Global Moduli for Polarized Elliptic Surfaces Compositio Mathematica, Tome 62, No 2 (1987), P
COMPOSITIO MATHEMATICA WOLFGANG K. SEILER Global moduli for polarized elliptic surfaces Compositio Mathematica, tome 62, no 2 (1987), p. 187-213 <http://www.numdam.org/item?id=CM_1987__62_2_187_0> © Foundation Compositio Mathematica, 1987, tous droits réservés. L’accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l’accord avec les conditions gé- nérales d’utilisation (http://www.numdam.org/conditions). Toute utilisa- tion commerciale ou impression systématique est constitutive d’une in- fraction pénale. Toute copie ou impression de ce fichier doit conte- nir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Compositio Mathematica 62: 187-213 (1987) © Martinus Nijhoff Publishers, Dordrecht - Printed in the Netherlands 187 Global moduli for polarized elliptic surfaces WOLFGANG K. SEILER Universitât Mannheim, Fakultâtfür Mathematik und Informatik, Seminargebâude A5, 6800 Mannheim 1, FRG Received 30 May 1986; accepted 7 October 1986 Table of contents Introduction This paper is a continuation of [23], where 1 showed the existence of moduli schemes for elliptic surfaces with a section; now this result is applied to show the existence of moduli schemes for polarized elliptic surfaces not necessarily admitting a section. The idea is to show that the moduli functor to be represented is finite over a coarsely representable moduli functor, which is an extension of the moduli functor for elliptic surfaces with a section, and to show - using ideas of Seshadri - that one has coarse representability in such a situation. Since 1 need finiteness in the algebrogeometric sense (including properness), it turns out that even if one is only interested in nonsingular surfaces, one still has to consider surfaces with rational double points, too, and in some constructions even worse singularities have to be 188 admitted.
[Show full text]