Comparison of Temporal Lobe Epilepsy with Hippocampal Sclerosis and Temporal Lobe Epilepsies Due to Other Etiologies

Total Page:16

File Type:pdf, Size:1020Kb

Comparison of Temporal Lobe Epilepsy with Hippocampal Sclerosis and Temporal Lobe Epilepsies Due to Other Etiologies Thomas Jefferson University Jefferson Digital Commons Department of Neurology Faculty Papers Department of Neurology 1-1-2015 Comparison of temporal lobe epilepsy with hippocampal sclerosis and temporal lobe epilepsies due to other etiologies. A A Asadi-Pooya Department of Epileptology, Research Center for Traditional Medicine and History of Medicine, Shiraz, University of Medical Sciences; Department of Neurology, Thomas Jefferson University Marziyeh Tajvarpour Neurosciences Research Center, School of Medicine, Shiraz University of Medical Sciences Bahareh Vedadinezhad Neurosciences Research Center, School of Medicine, Shiraz University of Medical Sciences Mehrdad Emami Neurosciences Research Center, School of Medicine, Shiraz University of Medical Sciences Follow this and additional works at: https://jdc.jefferson.edu/neurologyfp Part of the Neurology Commons Let us know how access to this document benefits ouy Recommended Citation Asadi-Pooya, A A; Tajvarpour, Marziyeh; Vedadinezhad, Bahareh; and Emami, Mehrdad, "Comparison of temporal lobe epilepsy with hippocampal sclerosis and temporal lobe epilepsies due to other etiologies." (2015). Department of Neurology Faculty Papers. Paper 98. https://jdc.jefferson.edu/neurologyfp/98 This Article is brought to you for free and open access by the Jefferson Digital Commons. The Jefferson Digital Commons is a service of Thomas Jefferson University's Center for Teaching and Learning (CTL). The Commons is a showcase for Jefferson books and journals, peer-reviewed scholarly publications, unique historical collections from the University archives, and teaching tools. The Jefferson Digital Commons allows researchers and interested readers anywhere in the world to learn about and keep up to date with Jefferson scholarship. This article has been accepted for inclusion in Department of Neurology Faculty Papers by an authorized administrator of the Jefferson Digital Commons. For more information, please contact: [email protected]. Original Article http://mjiri.iums.ac.ir Medical Journal of the Islamic Republic of Iran (MJIRI) Iran University of Medical Sciences Comparison of temporal lobe epilepsy with hippocampal sclerosis and temporal lobe epilepsies due to other etiologies Ali A. Asadi-Pooya*1, Marziyeh Tajvarpour2, Bahareh Vedadinezhad3 Mehrdad Emami4 Received: 12 March 2015 Accepted: 2 June 2015 Published: 13 September 2015 Abstract Background: This study compares the clinical characteristics of patients with mesial temporal lobe epilepsy with hippocampal sclerosis (mTLE-HS) with those who have temporal lobe epilepsy (TLE) due to other etiologies. Methods: In this retrospective study all patients with a clinical diagnosis of TLE were recruited in a referral outpatient epilepsy clinic at Shiraz University of Medical Sciences from September 2008 to May 2013. We classified the patients with TLE as having mesial temporal sclerosis if they had clear signs of mesial temporal sclerosis and/or atrophy in their MRI and others who had any other MRI abnormality. Results: A total of 174 patients were studied (including 105 patients with mTLE-HS and 69 pa- tients with TLE due to other etiologies). Frequency of seizure types was not significantly different between these two groups. Earlier age at epilepsy onset (p= 0.005), a past history of febrile seizures (p= 0.010) and presence of affective auras (p= 0.008) were commonly seen in patients with mTLE- HS, while auditory auras (p= 0.020) were more frequent in those with TLE due to other etiologies. Conclusion: The mainstay for making a correct diagnosis, when evaluating a patient with seizure, is having a standardized approach, particularly with regard to taking a detailed clinical history. One may find important clues in the clinical history (e.g., age at disease onset, detailed seizure description and past history) to make a correct diagnosis. Keywords: Age; Aura; Febrile seizure; Temporal lobe epilepsy; Hippocampal sclerosis. Cite this article as: Asadi-Pooya A.A, Tajvarpour M, Vedadinezhad B, Emami M. Comparison of temporal lobe epilepsy with hippocam- pal sclerosis and temporal lobe epilepsies due to other etiologies. Med J Islam Repub Iran 2015 (13 September). Vol. 29:263. Introduction gical treatment; it is often refractory to an- Focal epilepsies account for about two- tiepileptic drugs (AEDs), but responds fa- thirds of all adult epilepsy patients, and vorably to surgery (1,4). Patients with temporal lobe epilepsy (TLE) is the most mTLE-HS and intractable seizures often common type of focal epilepsy (1,2). Tem- experience progressive behavioral changes poral lobe epilepsy is subcategorized as including increasing memory deficit with mesial (i.e., amygdalohippocampal) and the passage of time. In addition, surgical neocortical (i.e., lateral) temporal. Mesial outcome may be worse with longer dura- temporal sclerosis is the most common tion of epilepsy or increasing age at sur- pathological substrate of TLE (1,3). Mesial gery, which suggests that mTLE-HS is a temporal lobe epilepsy (mTLE) with hip- progressive disorder (5). Therefore, early pocampal sclerosis (HS) is one of the most detection of this syndrome and its distinc- common types of epilepsy referred for sur- tion from other TLE syndromes has im- ____________________________________________________________________________________________________________________ 1. (Corresponding author) MD, Neurosciences Research Center, School of Medicine, Shiraz University of Medical Sciences, & Neurosciences Research Center, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran, & Jefferson Comprehensive Epilepsy Center, De- partment of Neurology, Thomas Jefferson University, Philadelphia, USA. [email protected] 2. MD, Neurosciences Research Center, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran. [email protected] 3. MD, Neurosciences Research Center, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran. [email protected] 4. MD, Neurosciences Research Center, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran. [email protected] Temporal lobe epilepsy portant practical implications with regard to positive family history of epilepsy), EEG planning an optimal treatment strategy for findings (the most informative EEG), and the affected patient. MRI findings of all patients were registered In the current study, we tried to compare routinely. Seizure types were categorized as the clinical characteristics of patients with generalized tonic clonic seizures (GTCS), mTLE-HS with those who had TLE due to complex partial seizures (CPS) and auras. Pa- other etiologies in order to identify poten- tients with concomitant psychogenic non- tially differentiating clinical characteristics epileptic seizures (PNES) were excluded. between these two groups of patients. Demographic variables and relevant clin- ical variables were summarized descriptive- Methods ly to characterize the study population. In this retrospective analytic study all pa- Pearson Chi-Square, Fisher's Exact, and tients with a clinical diagnosis of TLE were Mann-Whitney U tests were used for statis- recruited in an outpatient epilepsy clinic at tical analyses. P value less than 0.05 was Shiraz University of Medical Sciences, considered as significant. This study was which is the only referral epilepsy clinic in approved by Shiraz University of Medical south Iran. This study was conducted from Sciences Review Board. September 2008 to May 2013. The diagno- sis of TLE was made exclusively by one Results epileptologist working at this institution Until May 2014, 2890 patients with epi- (the first author) and based on clinical lepsy were registered at our epilepsy clinic. grounds (semiology), electroencephalo- Four hundred twenty-seven patients graphic (EEG) findings and imaging, such (14.7%) were diagnosed as having TLE. Of as magnetic resonance imaging (MRI). All these, 174 patients were eligible to enter the patients were followed up by the epileptol- study (105 patients with mTLE-HS and 69 ogist at our institution for at least one year patients with TLE due to other etiologies). (i.e., until May 2014). There was no age Demographic and clinical characteristics of limit to enter the study. Routine EEG was patients with mTLE-HS and those who had requested for all patients at the time of re- TLE due to other etiologies are shown and ferral. In difficult-to-diagnose or difficult- compared in table 1. Frequency of seizure to- treat patients we often order video-EEG types (i.e., GTCS vs. CPS vs. auras) was monitoring to ascertain the diagnosis and not significantly different between these formulate an individualized treatment plan, two groups (Table 1). Specific types of au- accordingly. For all patients, a 1.5 Tesla ras were significantly different between brain MRI (epilepsy protocol) was per- these two groups (Table 1), however most formed. auras were reported by both groups, simi- Patients with normal MRI were excluded larly. Epilepsy risk factors were reported to from this study. We classified patients as be as follows (mTLE-HS vs. others): paren- having MTS (if they had clear signs of me- tal consanguinity in 41 / 30 (p= 0.6), family sial temporal sclerosis and/or atrophy in history of epilepsy in 18 / 10 (p= 0.6), sig- their MRI) and those who had any other nificant head trauma in 15 / 7 (p= 0.4), MRI abnormality. Patients with dual pa- CNS infection in 2 / 2 (p= 0.6) and preg- thology (i.e., mesial temporal sclerosis as- nancy
Recommended publications
  • Case Study: Right Temporal Lobe Epilepsy
    Case Study: Right temporal lobe epilepsy Group Members • Rudolf Cymorr Kirby P. Martinez • Yet dalen • Rachel Joy Alcalde • Siriwimon Luanglue • Mary Antonette Pineda • Khayay Hlaing • Luch Bunrattana • Keo Sereymonica • Sikanal Chum • Pyone Khant khant • Men Puthik • Chheun Chhorvy Advisers: Sudasawan Jiamsakul Janyarak Supat 2 Overview of Epilepsy 3 Overview of Epilepsy 4 Risk Factor of Epilepsy 5 Goal of Epilepsy Care 6 Case of Patient X Patient Information & Hx • Sex: Female (single) • Age: 22 years old • Date of admission: 15 June 2017 • Chief Complaint: Jerking movement of all 4 limbs • Past Diagnosis: Temporal lobe epilepsy • No allergies, family history & Operation Complete Vaccination. (+) Developmental Delay Now she can take care herself. Income: Helps in family store (can do basic calculation) History Workup Admission Operation ICU Female Surgery D/C 7 • Sex: Female Case of Patient X • Age: 22 years old • CC: Jerking movement of all 4 limbs History Past Present History Workup Admission Operation ICU Female Surgery D/C 8 • Sex: Female Case of Patient X • Age: 22 years old • CC: Jerking movement of all 4 limbs Past Present (11 mos) (+) high fever. Prescribed AED for 2-3 Treatment at Songkranakarin Hosp. mos. After AED stops, no further episode Prescribe AED but still with 4-5 ep/mos 21 yrs 6 yrs Present PTA PTA (15 y/o) (+) jerking movement (15 y/o) (+) aura as jerking Now 2-3 ep/ mos both arms and legs with LOC movement at chin & headache Last attack 2 mos for 5 mins. Drowsy after attack ago thus consult with no memory of attack 15-17 episode/ mos History Workup Admission Operation ICU Female Surgery D/C 9 • Sex: Female Case of Patient X • Age: 22 years old • CC: Jerking movement of all 4 limbs Past Present 2 months prior to admission, she had jerking movement both arms and legs, blinking both eyes, corner of the mouth twitch, and drool.
    [Show full text]
  • Long-Term Results of Vagal Nerve Stimulation for Adults with Medication-Resistant
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Seizure 22 (2013) 9–13 Contents lists available at SciVerse ScienceDirect Seizure jou rnal homepage: www.elsevier.com/locate/yseiz Long-term results of vagal nerve stimulation for adults with medication-resistant epilepsy who have been on unchanged antiepileptic medication a a, b a c a Eduardo Garcı´a-Navarrete , Cristina V. Torres *, Isabel Gallego , Marta Navas , Jesu´ s Pastor , R.G. Sola a Division of Neurosurgery, Department of Surgery, University Hospital La Princesa, Universidad Auto´noma, Madrid, Spain b Division of Neurosurgery, Hospital Nin˜o Jesu´s, Madrid, Spain c Department of Physiology, University Hospital La Princesa, Madrid, Spain A R T I C L E I N F O A B S T R A C T Article history: Purpose: Several studies suggest that vagal nerve stimulation (VNS) is an effective treatment for Received 15 July 2012 medication-resistant epileptic patients, although patients’ medication was usually modified during the Received in revised form 10 September 2012 assessment period. The purpose of this prospective study was to evaluate the long-term effects of VNS, at Accepted 14 September 2012 18 months of follow-up, on epileptic patients who have been on unchanged antiepileptic medication. Methods: Forty-three patients underwent a complete epilepsy preoperative evaluation protocol, and Keywords: were selected for VNS implantation. After surgery, patients were evaluated on a monthly basis, Vagus nerve increasing stimulation 0.25 mA at each visit, up to 2.5 mA. Medication was unchanged for at least 18 Epilepsy months since the stimulation was started.
    [Show full text]
  • God and the Limbic System from Phantoms in the Brain, by V.S
    Imagine you had a machine, a helmet of sorts that you could ... http://www.historyhaven.com/TOK/God and the Limbic Syst... God and the Limbic System From Phantoms in the Brain, by V.S. Ramachandran Imagine you had a machine, a helmet of sorts that you could simply put on your head and stimulate any small region of your brain without causing permanent damage. What would you use the device for? This is not science fiction. Such a device, called a transcranial magnetic stimulator, already exists and is relatively easy to construct. When applied to the scalp, it shoots a rapidly fluctuating and extremely powerful magnetic field onto a small patch of brain tissue, thereby activating it and providing hints about its function. For example, if you were to stimulate certain parts of your motor cortex, different muscles would contract. Your finger might twitch or you'd feel a sudden involuntary, puppetlike shrugging of one shoulder. So, if you had access to this device, what part of your brain would you stimulate? If you happened to be familiar with reports from the early days of neurosurgery about the septum-a cluster of cells located near the front of the thalamus in the middle of your brain-you might be tempted to apply the magnet there. Patients "zapped" in this region claim to experience intense pleasure, "like a thousand orgasms rolled into one." If you were blind from birth and the visual areas in your brain had not degenerated, you might stimulate bits of your own visual cortex to find out what people mean by color or "seeing." Or, given the well-known clinical observation that the left frontal lobe seems to be involved in feeling "good," maybe you'd want to stimulate a region over your left eye to see whether you could induce a natural high.
    [Show full text]
  • Surgical Alternatives for Epilepsy (SAFE) Offers Counseling, Choices for Patients by R
    UNIVERSITY of PITTSBURGH NEUROSURGERY NEWS Surgical alternatives for epilepsy (SAFE) offers counseling, choices for patients by R. Mark Richardson, MD, PhD Myths Facts pilepsy is often called the most common • There are always ‘serious complications’ from Epilepsy surgery is relatively safe: serious neurological disorder because at epilepsy surgery. Eany given time 1% of the world’s popula- • the rate of permanent neurologic deficits is tion has active epilepsy. The only potential about 3% cure for a patient’s epilepsy is the surgical • the rate of cognitive deficits is about 6%, removal of the seizure focus, if it can be although half of these resolve in two months identified. Chances for seizure freedom can be as high as 90% in some cases of seizures • complications are well below the danger of that originate in the temporal lobe. continued seizures. In 2003, the American Association of Neurology (AAN) recognized that the ben- • All approved anti-seizure medications should • Some forms of temporal lobe epilepsy are fail, or progressive and seizure outcome is better when efits of temporal lobe resection for disabling surgical intervention is early. seizures is greater than continued treatment • a vagal nerve stimulator (VNS) should be at- with antiepileptic drugs, and issued a practice tempted and fail, before surgery is considered. • Early surgery helps to avoid the adverse conse- parameter recommending that patients with quences of continued seizures (increased risk of temporal lobe epilepsy be referred to a surgi- death, physical injuries, cognitive problems and cal epilepsy center. In addition, patients with lower quality of life. extra-temporal epilepsy who are experiencing • Resection surgery should be considered before difficult seizures or troubling medication side vagal nerve stimulator placement.
    [Show full text]
  • Temporal Lobe Epilepsy: Clinical Semiology and Age at Onset
    Original article Epileptic Disord 2005; 7 (2): 83-90 Temporal lobe epilepsy: clinical semiology and age at onset Vicente Villanueva, José Maria Serratosa Neurology Department, Fundacion Jimenez Diaz, Madrid, Spain Received April 23, 2003; Accepted January 20, 2005 ABSTRACT – The objective of this study was to define the clinical semiology of seizures in temporal lobe epilepsy according to the age at onset. We analyzed 180 seizures from 50 patients with medial or neocortical temporal lobe epilepsy who underwent epilepsy surgery between 1997-2002, and achieved an Engel class I or II outcome. We classified the patients into two groups according to the age at the first seizure: at or before 17 years of age and 18 years of age or older. All patients underwent intensive video-EEG monitoring. We reviewed at least three seizures from each patient and analyzed the following clinical data: presence of aura, duration of aura, ictal and post-ictal period, clinical semiology of aura, ictal and post-ictal period. We also analyzed the following data from the clinical history prior to surgery: presence of isolated auras, frequency of secondary generalized seizures, and frequency of complex partial seizures. Non-parametric, chi-square tests and odds ratios were used for the statistical analysis. There were 41 patients in the “early onset” group and 9 patients in the “later onset” group. A relationship was found between early onset and mesial tempo- ral lobe epilepsy and between later onset and neocortical temporal lobe epilepsy (p = 0.04). The later onset group presented a higher incidence of blinking during seizures (p = 0.03), a longer duration of the post-ictal period (p = 0.07) and a lower number of presurgical complex partial seizures (p = 0.03).
    [Show full text]
  • National Institute of Mental Health & Neurosciences
    National Institute of Mental Health & Neurosciences (Institute of National Importance), Bengaluru-560029 राष्ट्रि य मानष्ट्िक स्वास्थ्य एवं तंष्ट्िका ष्ट्वज्ञान िंथान, (राष्ट्रि य महत्व का िंथान), बᴂगलूर - 560029 ರಾಷ್ಟ್ರೀಯ ಮಾನಸಿಕ ಆರ ೀಗ್ಯ ಮ郍ತು ನರ 풿ಜ್ಞಾನ ಸಂ ೆ, (ರಾಷ್ಟ್ರೀಯ ꣍ಾಾಮತಖ್ಯತಾ ಸಂ )ೆ , ಬ ಂಗ್ಳೂರತ- 560029 FAQ on Epilepsy What is Seizure? Seizure is a general term and people call their seizures by different names – such as a fit, convulsion, funny turn, attack or blackout. It can happen due to variety of reasons like low blood sugar, liver failure, kidney failure, and alcohol intoxication among others. A person with epilepsy can also manifest with seizure. What is epilepsy? Epilepsy is a neurological disorder of the brain (not mental illness) where in patients have a tendency to have recurrent seizures. Seizure is like fever – due to various causes; while epilepsy is a definite diagnosis like fever due to typhoid, malaria. How many people have epilepsy? Epilepsy is the one of the most common neurological condition and may affect 1% of the population. Which means there are at least 10 million epilepsy patients in our country. What causes epilepsy? Anyone can develop epilepsy; it occurs in all ages, races and social classes. It is due to sudden burst of abnormal electrical discharges from the brain. In a great majority of patients, one does not know the cause for this. The causes of epilepsy can be put into three different groups: a) Symptomatic epilepsy: when there is a known cause for a person's epilepsy starting it is called symptomatic epilepsy.
    [Show full text]
  • Transcriptome Analysis Reveals Higher Levels of Mobile Element-Associated Abnormal Gene Transcripts in Temporal Lobe Epilepsy Patients
    bioRxiv preprint doi: https://doi.org/10.1101/2021.05.14.444199; this version posted May 17, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Transcriptome analysis reveals higher levels of mobile element-associated abnormal gene transcripts in temporal lobe epilepsy patients Kai Hu a,b,*, Ping Liang b,** a Department of Neurology, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha, Hunan 410008, China b Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, L2S 3A1, Ontario, Canada * Corresponding author at: Department of Neurology, Xiangya Hospital, Central South University, Xiangya Road 87, Changsha, Hunan, China 410008 ** Corresponding author at: Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, Ontario, Canada, L2S 3A1 Email addresses: [email protected] (Kai Hu), [email protected] (Ping Liang). bioRxiv preprint doi: https://doi.org/10.1101/2021.05.14.444199; this version posted May 17, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract: Objective: To determine role of abnormal splice variants associated with mobile elements in epilepsy. Methods: Publicly available human RNA-seq-based transcriptome data for laser- captured dentate granule cells of post-mortem hippocampal tissues from temporal lobe epilepsy patients with (TLE, N=14 for 7 subjects) and without hippocampal sclerosis (TLE-HS, N=8 for 5 subjects) and healthy individuals (N=51), surgically resected bulk neocortex tissues from TLE patients (TLE-NC, N=17).
    [Show full text]
  • Advances in the Surgical Management of Epilepsy Drug-Resistant Focal Epilepsy in the Adult Patient
    Advances in the Surgical Management of Epilepsy Drug-Resistant Focal Epilepsy in the Adult Patient a, b Gregory D. Cascino, MD *, Benjamin H. Brinkmann, PhD KEYWORDS Epilepsy Drug-resistant Neuroimaging Surgical treatment KEY POINTS Pharmacoresistant seizures may occur in nearly one-third of people with epilepsy, and Intractable epilepsy is associated with an increased mortality. Medial temporal lobe epilepsy and lesional epilepsy are the most favorable surgically remediable epileptic syndromes. Successful epilepsy surgery may render the patient seizure-free, reduce antiseizure drug(s) adverse effects, improve quality of life, and decrease mortality. Surgical management of epilepsy should not be considered a procedure of “last resort.” Epilepsy surgery despite the results of randomized controlled trials remains an underutil- ized treatment modality for patients with drug-resistant epilepsy. INTRODUCTION Epilepsy is one of the most common chronic neurologic disorders affecting nearly 65 million people in the world.1 It is estimated that approximately 1.2% of individuals in the United States, or approximately 3.4 million people, have seizure disorders.1 This includes almost 3 million adults and 470,000 children.1,2 More than 200,000 individuals in the United States will experience new-onset seizure disorders each year. Nearly 10% of people will have 1 or more seizures during their lifetime.1–3 The 2012 Institute of Medicine of the National Academy of Sciences report indicated that 1 in 26 Amer- icans will develop a seizure disorder during their lifetime; this is double the risk of those with Parkinson disease, multiple sclerosis, and autism spectrum disorder combined.3 The diagnosis of epilepsy may include patients with 2 or more unprovoked seizures or a Mayo Clinic, 200 First Street Southwest, Rochester, MN 55905, USA; b Mayo Clinic, Depart- ment of Neurology, 200 First Street Southwest, Rochester, MN 55905, USA * Corresponding author.
    [Show full text]
  • Role for Reelin in the Development of Granule Cell Dispersion in Temporal Lobe Epilepsy
    The Journal of Neuroscience, July 15, 2002, 22(14):5797–5802 Brief Communication Role for Reelin in the Development of Granule Cell Dispersion in Temporal Lobe Epilepsy Carola A. Haas,1 Oliver Dudeck,2 Matthias Kirsch,1 Csaba Huszka,1 Gunda Kann,1 Stefan Pollak,3 Josef Zentner,2 and Michael Frotscher1 1Institute of Anatomy, 2Department of Neurosurgery, and 3Institute of Forensic Medicine, University of Freiburg, D-79001 Freiburg, Germany The reelin signaling pathway plays a crucial role during the lobe epilepsy. These results suggest that reelin is required for development of laminated structures in the mammalian brain. normal neuronal lamination in humans, and that deficient reelin Reelin, which is synthesized and secreted by Cajal–Retzius expression may be involved in migration defects associated cells in the marginal zone of the neocortex and hippocampus, is with temporal lobe epilepsy. proposed to act as a stop signal for migrating neurons. Here we show that a decreased expression of reelin mRNA by hip- Key words: human hippocampus; extracellular matrix; neuro- pocampal Cajal–Retzius cells correlates with the extent of mi- nal migration disorder; Cajal–Retzius cells; dentate gyrus; Am- gration defects in the dentate gyrus of patients with temporal mon’s horn sclerosis Newborn forebrain neurons migrate from their site of origin to reelin pathway underlie neuronal migration defects in reeler mu- their definitive positions in the cortical plate. Defects in neuronal tants and in humans with TLE. migration are often associated with epileptic disorders (Palmini et To this end, we have studied the expression of reelin, VLDLR, al., 1991). Temporal lobe epilepsy (TLE), one of the most com- ApoER2, and dab1 in tissue samples of hippocampus removed mon neurological disorders in humans (Margerison and Corsellis, from TLE patients for therapeutic reasons.
    [Show full text]
  • Surgical Treatment of Mesial Temporal Lobe Epilepsy: Selective
    dos Santos et al. Neurosurg Cases Rev 2018, 1:006 Volume 1 | Issue 1 Open Access Neurosurgery - Cases and Reviews ORIGINAL ARTICLE Surgical Treatment of Mesial Temporal Lobe Epilepsy: Selective Amygdalohippocampectomy Using Niemeyer’s Approach Adriana Rodrigues Libório dos Santos1*, Gabriel Mufarrej1, Priscila Oliveira da Conceição2, Paulo Luiz da Costa Cruz1, Daniel Dutra Cavalcanti1, Leila Chimelli3 and Paulo Niemeyer Filho1 1Department of Neurosurgery, State Brain Institute Paulo Niemeyer, Rio de Janeiro, Brazil 2Department of Neurology, State Brain Institute Paulo Niemeyer, Rio de Janeiro, Brazil Check for 3Department of Neuropathology, State Brain Institute Paulo Niemeyer, Rio de Janeiro, Brazil updates *Corresponding author: Adriana Rodrigues Libório dos Santos, MD, Institution: State Brain Institute Paulo Niemeyer/ Instituto Estadual do Cérebro Paulo Niemeyer (IECPN), Neurosurgery Department, Rio de Janeiro, Brazil to treat pathology. Seizure is derived from the Greek Abstract and seize means “capture” or “take ownership”. Epi- Objective: Selective Amygdalohippocampectomy (SAH) is lepsy encompasses several types of disorders with dif- a widespread technique for Mesial Temporal Lobe Epilepsy (MTLE) treatment. Dr. Niemeyer was the first to describe ferent symptoms, and clinical manifestations [1-3]. The SAH using transventricular approach technique in 1958. In International League Against Epilepsy (ILAE) defines ep- 2018, we celebrate 60 years of the original description of ilepsy as “two or more recurrent seizures over a period Niemeyer’s approach. This study reviews the approach in greater than 24 hours, without a clear set cause”. The light of currently technology and shows the results achieved with patients submitted to SAH following Niemeyer’s ap- Term Temporal Lobe Epilepsy (TLE) was introduced in proach at Instituto Estadual do Cérebro Paulo Niemeyer the ILAE classification in 1989 as the group of “Symp- (IECPN)*.
    [Show full text]
  • Topiramate and Temporal Lobe Epilepsy: an Open-Label Study
    Original article Epileptic Disord 2012; 14 (2): 163-6 Topiramate and temporal lobe epilepsy: an open-label study Angelo Labate 1, Antonio Siniscalchi 2, Laura Mumoli 1, Umberto Aguglia 1, Aldo Quattrone 1, Antonio Gambardella 3 1 Institute of Neurology, University Magna Græcia, Catanzaro 2 Department of Neuroscience, Neurology Division, Annunziata Hospital, Cosenza 3 Institute of Neurological Sciences, National Research Council, Cosenza, Italy Received November 12, 2011; Accepted February 29, 2012 ABSTRACT – Purpose. To evaluate the efficacy and tolerability of topiramate (TPM) as monotherapy for patients with temporal lobe epileptic seizures based on an observational study. Methods. We evaluated 41 patients (20 female, mean age 54+18 years) with temporal lobe epilepsy (TLE) referred to the Epilepsy Unit, University of Catanzaro, Italy.Patients received TPM as monotherapy directly or after having taken other antiepileptic drugs. Seizure frequency changes and adverse events were recorded. Follow-up was conducted for a period of at least two years after treatment. Results. Patients received TPM, 50-600 mg/day, de novo (n=29) or initially as add-on therapy before the switch (n=12). In total, 28 of 41 patients achieved seizure freedom, whereas 10 showed a ≥50% reduction of seizure fre- quency. Two patients did not respond well and one patient discontinued TPM due to adverse effects. Conclusions. Our results confirm that TPM as either monotherapy or add-on therapy at doses of 50-600 mg/day effectively reduces seizure frequency in TLE. TPM is particular effective and very well tolerated in patients with mild TLE. Key words: topiramate, temporal lobe epilepsy, antiepileptic drugs Topiramate (TPM) is derived from tive therapy with standard AEDs D-fructose, initially used as an have demonstrated that TPM has antidiabetic drug.
    [Show full text]
  • Brains, Minds, and Computers in Literary and Science Fiction Neuronarratives
    BRAINS, MINDS, AND COMPUTERS IN LITERARY AND SCIENCE FICTION NEURONARRATIVES A dissertation submitted to Kent State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy. by Jason W. Ellis August 2012 Dissertation written by Jason W. Ellis B.S., Georgia Institute of Technology, 2006 M.A., University of Liverpool, 2007 Ph.D., Kent State University, 2012 Approved by Donald M. Hassler Chair, Doctoral Dissertation Committee Tammy Clewell Member, Doctoral Dissertation Committee Kevin Floyd Member, Doctoral Dissertation Committee Eric M. Mintz Member, Doctoral Dissertation Committee Arvind Bansal Member, Doctoral Dissertation Committee Accepted by Robert W. Trogdon Chair, Department of English John R.D. Stalvey Dean, College of Arts and Sciences ii TABLE OF CONTENTS Acknowledgements ........................................................................................................ iv Chapter 1: On Imagination, Science Fiction, and the Brain ........................................... 1 Chapter 2: A Cognitive Approach to Science Fiction .................................................. 13 Chapter 3: Isaac Asimov’s Robots as Cybernetic Models of the Human Brain ........... 48 Chapter 4: Philip K. Dick’s Reality Generator: the Human Brain ............................. 117 Chapter 5: William Gibson’s Cyberspace Exists within the Human Brain ................ 214 Chapter 6: Beyond Science Fiction: Metaphors as Future Prep ................................. 278 Works Cited ...............................................................................................................
    [Show full text]