade antibiotics. This enzymatic inacti- or control the bacteria. Inapropriate use of antibiotics for vation mechanism is one of the most important mecha- therapy resulted in the selection of pathogenic bacteria nisms of resistance. In this group, beta-lactamases, resistant to multiple drugs. Multidrug resistance in bacte- aminoglycosides, modifying enzymes (acetylase, fosfo- ria can be occured by one of two mechanisms. First, riaz adenilaz and enzymes) degrade beta-lactam antibi- these bacteria may accumulate multiple genes, each otics and continually increasing their number of which coding for resistance to a single drug. This type of resist- inactivates enzymes include chloramphenicol and eryth- ance occurs typically on resistance (R) plasmids. Second romycin (1,5,12). type of resistance, namely multidrug resistance may also c. Reduction of the inner and outer membrane per- occur by the increased expression of genes that code for meability: This resistance due to changes in the internal multidrug efflux pumps, enzymatic inactivation, changes and external membrane permeability, decrease in drug Medical Journal of Islamic World Academy of Sciences 21:4, 138-142, 2013 139 ANTIBIOTICS AND THE MECHANISMS OF RESISTANCE TO ANTIBIOTICS CESUR, DEMİRÖZ uptake into the cell or quickly ejected from the active Class B beta-lactamases (Group 3): Stenotropho- resistance of the pump systems. As a result of a change monas maltophilia, Bacteroides fragilis, Aeromonas and in membrane permeability decreased porin mutations in Legionella detectable species, enzymes which hydrolyze resistant strains can occur in proteins. For example; in carbapenems as well as penicillin and cephalosporins Pseudomonas aeruginosa strains a specific porin called (3,5,17). OprD can cause to mutation carbapenem resistance. Class C beta-lactamases: Mainly parts cephalos- Reduction in permeability of the outer membrane may porins (cephalosporins). Usually found on Gram-nega- play an important role in resistance to quinolones and tive bacteria and localized to chromosome (Group I, aminoglycosides (1,5,12,14). AmpC etc.). Often the feature of inducible. Produced in d. Flush out of the drug (Active Pump System): high levels in the presence of a beta-lactam antibiotics Resistance developing through the active pump systems and are not inhibited by clavulanic acid. They are also mostly common in tetracycline group of antibiotics. called Inducible
Recommended publications
  • Mechanisms and Strategies to Overcome Multiple Drug Resistance in Cancer
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector FEBS Letters 580 (2006) 2903–2909 Minireview Mechanisms and strategies to overcome multiple drug resistance in cancer Tomris Ozben* Akdeniz University, Faculty of Medicine, Department of Biochemistry, 07070 Antalya, Turkey Received 30 January 2006; accepted 9 February 2006 Available online 17 February 2006 Edited by Horst Feldmann The cytotoxic drugs that are most frequently associated with Abstract One of the major problems in chemotherapy is multi- drug resistance (MDR) against anticancer drugs. ATP-binding MDR are hydrophobic, amphipathic natural products, such as cassette (ABC) transporters are a family of proteins that medi- the taxanes (paclitaxel and docetaxel), vinca alkaloids (vinorel- ate MDR via ATP-dependent drug efflux pumps. Many MDR bine, vincristine, and vinblastine), anthracyclines (doxorubicin, inhibitors have been identified, but none of them have been pro- daunorubicin, and epirubicin), epipodophyllotoxins (etoposide ven clinically useful without side effects. Efforts continue to dis- and teniposide), antimetabolites (methorexate, fluorouracil, cover not toxic MDR inhibitors which lack pharmacokinetic cytosar, 5-azacytosine, 6-mercaptopurine, and gemcitabine) interactions with anticancer drugs. Novel approaches have also topotecan, dactinomycin, and mitomycin C [4,6–8]. been designed to inhibit or circumvent MDR. In this review, Overexpression of ATP-binding cassette (ABC) transporters the structure and function of ABC transporters and development has been shown to be responsible for MDR [5]. Therefore eluci- of MDR inhibitors are described briefly including various ap- dation of the structure and function for each ABC transporter is proaches to suppress MDR mechanisms.
    [Show full text]
  • Chapter 12 Antimicrobial Therapy Antibiotics
    Chapter 12 Antimicrobial Therapy Topics: • Ideal drug - Antimicrobial Therapy - Selective Toxicity • Terminology - Survey of Antimicrobial Drug • Antibiotics - Microbial Drug Resistance - Drug and Host Interaction An ideal antimicrobic: Chemotherapy is the use of any chemical - soluble in body fluids, agent in the treatment of disease. - selectively toxic , - nonallergenic, A chemotherapeutic agent or drug is any - reasonable half life (maintained at a chemical agent used in medical practice. constant therapeutic concentration) An antibiotic agent is usually considered to - unlikely to elicit resistance, be a chemical substance made by a - has a long shelf life, microorganism that can inhibit the growth or - reasonably priced. kill microorganisms. There is no ideal antimicrobic An antimicrobic or antimicrobial agent is Selective Toxicity - Drugs that specifically target a chemical substance similar to an microbial processes, and not the human host’s. antibiotic, but may be synthetic. Antibiotics Spectrum of antibiotics and targets • Naturally occurring antimicrobials – Metabolic products of bacteria and fungi – Reduce competition for nutrients and space • Bacteria – Streptomyces, Bacillus, • Molds – Penicillium, Cephalosporium * * 1 The mechanism of action for different 5 General Mechanisms of Action for antimicrobial drug targets in bacterial cells Antibiotics - Inhibition of Cell Wall Synthesis - Disruption of Cell Membrane Function - Inhibition of Protein Synthesis - Inhibition of Nucleic Acid Synthesis - Anti-metabolic activity Antibiotics
    [Show full text]
  • Antibiotic Resistance: from the Bench to Patients
    antibiotics Editorial Antibiotic Resistance: From the Bench to Patients Márió Gajdács 1,* and Fernando Albericio 2,3 1 Department of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, Dóm tér 10., 6720 Szeged, Hungary 2 School of Chemistry, University of KwaZulu-Natal, Durban 4001, South Africa 3 Department of Organic Chemistry, University of Barcelona, CIBER-BBN, 08028 Barcelona, Spain * Correspondence: [email protected]; Tel.: +36-62-341-330 Received: 20 August 2019; Accepted: 26 August 2019; Published: 27 August 2019 The discovery and subsequent clinical introduction of antibiotics is one of the most important game-changers in the history of medicine [1]. These drugs have saved millions of lives from infections that would previously have been fatal, and later, they allowed for the introduction of surgical interventions, organ transplantation, care of premature infants, and cancer chemotherapy [2]. Nevertheless, the therapy of bacterial infections is becoming less and less straightforward due to the emergence of multidrug resistance (MDR) in these pathogens [3]. Direct consequences of antibiotic resistance include delays in the onset of the appropriate (effective) antimicrobial therapy, the need to use older, more toxic antibiotics (e.g., colistin) with a disadvantageous side-effect profile, longer hospital stays, and an increasing burden on the healthcare infrastructure; overall, a decrease in the quality-of-life (QoL) and an increase in the mortality rate of the affected patients [4,5]. To highlight the severity of the issue, several international declarations have been published to call governments around the globe to take action on antimicrobial resistance [6–9]. Since the 1980s, pharmaceutical companies have slowly turned away from antimicrobial research and towards the drug therapy of chronic non-communicable diseases [10,11].
    [Show full text]
  • Antimicrobial Resistance Benchmark 2020 Antimicrobial Resistance Benchmark 2020
    First independent framework for assessing pharmaceutical company action Antimicrobial Resistance Benchmark 2020 Antimicrobial Resistance Benchmark 2020 ACKNOWLEDGEMENTS The Access to Medicine Foundation would like to thank the following people and organisations for their contributions to this report.1 FUNDERS The Antimicrobial Resistance Benchmark research programme is made possible with financial support from UK AID and the Dutch Ministry of Health, Welfare and Sport. Expert Review Committee Research Team Reviewers Hans Hogerzeil - Chair Gabrielle Breugelmans Christine Årdal Gregory Frank Fatema Rafiqi Karen Gallant Nina Grundmann Adrián Alonso Ruiz Hans Hogerzeil Magdalena Kettis Ruth Baron Hitesh Hurkchand Joakim Larsson Dulce Calçada Joakim Larsson Marc Mendelson Moska Hellamand Marc Mendelson Margareth Ndomondo-Sigonda Kevin Outterson Katarina Nedog Sarah Paulin (Observer) Editorial Team Andrew Singer Anna Massey Deirdre Cogan ACCESS TO MEDICINE FOUNDATION Rachel Jones The Access to Medicine Foundation is an independent Emma Ross non-profit organisation based in the Netherlands. It aims to advance access to medicine in low- and middle-income Additional contributors countries by stimulating and guiding the pharmaceutical Thomas Collin-Lefebvre industry to play a greater role in improving access to Alex Kong medicine. Nestor Papanikolaou Address Contact Naritaweg 227-A For more information about this publication, please contact 1043 CB, Amsterdam Jayasree K. Iyer, Executive Director The Netherlands [email protected] +31 (0) 20 215 35 35 www.amrbenchmark.org 1 This acknowledgement is not intended to imply that the individuals and institutions referred to above endorse About the cover: Young woman from the Antimicrobial Resistance Benchmark methodology, Brazil, where 40%-60% of infections are analyses or results.
    [Show full text]
  • Pharmacogenetic Testing: a Tool for Personalized Drug Therapy Optimization
    pharmaceutics Review Pharmacogenetic Testing: A Tool for Personalized Drug Therapy Optimization Kristina A. Malsagova 1,* , Tatyana V. Butkova 1 , Arthur T. Kopylov 1 , Alexander A. Izotov 1, Natalia V. Potoldykova 2, Dmitry V. Enikeev 2, Vagarshak Grigoryan 2, Alexander Tarasov 3, Alexander A. Stepanov 1 and Anna L. Kaysheva 1 1 Biobanking Group, Branch of Institute of Biomedical Chemistry “Scientific and Education Center”, 109028 Moscow, Russia; [email protected] (T.V.B.); [email protected] (A.T.K.); [email protected] (A.A.I.); [email protected] (A.A.S.); [email protected] (A.L.K.) 2 Institute of Urology and Reproductive Health, Sechenov University, 119992 Moscow, Russia; [email protected] (N.V.P.); [email protected] (D.V.E.); [email protected] (V.G.) 3 Institute of Linguistics and Intercultural Communication, Sechenov University, 119992 Moscow, Russia; [email protected] * Correspondence: [email protected]; Tel.: +7-499-764-9878 Received: 2 November 2020; Accepted: 17 December 2020; Published: 19 December 2020 Abstract: Pharmacogenomics is a study of how the genome background is associated with drug resistance and how therapy strategy can be modified for a certain person to achieve benefit. The pharmacogenomics (PGx) testing becomes of great opportunity for physicians to make the proper decision regarding each non-trivial patient that does not respond to therapy. Although pharmacogenomics has become of growing interest to the healthcare market during the past five to ten years the exact mechanisms linking the genetic polymorphisms and observable responses to drug therapy are not always clear. Therefore, the success of PGx testing depends on the physician’s ability to understand the obtained results in a standardized way for each particular patient.
    [Show full text]
  • Antibiotic Resistance in Plant-Pathogenic Bacteria
    PY56CH08-Sundin ARI 23 May 2018 12:16 Annual Review of Phytopathology Antibiotic Resistance in Plant-Pathogenic Bacteria George W. Sundin1 and Nian Wang2 1Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, Michigan 48824, USA; email: [email protected] 2Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, Florida 33850, USA Annu. Rev. Phytopathol. 2018. 56:8.1–8.20 Keywords The Annual Review of Phytopathology is online at kasugamycin, oxytetracycline, streptomycin, resistome phyto.annualreviews.org https://doi.org/10.1146/annurev-phyto-080417- Abstract 045946 Antibiotics have been used for the management of relatively few bacterial Copyright c 2018 by Annual Reviews. plant diseases and are largely restricted to high-value fruit crops because of Access provided by INSEAD on 06/01/18. For personal use only. All rights reserved the expense involved. Antibiotic resistance in plant-pathogenic bacteria has Annu. Rev. Phytopathol. 2018.56. Downloaded from www.annualreviews.org become a problem in pathosystems where these antibiotics have been used for many years. Where the genetic basis for resistance has been examined, antibiotic resistance in plant pathogens has most often evolved through the acquisition of a resistance determinant via horizontal gene transfer. For ex- ample, the strAB streptomycin-resistance genes occur in Erwinia amylovora, Pseudomonas syringae,andXanthomonas campestris, and these genes have pre- sumably been acquired from nonpathogenic epiphytic bacteria colocated on plant hosts under antibiotic selection. We currently lack knowledge of the effect of the microbiome of commensal organisms on the potential of plant pathogens to evolve antibiotic resistance.
    [Show full text]
  • Challenges to Tackling Antimicrobial Resistance
    Challenges to Tackling Antimicrobial Resistance Antimicrobial resistance (AMR) is a biological mechanism whereby a microorganism evolves over time to develop the ability to become resistant to antimicrobial therapies such as antibiotics. The drivers of and poten- tial solutions to AMR are complex, often spanning multiple sectors. The internationally recognized response to AMR advocates for a ‘One Health’ approach, which requires policies to be developed and implemented across human, animal, and environmental health. To date, misaligned economic incentives have slowed the development of novel antimicrobials and lim- ited efforts to reduce antimicrobial usage. However, the research which underpins the variety of policy options to tackle AMR is rapidly evolving across multiple disciplines such as human medicine, veterinary medicine, agricultural sciences, epidemiology, economics, sociology and psychology. By bringing together in one place the latest evidence and analysing the different facets of the complex problem of tackling AMR, this book offers an accessible summary for policy-makers, academics and students on the big questions around AMR policy. This title is also available as Open Access on Cambridge Core. Michael anderson is a Research Officer in Health Policy at the Department of Health Policy, London School of Economics and Political Science, and a Medical Doctor undertaking General Practice specialty training. Michele cecchini is a Senior Health Economist, Health Division, in the Directorate for Employment, Labour and Social Affairs, Organisation for Economic Co-operation and Development. elias Mossialos is Brian Abel-Smith Professor of Health Policy, Head of the Department of Health Policy at the London School of Economics and Political Science, and Co-Director of the European Observatory on Health Systems.
    [Show full text]
  • Socioeconomic Factors Associated with Antimicrobial Resistance Of
    01 Pan American Journal Original research of Public Health 02 03 04 05 06 Socioeconomic factors associated with antimicrobial 07 08 resistance of Pseudomonas aeruginosa, 09 10 Staphylococcus aureus, and Escherichia coli in Chilean 11 12 hospitals (2008–2017) 13 14 15 Kasim Allel,1 Patricia García,2 Jaime Labarca,3 José M. Munita,4 Magdalena Rendic,5 Grupo 16 6 5 17 Colaborativo de Resistencia Bacteriana, and Eduardo A. Undurraga 18 19 20 21 Suggested citation Allel K, García P, Labarca J, Munita JM, Rendic M; Grupo Colaborativo de Resistencia Bacteriana; et al. Socioeconomic fac- 22 tors associated with antimicrobial resistance of Pseudomonas aeruginosa, Staphylococcus aureus, and Escherichia coli in 23 Chilean hospitals (2008–2017). Rev Panam Salud Publica. 2020;44:e30. https://doi.org/10.26633/RPSP.2020.30 24 25 26 27 ABSTRACT Objective. To identify socioeconomic factors associated with antimicrobial resistance of Pseudomonas aeru- 28 ginosa, Staphylococcus aureus, and Escherichia coli in Chilean hospitals (2008–2017). 29 Methods. We reviewed the scientific literature on socioeconomic factors associated with the emergence and 30 dissemination of antimicrobial resistance. Using multivariate regression, we tested findings from the literature drawing from a longitudinal dataset on antimicrobial resistance from 41 major private and public hospitals and 31 a nationally representative household survey in Chile (2008–2017). We estimated resistance rates for three pri- 32 ority antibiotic–bacterium pairs, as defined by the Organisation for Economic Co-operation and Development; 33 i.e., imipenem and meropenem resistant P. aeruginosa, cloxacillin resistant S. aureus, and cefotaxime and 34 ciprofloxacin resistant E. coli. 35 Results.
    [Show full text]
  • Pharmacogenomics to Predict Tumor Therapy Response: a Focus on ATP-Binding Cassette Transporters and Cytochromes P450
    Journal of Personalized Medicine Review Pharmacogenomics to Predict Tumor Therapy Response: A Focus on ATP-Binding Cassette Transporters and Cytochromes P450 Viktor Hlaváˇc 1,2,* , Petr Holý 1,2,3 and Pavel Souˇcek 1,2 1 Toxicogenomics Unit, National Institute of Public Health, 100 00 Prague, Czech Republic; [email protected] (P.H.); [email protected] (P.S.) 2 Laboratory of Pharmacogenomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, 306 05 Pilsen, Czech Republic 3 Third Faculty of Medicine, Charles University, 100 00 Prague, Czech Republic * Correspondence: [email protected]; Tel.: +420-267082681; Fax: +420-267311236 Received: 31 July 2020; Accepted: 26 August 2020; Published: 28 August 2020 Abstract: Pharmacogenomics is an evolving tool of precision medicine. Recently,due to the introduction of next-generation sequencing and projects generating “Big Data”, a plethora of new genetic variants in pharmacogenes have been discovered. Cancer resistance is a major complication often preventing successful anticancer treatments. Pharmacogenomics of both somatic mutations in tumor cells and germline variants may help optimize targeted treatments and improve the response to conventional oncological therapy. In addition, integrative approaches combining copy number variations and long noncoding RNA profiling with germline and somatic variations seem to be a promising approach as well. In pharmacology, expression and enzyme activity are traditionally the more studied aspects of ATP-binding cassette transporters and cytochromes P450. In this review, we briefly introduce the field of pharmacogenomics and the advancements driven by next-generation sequencing and outline the possible roles of genetic variation in the two large pharmacogene superfamilies.
    [Show full text]
  • Antimicrobial Drug Resistance: “Prediction Is Very Difficult, Especially About the Future”1 Patrice Courvalin*
    Antimicrobial Drug Resistance: “Prediction Is Very Difficult, Especially about the Future”1 Patrice Courvalin* Evolution of bacteria towards resistance to antimicro- these drugs; a notion reinforced by the observation that bial drugs, including multidrug resistance, is unavoidable resistance is slowly reversible (3,4). because it represents a particular aspect of the general Therefore, attempting to predict the future of the rela- evolution of bacteria that is unstoppable. Therefore, the tionship between antimicrobial drugs and bacteria is con- only means of dealing with this situation is to delay the ceptually challenging and potentially useful. For the sake emergence and subsequent dissemination of resistant bac- teria or resistance genes. Resistance to antimicrobial drugs of convenience, the examples will be taken mainly from in bacteria can result from mutations in housekeeping the work carried out in the author’s laboratory, although structural or regulatory genes. Alternatively, resistance can numerous other examples can be found in the literature. result from the horizontal acquisition of foreign genetic The clinically relevant predictable resistance types are information. The 2 phenomena are not mutually exclusive listed in the Table. Although they have not yet been report- and can be associated in the emergence and more efficient ed, they may exist in nature; their apparent absence is, at spread of resistance. This review discusses the predictable least for some of them, rather surprising. For example, future of the relationship between antimicrobial drugs and streptococci, including pneumococci and groups A, C, and bacteria. G, can easily acquire in vitro conjugative plasmids from enterococci and stably maintain and phenotypically ver the last 60 years, bacteria and, in particular, those express them (5).
    [Show full text]
  • Healthcare Professionals' Knowledge of Pharmacogenetics and Attitudes
    ORIGINAL RESEARCH published: 12 January 2021 doi: 10.3389/fphar.2020.551522 Healthcare Professionals’ Knowledge of Pharmacogenetics and Attitudes Towards Antimicrobial Utilization in Zambia: Implications for a Precision Medicine Approach to Reducing Antimicrobial Resistance Webrod Mufwambi 1,2,3, Julia Stingl 4, Collen Masimirembwa 2, Justen Manasa 2,3, Charles Nhachi 3, Nadina Stadler 5, Chiluba Mwila 1, Aubrey Chichonyi Kalungia 1*, Moses Mukosha 1, Chenai S. Mutiti 2,3, Alfred Kamoto 2,3, Patrick Kaonga 6,7, Edited by: Brian Godman 8,9,10 and Derick Munkombwe 1 Irene Lenoir-Wijnkoop, 1 2 Utrecht University, Netherlands Department of Pharmacy, School of Health Sciences, University of Zambia, Lusaka, Zambia, African Institute of Biomedical Science and Technology, Harare, Zimbabwe, 3University of Zimbabwe, College of Health Sciences, Harare, Zimbabwe, 4RWTH Reviewed by: University Hospital Aachen, Aachen, Germany, 5Research Division, Federal Institute for Drugs and Medical Devices, Bonn, Shazia Qasim Jamshed, Germany, 6Department of Epidemiology and Biostatistics, School of Public Health, University of Zambia, Lusaka, Zambia, International Islamic University 7Tropical Gastroenterology and Nutrition Group, School of Medicine, University of Zambia, Lusaka, Zambia, 8Division of Public Malaysia, Malaysia Health Pharmacy and Management, School of Pharmacy, Sefako Makgatho Health Sciences University, Rankuwa, South Africa, Oliver Van Hecke, 9Division of Clinical Pharmacology, Karolinska Institute, Stockholm, Sweden, 10Strathclyde Institute of Pharmacy and Biomedical University of Oxford, United Kingdom Sciences, University of Strathclyde, Glasgow, United Kingdom *Correspondence: Aubrey Chichonyi Kalungia [email protected] Introduction: Sub-Saharan Africa and other low- and middle-income countries (LMICs) have the highest rates of antimicrobial resistance (AMR) driven by high rates of Specialty section: antimicrobial utilization.
    [Show full text]
  • Multiple Drug Resistance: a Fast-Growing Threat
    Review Article ISSN: 2574 -1241 DOI: 10.26717/BJSTR.2019.21.003572 Multiple Drug Resistance: A Fast-Growing Threat Eremwanarue Aibuedefe Osagie1,2* and Shittu Hakeem Olalekan1 1Department of Plant Biology and Biotechnology, University of Benin, Nigeria 2Lahor Research Laboratories and Diagnostics Centre, Nigeria *Corresponding author: Eremwanarue Aibuedefe Osagie, Department of Plant Biology and Biotechnology, University of Benin, Nigeria ARTICLE INFO Abstract Received: September 03, 2019 The spread of antibiotic resistant bacteria is a growing problem and a public health Published: September 10, 2019 issue. Over the years, various genetic mechanisms concerned with antibiotic resistance have been identified to be natural and acquired resistance. The natural resistance Citation: Eremwanarue Aibuedefe Osag- ie, Shittu Hakeem Olalekan. Multiple Geneticinvolved Elements mutation [MGEs] via target such modification,as plasmid, transposon reduced permeability, and integrons efflux genetic system elements and Drug Resistance: A Fast-Growing Threat. on the other hand, acquired resistance via horizontal gene tranfer include Moblie Biomed J Sci & Tech Res 21(2)-2019. Integrons are widely distributed, especially in Gram-negative bacteria; they are carried BJSTR. MS.ID.003572. bythat Mobile can acquire, Genetic exchange, Elements and such express as plasmids, genes embeddedand transposons, within whichGene Cassettespromote [GC].their spread within bacterial communities and have been studied mainly in the clinical setting Keywords: Antibiotics; Multiple Drug for their involvement in antibiotic resistance, their role in the environment is now an Resistant Bacteria; Mobile Genetic increasing focus of attention. The aim of this review is to educate the populise about Element; Integrons Plasmid the mechanisms of multiple drug resistance bacteria isolates and the danger ahead if appropriate regulations are not put in place especially in developing country like Nigeria.
    [Show full text]