Bulk composition of a zoned rare-earth minerals-bearing pegmatite in the Pikes Peak granite batholith near Wellington Lake, central Colorado, U.S.A. Markus B. Raschke1*, Charles R. Stern2*, Evan J. D. Anderson1, M. Alexandra Skewes2, G. Lang Farmer2, Julien M. Allaz3, and Philip M. Persson4 1Department of Physics, Department of Chemistry, and JILA, University of Colorado, Boulder, CO 80309, U.S.A. 2Department of Geological Sciences, University of Colorado, 399-UCB, Boulder, CO 80309, U.S.A. 3ETH Zürich, Department of Earth Sciences, Institute of Geochemistry and Petrology, Clausiusstrasse 25, 8092 Zürich, Switzerland 4Department of Geology and Geological Engineering, 1516 Illinois St., Colorado School of Mines, Golden, CO 80401, U.S.A. *Correspondence should be addressed to:
[email protected] and
[email protected] ABSTRACT and HFSE compared to the F-rich melts, which formed the NYF-type A previously undescribed small lenticular (~5 × 5 × 5 m) pegmatite, located HREE-rich (LaN/YbN < 1) pegmatites in near Wellington Lake in the NW part of the 1.08 Ga ‘A-type’ (anorogenic) ferroan the South Platte district. Homogeniza‐ Pikes Peak granite batholith, ~15 km SW of the South Platte pegmatite district in tion temperatures of < 500°C for possi‐ central Colorado, is concentrically zoned around a mostly monomineralic quartz bly primary fluid inclusions in large core with interconnected miarolitic cavities. Major constituents of the Wellington quartz crystals from the core of the Lake pegmatite are quartz, perthitic microcline, albite (variety cleavelandite), Wellington Lake pegmatite are consis‐ hematite, and biotite. Accessory minerals include fluocerite, bastnäsite, columbite, tent with recent models of pegmatite zircon (var.