The Mw 5.8 Virginia Earthquake of August 23, 2011 EERI, GEER, And

Total Page:16

File Type:pdf, Size:1020Kb

The Mw 5.8 Virginia Earthquake of August 23, 2011 EERI, GEER, And EERI Special Earthquake Report — December 2011 Learning from Earthquakes The Mw 5.8 Virginia Earthquake of August 23, 2011 After the Mw 5.8 earthquake of social disruptions up and down the The epicenter of the August 23 August 23, 2011, EERI assembled East Coast that lasted from several quake was 8 km from Mineral, a team of East Coast EERI mem- hours to some months. The quake Virginia, 61 km from Richmond, bers to document various aspects caused widespread interruptions to and 135 km from Washington, of the event. Co-leaders were communications and transportation D.C. (Figure 1). A network of James Beavers, a consulting struc- systems, numerous school closings in seismographs installed following tural engineer from Knoxville, Ten- the epicentral area of Louisa County, the August 23rd main shock has nessee, and William Anderson, a other closures in the greater Wash- enabled accurate location of many sociologist and an EERI Board ington, D.C., area, and an automatic aftershocks. The aftershocks define member from Washington, D.C. shutdown of the North Anna Nuclear a 10-km-long, N28°E striking, Other team members included Power Plant. The earthquake is a 45°ESE dipping fault at between Matthew Eatherton, Virginia Tech; noteworthy reminder that communi- 2.5 and 8 km depth, in good agree- Ramon Gilsanz, Gilsanz Murray ties on the East Coast are not pre- ment with the focal mechanism of Steficek Inc; Frederick Krimgold, pared to cope with a major earth- the main shock. The locations of Virginia Tech; Ying-Cheng Lin, quake, and that steps could be taken aftershocks do not correspond to a Lehigh University; Claudia Marin, to improve their readiness and in- previously identified fault; previous, Howard University; Justin Marshall, crease loss reduction efforts. smaller, instrumentally recorded Auburn University; Jelena Pantelic, earthquakes in the zone have had the World Bank; and James Ricles, Seismology diverse focal mechanisms over Lehigh University. Marshall partici- an area with a length and width of The Mw 5.8 (USGS) earthquake re- pated remotely by mapping struc- about 120 km, rather than align- sulted from reverse faulting at shallow tural damage. Additional material ment in a pattern that might sug- depth (estimated at 6 km) on a north- was furnished by members of the gest a single causative fault. northeast-striking plane within a pre- Geotechnical Extreme Events Re- viously recognized seismic zone: the Figure 1 shows the regional dis- connaissance (GEER) Association Central Virginia Seismic Zone. This tribution of intensities associated team: Russell Green, Virginia Tech; zone has produced James Martin, Virginia Tech; Sissy small and moder- Nikolaou, Mueser Rutledge Con- ate earthquakes sulting Engineers; and Sam Lasley, since at least 1774, Virginia Tech. Other contributors to the previous most this report included Jeff Munsey, damaging shock Tennessee Valley Authority, and a having been in team of social scientists from the 1875. That quake Disaster Research Center at the predated the inven- University of Delaware: Yvonne tion of effective Rademacher, Alex Greer, Laura seismographs, but Keeley, James Kendra, Benigno its felt effects and Aguirre, and Lucia Velotti. area suggest that it Unless otherwise indicated, photos had a magnitude of in this report were taken by EERI about 4.8. It shook team members. bricks from chim- neys, broke plaster Introduction and windows, and overturned furni- The Mw 5.8 earthquake that struck central Virginia at 1:51 p.m. local ture at several lo- time on August 23, 2011, caused cations. An M4.5 no deaths and few injuries, but did earthquake on De- damage buildings and other struc- cember 9, 2003, tures within a 100-mile radius of also caused minor the epicenter. Perhaps its biggest damage. Figure 1. Epicenter and intensity map made from effects were the business and 148,281 respondents to USGS DYFI site. 1 EERI Special Earthquake Report — December 2011 Figure 2. Acceleration response spectrum with 5% damping recorded at the North Anna Nuclear Power Plant for periods up to 5 sec (left) and isolating low-period range (right) (adapted from Dominion, 2011). with the earthquake, as estimated Regional Geology at earthquake depths, but numer- from data contributed to the USGS ous smaller or deeply buried faults “Did You Feel It?” (DYFI) web site. The region is very old, with bedrock remain undetected. Accordingly, Reports of the shock came in from formed more than a billion years ago few, if any, earthquakes in the seis- most zip codes within 800 km of the and a complex surficial geology that mic zone can be linked to named epicenter, and additional observa- bears the imprints of continental colli- faults, and it is difficult to determine tions came in from zip codes at sions, long-dead mountains, and for- whether a known fault is still active greater distances (Figure 1). Ac- gotten seas (Mittelbach & Crewdson, and could slip and cause an earth- cording to the USGS, the large felt 1998). The regional geology is char- quake. area is not unusual for an eastern acterized by a distinct “fall line” that U.S. shock; east of the Rockies, an separates inboard bedrock (the earthquake may be felt over an area Piedmont province) from the out- ten times larger than that for a simi- board Atlantic Coastal Plain. lar magnitude earthquake on the The fall line runs southwesterly West Coast. from the District of Columbia- Montgomery County boundary A maximum intensity of VII is esti- near Silver Spring, Maryland, mated from DYFI data, when obser- across the Potomac River north vations are averaged over zip code of Roosevelt Island (Figure 3). regions. However, field observa- tions indicate that an area in rural Most bedrock beneath central Louisa Country close to the causa- Virginia was assembled as tive faulting had shaking correspond- continents collided to form a ing to Modified Mercalli Intensity supercontinent about 500-300 VIII; the average DYFI intensity is million years ago, raising the VII for the entire 500-km² zip code Appalachian Mountains. The region in which higher-intensity rest of the bedrock formed when effects were observed. the supercontinent rifted apart about 200 million years ago to A time history recording of the earth- form what are now the north- quake from the North Anna Nuclear eastern U.S., the Atlantic Ocean, Power Plant approximately 17 km and Europe. The Central Vir- from the epicenter shows a peak ginia seismic zone is far from horizontal ground acceleration of the nearest plate boundaries, 0.27g (Figure 2). The response which are in the center of the spectrum also shows high energy Atlantic Ocean and in the Carib- Figure 3. The fall line (dashed) and terrace content at short periods as com- bean Sea. The seismic zone deposits in the vicinity of the Washington pared to typical west coast earth- is laced with known faults, Monument (source: Collective Works of J. quake spectra. though they are poorly located P. Gould). 2 EERI Special Earthquake Report — December 2011 lie directly over the rupture plane. There may have been other lique- faction sites, but the undergrowth in the region is thick and sand depos- its sparse. Several heavy rains associated with Hurricane Irene in the days after the main shock likely washed away any features in the river and creek beds. Slumps and Subsidence. One small slump was found on the bank of the South Anna River very close to the liquefaction features, again likely directly over the rupture plane. What is believed to be earthquake- induced subsidence was found in an abandoned gold mine. Rockfalls. Four rock falls were Figure 4. Aerial image of the epicentral region showing locations of observed found in the epicentral region, two liquefaction sand boils. Also shown are the epicenters of the main shock and along the banks of the South Anna of >M3.0 aftershocks within two days of the main shock (source: GEER). River and two in road cuts. The team determined that the area of Coastal Plain deposits include deposition of relatively fine grained rockfalls extended from just north Cretaceous sediments, Pleistocene alluvium in river channels. of Harper’s Ferry on the north, to Terrace deposits, and river depos- the Virginia/West Virginia border The epicentral area is drained by ited alluvium of relatively recent on the west, and to about 10 miles South Anna River and its major, sec- origin. The Cretaceous sediments, north of the North Carolina border, ondary, and tertiary tributaries. Allu- known as the Potomac formation, along the Blue Ridge Parkway, on vium (unconsolidated clay, silt, sand, were deposited in relatively shallow the southwest. They were not able and gravel of Tertiary to Quaternary seas on the sloping bedrock sur- to determine the eastern limit. The age) appears along portions of these face by streams flowing eastward determined limits are shown in streams, typically at leeward-side out of the continental interior. These Figure 5. point bars and horseshoe bend cut- sediments are primarily hard clays offs, ranging from a few meters to Details of the geotechnical effects and compact sands, and a succes- tens of meters thick. Topographic of this earthquake will be published sion of river terrace deposits of sideslopes and hilltops are typically in a forthcoming GEER report Pleistocene times overlies them. underlain by saprolite (decomposed (GEER, 2012). While glacial ice did not reach south bedrock chemically weathered in- to the current Washington, D.C., place) beneath soil horizons; saprolite Damage to Structures area, the terrace deposits were can range from a few meters to tens formed by debris carried in streams Most historic engineered structures of meters thick. charged by glacial melt water flow- located in the densely populated corridor along the Atlantic coast ing from the northwest.
Recommended publications
  • Risk Assessment
    3 Risk Assessment Many kinds of natural and technological hazards impact the state of Alabama. To reduce the loss of life and property to the hazards that affect Alabama, state and local officials must have a robust and up-to-date understanding of the risks posed by these hazards. In addition, federal regulations and guidance require that certain components be included in the risk assessment section of state hazard mitigation plans (see Title 44 Code of Federal Regulations (CFR) Part 201 for federal regulations for mitigation planning and the State Mitigation Plan Review Guide for the Federal Emergency Management Agency’s (FEMA) official interpretation of these regulations). The required components are as follows: • An overview of the type and location of all natural hazards that can affect the state, including information on previous occurrences of hazard events and the probability of future hazard events. According to the State Mitigation Plan Review Guide, the probability of future hazard events “must include considerations of changing future conditions, including the effects of long-term changes in weather patterns and climate;” • An overview and analysis of the state’s vulnerability to these hazards. According to the CFR, the state risk assessment should address the jurisdictions most threatened by the identified hazards, as well as the state assets located in the identified hazard areas; • An overview and analysis of the potential losses to the identified vulnerable structures. According to the CFR, the state risk assessment should estimate the potential dollar losses to state assets and critical facilities located in the identified hazard areas. The Alabama State Hazard Mitigation Plan Update approved by FEMA in 2013 assessed statewide risks based on the best available data at the time and complied with existing federal regulations and policy.
    [Show full text]
  • Optimizing Multi-Station Template Matching to Identify and Characterize Induced Seismicity in and Around Ohio
    Optimizing Multi-Station Template Matching to Identify and Characterize Induced Seismicity in and Around Ohio Final Technical Report for USGS NEHRP Award No. G15AP00089 PI: Michael R. Brudzinskia 1 Co-PI: Brian S. Curriea 2 Grad Student Supported: Robert J. Skoumala 3 aDepartment of Geology and Environmental Earth Science, Miami University, Oxford, OH, [email protected], 001-513-529-3216 [email protected], 001-513-529-3216 [email protected], 001-515-401-8271 Project dates: June 1, 2015 to May 31, 2016. Key Results 1. Multistation template matching finds swarms that help discern induced seismicity 2. 2 swarms were correlated with wastewater disposal, 3 with hydraulic fracturing 3. 17 other cataloged earthquakes between 2010-2014 were non-swarmy, likely natural Abstract This study investigated the utility of multistation waveform cross correlation to help discern induced seismicity. Template matching was applied to all Ohio earthquakes cataloged since the arrival of nearby EarthScope TA stations in late 2010. Earthquakes that were within 5 km of fluid injection activities in regions that lacked previously documented seismicity were found to be swarmy. Moreover, the larger number of events produced by template matching for these swarmy sequences made it easier to establish more detailed temporal and spatial relationships between the seismicity and fluid injection activities, which is typically required for an earthquake to be considered induced. Study results detected three previously documented induced sequences (Youngstown, Poland Township, and Harrison County) and provided evidence that suggests two additional cases of induced seismicity (Belmont/Guernsey County and Washington County). Evidence for these cases suggested that unusual swarm-like behaviors in regions that lack previously documented seismicity can be used to help distinguish induced seismicity, complementing the traditional identification of an anthropogenic source spatially and temporally correlated with the seismicity.
    [Show full text]
  • PEER 2014/17 OCTOBER 2014 Disclaimer
    PACIFIC EARTHQUAKE ENGINEERING RESEARCH CENTER PEER NGA-East Database Christine A. Goulet Tadahiro Kishida Pacific Earthquake Engineering Research Center Timothy D. Ancheta Risk Management Solutions, Newark, California Chris H. Cramer Center for Earthquake Research and Information University of Memphis Robert B. Darragh Walter J. Silva Pacific Engineering and Analysis, Inc. El Cerrito, California Youssef M. A. Hashash Joseph Harmon University of Illinois, Urbana-Champaign Jonathan P. Stewart University of California, Los Angeles Katie E. Wooddell Pacific Gas & Electric Company Robert R. Youngs AMEC Environment and Infrastructure Oakland, California PEER 2014/17 OCTOBER 2014 Disclaimer The opinions, findings, and conclusions or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the views of the study sponsor(s) or the Pacific Earthquake Engineering Research Center. PEER NGA-East Database Christine A. Goulet Tadahiro Kishida Pacific Earthquake Engineering Research Center Timothy D. Ancheta Risk Management Solutions, Newark, California Chris H. Cramer Center for Earthquake Research and Information University of Memphis Robert B. Darragh Walter J. Silva Pacific Engineering and Analysis, Inc. El Cerrito, California Youssef M. A. Hashash Joseph Harmon University of Illinois, Urbana-Champaign Jonathan P. Stewart University of California, Los Angeles Katie E. Wooddell Pacific Gas & Electric Company Robert R. Youngs AMEC Environment and Infrastructure Oakland, California PEER Report 2014/17 Pacific Earthquake Engineering Research Center Headquarters at the University of California, Berkeley October 2014 ii ABSTRACT This report serves as a documentation of the ground motion database development for the NGA- East Project. The ground motion database includes the two- and three-component ground-motion recordings from numerous selected events (M > 2.5, distances up to 1500 km) recorded in the Central and Eastern North America (CENA) region since 1988.
    [Show full text]
  • Mineral, Virginia, Earthquake Illustrates Seismicity of a Passive
    GEOPHYSICAL RESEARCH LETTERS, VOL. 39, L02305, doi:10.1029/2011GL050310, 2012 Mineral, Virginia, earthquake illustrates seismicity of a passive-aggressive margin Emily Wolin,1 Seth Stein,1 Frank Pazzaglia,2 Anne Meltzer,2 Alan Kafka,3 and Claudio Berti2 Received 9 November 2011; revised 22 December 2011; accepted 23 December 2011; published 24 January 2012. [1] The August 2011 M 5.8 Mineral, Virginia, earthquake North America is a “passive” continental margin, along that shook much of the northeastern U.S. dramatically which the continent and seafloor are part of the same plate. demonstrated that passive continental margins sometimes The fundamental tenet of plate tectonics, articulated by have large earthquakes. We illustrate some general aspects Wilson [1965, p. 344], is that “plates are not readily of such earthquakes and outline some of the many unresolved deformed except at their edges.” Hence if plates were the questions about them. They occur both offshore and onshore, ideal rigid entities assumed in many applications, such as reaching magnitude 7, and are thought to reflect reactivation calculating plate motions, passive continental margins of favorably-oriented, generally margin-parallel, faults cre- should be seismically passive. ated during one or more Wilson cycles by the modern stress [3] In reality, however, large and damaging earthquakes field. They pose both tsunami and shaking hazards. How- occur along passive margins worldwide [Stein et al., 1979, ever, their specific geologic setting and causes are unclear 1989; Schulte and Mooney, 2005] (Figure 1). These earth- because large magnitude events occur infrequently, micro- quakes release a disproportionate share, about 25%, of the seismicity is not well recorded, and there is little, if any, net seismic moment release in nominally-stable continental surface expression of repeated ruptures.
    [Show full text]
  • Earthquake Safety Guidelines for Educational Facilities
    Earthquake Safety Guidelines for require an increased earthquake awareness Educational Facilities for parents, educators, school boards and students. Such an increase in awareness has By Rob Jackson, P. E. been a focus of the Earthquake Engineering Research Institute’s (EERI) Seismic Safety Every child has the right to attend school in of Schools Committee (EERI, 2012). safe buildings. The United States has been relatively lucky so far regarding school children and the occurrence of earthquakes. However, the United States cannot rely on such continued good fortune in the future. Governmental and educational leaders must fulfill their responsibilities for the safety of school children by implementing school safety programs that include the design and construction of seismically safe buildings. Such programs must emphasize seismic resistance and overall earthquake hazard resilience. Earthquake hazard mitigation is A typical unreinforced masonry high school in most readily accomplished through the the United States. (Wang, Y., EERI, 2012a) improved seismic design and construction of Similar advocacy efforts have impacted buildings, since “earthquakes don’t kill people, unsafe buildings do.” Earthquake policy across the United States. In California, hazard mitigation requires an increase in the positive steps have been taken to increase the prioritization and perceived value of seismic seismic safety of schools. The 1933 Long design within the project delivery systems of Beach earthquake resulted in passage of the the owners, construction managers, architects Field and Riley Acts. In California, no school and engineers who operate, design and child has been killed or seriously injured construct educational facilities in the United since 1933. However, no major California States.
    [Show full text]
  • Effectiveness of the National Earthquake Hazards Reduction
    DRAFT (4/27/2012 ACEHR teleconference meeting) Effectiveness of the National Earthquake Hazards Reduction Program A Report from the Advisory Committee on Earthquake Hazards Reduction May 2012 Contents Executive Summary .................................................................................................. 1 Introduction .............................................................................................................. Program Effectiveness and Needs .......................................................................... Management, Coordination, and Implementation of NEHRP ............................... Federal Emergency Management Agency ..................................................................... National Institute of Standards and Technology ........................................................ National Science Foundation .............................................................................................. U.S. Geological Survey ........................................................................................................... Appendix: Trends and Developments in Science and Engineering .................... Social Science ............................................................................................................................ Earth Science ............................................................................................................................. Geotechnical Earthquake Engineering ...........................................................................
    [Show full text]
  • Foreshocks, B Value Map, and Aftershock Triggering for the 2011
    Journal of Geophysical Research: Solid Earth RESEARCH ARTICLE Foreshocks, b Value Map, and Aftershock Triggering 10.1029/2017JB015136 for the 2011 Mw 5.7 Virginia Earthquake Key Points: Xiaofeng Meng1,2 , Hongfeng Yang3 , and Zhigang Peng4 • Dynamic triggering explains aftershocks along the rupture plane, 1Department of Earth and Space Sciences, University of Washington, Seattle, WA, USA, 2Now at Southern California Earthquake while static triggering explains the 3 off-fault seismicity Center, University of Southern California, Los Angeles, CA, USA, Earth System Science Programme, The Chinese University of 4 • We find great spatial variability of the Hong Kong, Hong Kong, School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USA b values within the aftershock zone, suggesting strong heterogeneity in stress distribution and material Abstract The 2011 Mw 5.7 Virginia earthquake and subsequent dense deployment provide us an • We find no foreshock activity, which unprecedented opportunity to study in detail an earthquake sequence within stable continental United adds to a growing body of fi observations that intraplate States. Here we apply the waveform-based matched lter technique to obtain more complete earthquake earthquakes tend to not have catalogs around the origin time of the Virginia mainshock. With the enhanced earthquake catalogs, we foreshocks conclude that no foreshock activity existed prior to the Virginia mainshock. The b value map shows significant variations across the aftershock zone, suggesting strong heterogeneity in stress distribution or crustal Supporting Information: material in the study region. We also investigate multiple earthquake triggering mechanisms, including static • Supporting Information S1 and dynamic triggering, afterslip, and atmospheric pressure changes.
    [Show full text]
  • FY2014 USGS Budget Justification
    The United States BUDGET Department of the Interior JUSTIFICATIONS and Performance Information Fiscal Year 2014 U.S. GEOLOGICAL SURVEY NOTICE: These budget justifications are prepared for the Interior, Environment and Related Agencies Appropriations Subcommittees. Approval for release of the justifications prior to their printing in the public record of the Subcommittee hearings may be obtained through the Office of Budget of the Department of the Interior. U.S. Geological Survey Table of Contents U.S. GEOLOGICAL SURVEY FY 2014 BUDGET JUSTIFICATION References to the 2013 Full Yr. CR signify annualized amounts appropriated in P.L. 112-175, the Continuing Appropriations Act. These amounts are the 2012 enacted numbers annualized through the end of FY 2013 with a 0.612 percent across-the-board increase for discretionary programs. Exceptions to this include Wildland Fire Management, which received an anomaly in the 2013 CR to fund annual operations at $726.5 million. The 2013 Full Yr. CR does not incorporate reductions associated with the Presidential sequestration order issued in accordance with section 251A of the Balanced Budget and Emergency Deficit Control Act, as amended (BBEDCA), 2 U.S.C. 109a. This column is provided for reference only. 2014 Budget Justification i Table of Contents U.S. Geological Survey This page left intentionally blank. ii 2014 Budget Justification U.S. Geological Survey Table of Contents U.S. GEOLOGICAL SURVEY FY 2014 BUDGET JUSTIFICATION TABLE OF CONTENTS Organization Organization Chart ..............................................................................................................................
    [Show full text]
  • William Barnhart – Curriculum Vitae [email protected] Updated May 2014 Education Ph.D
    William Barnhart – Curriculum Vitae [email protected] updated May 2014 Education Ph.D. Geophysics, Cornell University (May 2013) Advisor: Dr. Rowena Lohman B.S. Geology, Washington and Lee University (June 2008) Advisor: Dr. Jeffrey Rahl Appointments Jan. 2015 Assistant Professor, The University of Iowa, Iowa City, IA 2013-2014 USGS Mendenhall Postdoctoral Fellow, NEIC, Golden CO 2009-2012 NASA Graduate Research Fellow, Cornell University 2010 Adjunct Lecturer, Washington and Lee University Publications Barnhart, W.D., G.P. Hayes, R.W. Briggs, R.D. Gold, R. Bilham, Ball-and-socket tectonic rotations during the 2013 Mw7.7 Balochistan earthquake, EPSL, in revision Hayes et al., Mind the Gap – the northern Chile Subduction Zone and the 2014 Earthquake Sequence, Nature, in revision Barnhart, W.D., Benz, H., Hayes, G.P., Rubinstein, J., Bergman, E., Seismological and geodetic constraints on the 2011 Mw5.3 Trinidad, Colorado earthquake and deformation in the Raton Basin, JGR, in review Witter, R.C., Briggs, R.W., Engelhart, S.E., Gelfenbaum, G., Koehler, R.D., Barnhart, W.D., Little late Holocene strain accumulation and release on the Aleutian megathrust below the Shumagin Islands, Alaska, Geophysical Research Letters Barnhart, W.D., G.P. Hayes, S.V. Samsonov, E.J. Fielding, L.E. Seidman, (2014) Breaking the Oceanic Lithosphere in Subduction Zones: The 2013 Khash, Iran Earthquake, Geophysical Research Letters, doi: 10.1002/2013GL058096 Godt, J.W., Coe, J.A., Kean, J.W., Baum, R.L., Jones, E.S., Harp, E.L., Staley, D.M., Barnhart, W.D., (2014) Landslides in the Northern Colorado Front Range Caused by Rainfall, September 11-13, 2013, USGS Publications, Fact Sheet 2013-3114.
    [Show full text]
  • 2013 Annual Report
    2013 Annual Report WSSPC U.S. states ranked by national number of annual earthquakes. Western States Seismic Policy Council 801 K Street, Suite 1236, Sacramento, CA 95814 916-444-6816 [email protected] DISCLAIMER The views and conclusions contained in this report are those of the authors and should not be interpreted as representing the opinions or policies of the U.S. Government. Mention of trade names or commercial products does not constitute their endorsement by the U.S. Government; by the Western States Seismic Policy Council (WSSPC), or by WSSPC members, agencies and affiliates. Cover image: Map of the United States ranking states by number of earthquakes. States that fall within the WSSPC region are colored green (Canada and U.S. Territories were not included in the original map). Cover map presented as modified from the United States Geological Survey map located at: http://earthquake.usgs.gov/earthquakes/states/top_states.php 2013 WSSPC ANNUAL REPORT TABLE OF CONTENTS Page Section A: WSSPC Organization Mission and Goals .................................................................................................................. A-1 WSSPC Board and Staff ......................................................................................................... A-2 WSSPC Members, Earthquake/Tsunami Program Managers, & State Hazard Mitigation Officers ................................................................................... A-3 WSSPC Members’ Agencies ..................................................................................................
    [Show full text]
  • Earth Moves: Seismic Stations ™ EART 2 from the Geoinquiries Collection for Earth Science
    LEVEL Earth Moves: Seismic Stations ™ EARTH 2 from the GeoInquiries collection for Earth Science Target audience – Earth science learners Time required – 40 minutes Activity A case study in analysis, exploring the 2011 Virginia earthquake. Science Standards NGSS: MS-ESS2-1. Earth’s Systems. Develop a model to describe the cycling of Earth’s materials and the flow of energy that drives this process. Learning Outcomes • Students will triangulate the epicenter of an earthquake. • Students will rank earthquakes by magnitude. Level 2 GeoInquiry • A free school ArcGIS Online organization account. Instructors or students must be signed in to the account to complete this activity. Requirements • Approximately 0.75 credits will be used per person in the completion of this activity as scripted. Map URL: http://esriurl.com/earthGeoInquiry7 Engage Where are the nearest seismic stations to you? ʅ Click the link above to launch the map. ʅ In the upper-right corner, click Sign In. Use your ArcGIS Online organization account to sign in. ʅ With the Details button underlined, click the button, Content (Show Contents of Map). ʅ Ensure that only one layer is turned on: Global Seismographic Network. ʅ Use the Measurement tool to determine your approximate distance to the nearest seismic station. ʅ Identify two additional local seismic stations to be used if there was an earthquake in your region. Explore Is Virginia prone to earthquakes? – Although Virginia is not on an active tectonic plate boundary, earthquakes are possible due to ancient faults far beneath the surface. ʅ Above the map, in the Find Address Or Place field, type Virginia, USA and press Enter.
    [Show full text]
  • Response to Request for Additional Information, RAI No. 43, Vibratory Ground Motion
    Nuclear Development 244 Chestnut Street, Salem, NJ 08079 0 PSEG Power LLC ND-2012-0039 July 19, 2012 U.S. Nuclear Regulatory Commission ATTN: Document Control Desk Washington, DC 20555-0001 Subject: PSEG Early Site Permit Application Docket No. 52-043 Response to Request for Additional Information, RAI No. 43, Vibratory Ground Motion References: 1) PSEG Power, LLC letter to USNRC, Application for Early Site Permit for the PSEG Site, dated May 25, 2010 2) RAI No. 43, SRP Section: 02.05.02 - Vibratory Ground Motion, dated December 12, 2011 (eRAI 6162) 3) PSEG Power, LLC Letter No. ND-2012-0002 to USNRC, Response to Request for Additional Information, RAI No. 43, Vibratory Ground Motion, dated January 10, 2012 4) PSEG Power, LLC Letter No. ND-2012-0006 to USNRC, Response to Request for Additional Information, RAI No. 43, Vibratory Ground Motion, dated January 25, 2012 5) PSEG Power, LLC Letter No. ND-2012-0009 to USNRC, Response to Request for Additional Information, RAI No. 43, Vibratory Ground Motion, dated February 9, 2012 6) PSEG Power, LLC Letter No. ND-2012-0018 to USNRC, Response to Request for Additional Information, RAI No. 43, Vibratory Ground Motion, dated March 15, 2012 U. S. Nuclear Regulatory 2 7/19/12 Commission The purpose of this letter is to respond to the request for additional information (RAI) identified in Reference 2 above. This RAI addresses Vibratory Ground Motion, as described in Subsection 2.5.2 of the Site Safety Analysis Report (SSAR), as submitted in Part 2 of the PSEG Site Early Site Permit Application, Revision 0.
    [Show full text]