Z,E-Isomerism in a Series of Substituted Iminophosphonates: Quantum Chemical Research
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Supporting Information
Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2020 Supporting Information How to Select Ionic Liquids as Extracting Agent Systematically? Special Case Study for Extractive Denitrification Process Shurong Gaoa,b,c,*, Jiaxin Jina,b, Masroor Abroc, Ruozhen Songc, Miao Hed, Xiaochun Chenc,* a State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing, 102206, China b Research Center of Engineering Thermophysics, North China Electric Power University, Beijing, 102206, China c Beijing Key Laboratory of Membrane Science and Technology & College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China d Office of Laboratory Safety Administration, Beijing University of Technology, Beijing 100124, China * Corresponding author, Tel./Fax: +86-10-6443-3570, E-mail: [email protected], [email protected] 1 COSMO-RS Computation COSMOtherm allows for simple and efficient processing of large numbers of compounds, i.e., a database of molecular COSMO files; e.g. the COSMObase database. COSMObase is a database of molecular COSMO files available from COSMOlogic GmbH & Co KG. Currently COSMObase consists of over 2000 compounds including a large number of industrial solvents plus a wide variety of common organic compounds. All compounds in COSMObase are indexed by their Chemical Abstracts / Registry Number (CAS/RN), by a trivial name and additionally by their sum formula and molecular weight, allowing a simple identification of the compounds. We obtained the anions and cations of different ILs and the molecular structure of typical N-compounds directly from the COSMObase database in this manuscript. -
Computer-Assisted Catalyst Development Via Automated Modelling of Conformationally Complex Molecules
www.nature.com/scientificreports OPEN Computer‑assisted catalyst development via automated modelling of conformationally complex molecules: application to diphosphinoamine ligands Sibo Lin1*, Jenna C. Fromer2, Yagnaseni Ghosh1, Brian Hanna1, Mohamed Elanany3 & Wei Xu4 Simulation of conformationally complicated molecules requires multiple levels of theory to obtain accurate thermodynamics, requiring signifcant researcher time to implement. We automate this workfow using all open‑source code (XTBDFT) and apply it toward a practical challenge: diphosphinoamine (PNP) ligands used for ethylene tetramerization catalysis may isomerize (with deleterious efects) to iminobisphosphines (PPNs), and a computational method to evaluate PNP ligand candidates would save signifcant experimental efort. We use XTBDFT to calculate the thermodynamic stability of a wide range of conformationally complex PNP ligands against isomeriation to PPN (ΔGPPN), and establish a strong correlation between ΔGPPN and catalyst performance. Finally, we apply our method to screen novel PNP candidates, saving signifcant time by ruling out candidates with non‑trivial synthetic routes and poor expected catalytic performance. Quantum mechanical methods with high energy accuracy, such as density functional theory (DFT), can opti- mize molecular input structures to a nearby local minimum, but calculating accurate reaction thermodynamics requires fnding global minimum energy structures1,2. For simple molecules, expert intuition can identify a few minima to focus study on, but an alternative approach must be considered for more complex molecules or to eventually fulfl the dream of autonomous catalyst design 3,4: the potential energy surface must be frst surveyed with a computationally efcient method; then minima from this survey must be refned using slower, more accurate methods; fnally, for molecules possessing low-frequency vibrational modes, those modes need to be treated appropriately to obtain accurate thermodynamic energies 5–7. -
Bader's Theory of Atoms in Molecules
J. Chem. Sci. Vol. 128, No. 10, October 2016, pp. 1527–1536. c Indian Academy of Sciences. Special Issue on CHEMICAL BONDING DOI 10.1007/s12039-016-1172-3 PERSPECTIVE ARTICLE Bader’s Theory of Atoms in Molecules (AIM) and its Applications to Chemical Bonding P SHYAM VINOD KUMAR, V RAGHAVENDRA and V SUBRAMANIAN∗ Chemical Laboratory, CSIR-Central Leather Research Institute, Adyar, Chennai, Tamil Nadu 600 020, India e-mail: [email protected]; [email protected] MS received 22 July 2016; revised 17 August 2016; accepted 19 August 2016 Abstract. In this perspective article, the basic theory and applications of the “Quantum Theory of Atoms in Molecules” have been presented with examples from different categories of weak and hydrogen bonded molecular systems. Keywords. QTAIM; non-covalent interaction; chemical bonding; H-bonding; electron density 1. Introduction account of the bonding within a molecule or crystal. Specially, the derivative of electron density on BCP It is now possible to define the structure of molecules is zero. Bader’s group has made several seminal con- quantum mechanically with the help of Bader’s Quan- tributions to the development of the QTAIM theory tum Theory of Atoms in Molecules (QTAIM).1,2 This and its applications to unravel chemical bonding.10 13 theory has been widely applied to unravel atom-atom Popelier and coworkers have employed the QTAIM interactions in covalent and non-covalent interactions to address several issues in chemistry.14 16 Particu- in molecules,3 molecular clusters,4 small molecular larly, they have demonstrated the possibility of devel- crystals,5 proteins,6 DNA base pairing and stacking.7 oping structure-activity-relationship to predict various Basic motive of QTAIM is to exploit charge density or physico-chemical properties.17 They have used the the- electron density of molecules ρ(r; X) as a vehicle to ory of Quantum Chemical Topology (QCT), to provide study the nature of bonding in molecular systems. -
FORCE FIELDS for PROTEIN SIMULATIONS by JAY W. PONDER
FORCE FIELDS FOR PROTEIN SIMULATIONS By JAY W. PONDER* AND DAVIDA. CASEt *Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, 51. Louis, Missouri 63110, and tDepartment of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037 I. Introduction. ...... .... ... .. ... .... .. .. ........ .. .... .... ........ ........ ..... .... 27 II. Protein Force Fields, 1980 to the Present.............................................. 30 A. The Am.ber Force Fields.............................................................. 30 B. The CHARMM Force Fields ..., ......... 35 C. The OPLS Force Fields............................................................... 38 D. Other Protein Force Fields ....... 39 E. Comparisons Am.ong Protein Force Fields ,... 41 III. Beyond Fixed Atomic Point-Charge Electrostatics.................................... 45 A. Limitations of Fixed Atomic Point-Charges ........ 46 B. Flexible Models for Static Charge Distributions.................................. 48 C. Including Environmental Effects via Polarization................................ 50 D. Consistent Treatment of Electrostatics............................................. 52 E. Current Status of Polarizable Force Fields........................................ 57 IV. Modeling the Solvent Environment .... 62 A. Explicit Water Models ....... 62 B. Continuum Solvent Models.......................................................... 64 C. Molecular Dynamics Simulations with the Generalized Born Model........ -
TURBOMOLE: Modular Program Suite for Ab Initio Quantum-Chemical and Condensed- Matter Simulations
TURBOMOLE: Modular program suite for ab initio quantum-chemical and condensed- matter simulations Cite as: J. Chem. Phys. 152, 184107 (2020); https://doi.org/10.1063/5.0004635 Submitted: 12 February 2020 . Accepted: 07 April 2020 . Published Online: 13 May 2020 Sree Ganesh Balasubramani, Guo P. Chen, Sonia Coriani, Michael Diedenhofen, Marius S. Frank, Yannick J. Franzke, Filipp Furche, Robin Grotjahn, Michael E. Harding, Christof Hättig, Arnim Hellweg, Benjamin Helmich-Paris, Christof Holzer, Uwe Huniar, Martin Kaupp, Alireza Marefat Khah, Sarah Karbalaei Khani, Thomas Müller, Fabian Mack, Brian D. Nguyen, Shane M. Parker, Eva Perlt, Dmitrij Rappoport, Kevin Reiter, Saswata Roy, Matthias Rückert, Gunnar Schmitz, Marek Sierka, Enrico Tapavicza, David P. Tew, Christoph van Wüllen, Vamsee K. Voora, Florian Weigend, Artur Wodyński, and Jason M. Yu COLLECTIONS Paper published as part of the special topic on Electronic Structure SoftwareESS2020 ARTICLES YOU MAY BE INTERESTED IN PSI4 1.4: Open-source software for high-throughput quantum chemistry The Journal of Chemical Physics 152, 184108 (2020); https://doi.org/10.1063/5.0006002 NWChem: Past, present, and future The Journal of Chemical Physics 152, 184102 (2020); https://doi.org/10.1063/5.0004997 CP2K: An electronic structure and molecular dynamics software package - Quickstep: Efficient and accurate electronic structure calculations The Journal of Chemical Physics 152, 194103 (2020); https://doi.org/10.1063/5.0007045 J. Chem. Phys. 152, 184107 (2020); https://doi.org/10.1063/5.0004635 152, 184107 © 2020 Author(s). The Journal ARTICLE of Chemical Physics scitation.org/journal/jcp TURBOMOLE: Modular program suite for ab initio quantum-chemical and condensed-matter simulations Cite as: J. -
A Tutorial for Theodore 2.0.2
A Tutorial for TheoDORE 2.0.2 Felix Plasser, Patrick Kimber Loughborough, 2019 Department of Chemistry – Loughborough University Contents 1 Before Starting3 1.1 Introduction . .3 1.2 Notation . .3 1.3 Installation . .3 2 Natural transition orbitals (Turbomole)4 2.1 Input generation . .4 2.2 Transition density matrix (1TDM) analysis . .5 2.3 Plotting of the orbitals . .6 3 Charge transfer number and exciton analysis (Turbomole)9 3.1 Input generation . .9 3.2 Transition density matrix (1TDM) analysis . 10 3.3 Electron-hole correlation plots . 11 4 Interface to the external cclib library (Gaussian 09) 12 4.1 Check the log file . 12 4.2 Input generation . 13 4.3 Transition density matrix (1TDM) analysis . 15 5 Advanced fragment input and double excitations (Columbus) 16 5.1 Fragment preparation using Avogadro . 17 5.2 Input generation . 18 5.3 Transition density matrix (1TDM) analysis . 19 6 Fragment decomposition for a transition metal complex 21 6.1 Input generation . 21 6.2 Transition density matrix analysis and decomposition . 23 7 Domain NTO and conditional density analysis 26 7.1 Input generation . 26 1 7.2 Transition density matrix analysis . 28 7.3 Plotting of the orbitals . 29 8 Attachment/detachment analysis (Molcas - natural orbitals) 31 8.1 Input generation . 31 8.2 State density matrix analysis . 32 8.3 Plotting of the orbitals . 33 9 Contact 34 TheoDORE tutorial 2 1 Before Starting 1.1 Introduction This tutorial is intended to provide an overview over the functionalities of the TheoDORE program package. Various tasks of different complexity are discussed using interfaces to dif- ferent quantum chemistry packages. -
1 an Introduction to the Quantum Theory of Atoms in Molecules
1 1 An Introduction to the Quantum Theory of Atoms in Molecules Che´rif F. Matta and Russell J. Boyd 1.1 Introduction The observation that some properties attributed to atoms and functional groups are transferable from one molecule to another has played a key role in the devel- opment of chemistry. This observation provides a basis for group additivity schemes and is exemplified by the constancy of group contributions to thermody- namic and spectroscopic properties. But what is the electronic basis of this empir- ical transferability? The quantum theory of atoms in molecules (QTAIM) [1], de- veloped by Professor Richard F. W. Bader and his coworkers, relies on quantum observables such as the electron density rðrÞ and energy densities to answer such a question. Other important (related) questions addressed by QTAIM include: What is an atom in a molecule or a crystal? How can an atom or a group of atoms be transferable sometimes in very different external potentials? Can one define bonding in molecules unambiguously especially in borderline cases? This chapter contains a summary of some of the main concepts of QTAIM. A more comprehensive and mathematically elegant treatment can be found in Bader’s book [1]. (Often in this chapter, the word ‘‘molecule’’ includes extended systems such as polymers, weakly bonded molecular complexes, and molecular and ionic crystals, in addition to its more traditional meaning of a single, finite, isolated chemically bonded group of atoms. It will be clear from the context when this term is used in its traditional or in its larger sense.) 1.2 The Topology of the Electron Density The topology of the electron density is dominated by the attractive forces of the nuclei imparting it with its principal topological feature – a substantial local max- The Quantum Theory of Atoms in Molecules. -
Electronic Reprint Critical Examination of the Radial Functions in the Hansen
electronic reprint Acta Crystallographica Section A Foundations of Crystallography ISSN 0108-7673 Critical examination of the radial functions in the Hansen–Coppens multipole model through topological analysis of primary and refined theoretical densities Anatoliy Volkov and Philip Coppens Copyright © International Union of Crystallography Author(s) of this paper may load this reprint on their own web site provided that this cover page is retained. Republication of this article or its storage in electronic databases or the like is not permitted without prior permission in writing from the IUCr. Acta Cryst. (2001). A57, 395–405 Volkov and Coppens ¯ Hansen–Coppens multipole model research papers Acta Crystallographica Section A Foundations of Critical examination of the radial functions in Crystallography the Hansen±Coppens multipole model through ISSN 0108-7673 topological analysis of primary and refined theoretical densities Received 22 December 2000 Accepted 6 February 2001 Anatoliy Volkov and Philip Coppens* Department of Chemistry, State University of New York at Buffalo, Buffalo, NY 14260-3000, USA. Correspondence e-mail: [email protected] A double-zeta (DZ) multipolar model has been applied to theoretical structure factors of four organic molecular crystals as a test of the ability of the multipole model to faithfully retrieve a theoretical charge density. The DZ model leads to signi®cant improvement in the agreement with the theoretical charge density along the covalent bonds and its topological parameters, and eliminates some of the bias introduced by the limited ¯exibility of the radial functions when a theoretical density is projected into the conventional multipole formalism. The DZ model may be too detailed for analysis of experimental data sets of the # 2001 International Union of Crystallography accuracy and resolution typically achieved at present, but provides guidance for Printed in Great Britain ± all rights reserved the type of algorithms to be adapted in future studies. -
Some Notes On: What Is an Atom in a Molecule
Topological and AIM analyses beyond the Born-Oppenheimer paradigm: New opportunities Mohammad Goli and Shant Shahbazian* Faculty of Chemistry, Shahid Beheshti University, G. C. , Evin, Tehran, Iran, 19839, P.O. Box 19395-4716. Tel/Fax: 98-21-22431661 E-mail: (Shant Shahbazian) [email protected] * Corresponding author 1 Abstract The multi-component quantum theory of atoms in molecules (MC-QTAIM) analysis is done on methane, ethylene, acetylene and benzene as selected basic hydrocarbons. This is the first report on applying the MC-QTAIM analysis on polyatomic species. In order to perform the MC-QTAIM analysis, at first step the nuclear-electronic orbital method at Hartree-Fock level (NEO-HF) is used as a non-Born-Oppenheimer (nBO) ab initio computational procedure assuming both electrons and protons as quantum waves while carbon nuclei as point charges in these systems. The ab initio calculations proceed substituting all the protons of each species first with deuterons and then tritons. At the next step, the derived nBO wavefunctions are used for the "atoms in molecules" (AIM) analysis. The results of topological analysis and integration of atomic properties demonstrate that the MC-QTAIM is capable of deciphering the underlying AIM structure of all the considered species. Also, the results of the analysis for each isotopic composition are distinct and the fingerprint of the mass difference of hydrogen isotopes is clearly seen in both topological and AIM analyses. This isotopic distinction is quite unique in the MC-QTAIM and not recovered by the orthodox QTAIM that treats nuclei as clamped particles. The results of the analysis also demonstrate that each quantum nucleus that forms an atomic basin resides within its own basin. -
1.3 Structures of Covalent Compounds 13
01_BRCLoudon_pgs5-1.qxd 12/8/08 11:48 AM Page 13 1.3 STRUCTURES OF COVALENT COMPOUNDS 13 1.9 Draw an appropriate bond dipole for the carbon–magnesium bond of dimethylmagnesium. Ex- plain your reasoning. H3C Mg CH3 dimethylmagnesium 1.3 STRUCTURES OF COVALENT COMPOUNDS We know the structure of a molecule containing covalent bonds when we know its atomic con- nectivity and its molecular geometry. Atomic connectivity is the specification of how atoms in a molecule are connected. For example, we specify the atomic connectivity within the water molecule when we say that two hydrogens are bonded to an oxygen. Molecular geometry is the specification of how far apart the atoms are and how they are situated in space. Chemists learned about atomic connectivity before they learned about molecular geom- etry. The concept of covalent compounds as three-dimensional objects emerged in the latter part of the nineteenth century on the basis of indirect chemical and physical evidence. Until the early part of the twentieth century, however, no one knew whether these concepts had any physical reality, because scientists had no techniques for viewing molecules at the atomic level. By the second decade of the twentieth century, investigators could ask two questions: (1) Do organic molecules have specific geometries and, if so, what are they? (2) How can molecular geometry be predicted? A. Methods for Determining Molecular Geometry Among the greatest developments of chemical physics in the early twentieth century were the discoveries of ways to deduce the structures of molecules. Such techniques include various types of spectroscopy and mass spectrometry, which we’ll consider in Chapters 12–15. -
$ GW $100: a Plane Wave Perspective for Small Molecules
GW 100: a plane wave perspective for small molecules Emanuele Maggio,1 Peitao Liu,1, 2 Michiel J. van Setten,3 and Georg Kresse1, ∗ 1University of Vienna, Faculty of Physics and Center for Computational Materials Science, Sensengasse 8/12, A-1090 Vienna, Austria 2Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China 3Nanoscopic Physics, Institute of Condensed Matter and Nanosciences, Universit´eCatholique de Louvain, 1348 Louvain-la-Neuve, Belgium (Dated: November 28, 2016) In a recent work, van Setten and coworkers have presented a carefully converged G0W0 study of 100 closed shell molecules [J. Chem. Theory Comput. 11, 5665 (2015)]. For two different codes they found excellent agreement to within few 10 meV if identical Gaussian basis sets were used. We inspect the same set of molecules using the projector augmented wave method and the Vienna ab initio simulation package (VASP). For the ionization potential, the basis set extrapolated plane wave results agree very well with the Gaussian basis sets, often reaching better than 50 meV agreement. In order to achieve this agreement, we correct for finite basis set errors as well as errors introduced by periodically repeated images. For electron affinities below the vacuum level differences between Gaussian basis sets and VASP are slightly larger. We attribute this to larger basis set extrapolation errors for the Gaussian basis sets. For quasi particle (QP) resonances above the vacuum level, differences between VASP and Gaussian basis sets are, however, found to be substantial. This is tentatively explained by insufficient basis set convergence of the Gaussian type orbital calculations as exemplified for selected test cases. -
DFT and QTAIM Study of the Tetra-Tert ... -.:. Michael Pittelkow
Journal of Molecular Structure 1026 (2012) 127–132 Contents lists available at SciVerse ScienceDirect Journal of Molecular Structure journal homepage: www.elsevier.com/locate/molstruc DFT and QTAIM study of the tetra-tert-butyltetraoxa[8]circulene regioisomers structure ⇑ Gleb V. Baryshnikov a, Boris F. Minaev a, , Valentina A. Minaeva a,b, Alina T. Baryshnikova a, Michael Pittelkow c a Bohdan Khmelnytsky National University, 18031 Cherkasy, Ukraine b Theoretical Chemistry, School of Biotechnology, Royal Institute of Technology, SE-10691 Stockholm, Sweden c Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark highlights " Tetra-tert-butyltetraoxa[8]circulene regioisomers were studied by DFT method. " Electronic density distribution was calculated by the QTAIM method. " The presence of stabilizing non-valence bonds is detected by X-ray experiment. " The HÁÁÁH contacts are dynamically unstable due to high ellipticity. " The energy of the HÁÁÁH and CHÁÁÁO contacts was estimated by the Espinosa equation. article info abstract Article history: The recently synthesized tetra-tert-butyltetraoxa[8]circulene regioisomers characterized by unusual Received 6 March 2012 solution-state aggregation behavior are calculated at the density functional theory (DFT) level with the Received in revised form 24 May 2012 quantum theory of atoms in molecules (QTAIMs) approach to the electron density distribution analysis. Accepted 24 May 2012 The presence of stabilizing intramolecular hydrogen bonds and hydrogen–hydrogen interactions in the Available online 31 May 2012 studied molecules is predicted and the energies of these interactions are estimated with QTAIM. Occur- rence of the CHÁÁÁO bonds is detected by the single-crystal X-ray analysis for two regioisomers, obtained Keywords: in high purity.