What Is an Elementary Particle? by STEVEN WEINBERG

Total Page:16

File Type:pdf, Size:1020Kb

What Is an Elementary Particle? by STEVEN WEINBERG What Is An Elementary Particle? by STEVEN WEINBERG HEN A STRANGER, hearing that I am a physi- W cist, asks me in what area of physics I work, I generally reply that I work on the theory of elementary particles. Giving this answer always makes me nervous. Suppose that the stranger should ask, “What is an elemen- tary particle?” I would have to admit that no one really knows. Let me declare first of all that there is no difficulty in saying what is meant by a particle. A particle is simply a physical system that has no continuous degrees of freedom except for its total mo- mentum. For instance, we can give a complete description of an electron by specifying its momentum, as well as its spin around any given axis, a quantity that in quantum mechanics is discrete rather than continuous. On the other hand, a system consisting of a free electron and a free proton is not a particle, because to describe it one has to specify the momenta of both the electron and the proton— not just their sum. But a bound state of an electron and a proton, such as a hydrogen atom in its state of lowest energy, is a particle. Everyone would agree that a hydrogen atom is not an elementary particle, but it is not always so easy to make this distinction, or even to say what it means. Copyright © 1996 by Steven Weinberg. Research supported in part by the Robert A. Welch Foundation and NSF Grant PHY 9511632. BEAM LINE 17 OR THE FIRST FEW decades electrons.) It was the 1936 discovery of this century there did not of the charge independence of nuclear Fseem to be any trouble in say- forces by Merle Tuve et al. that ing what is meant by an elementary showed clearly that neutrons and particle. J. J. Thomson could use the protons have to be treated in the electric field in a cathode-ray tube to same way; if protons are elementary, pull electrons out of atoms, so atoms then neutrons must be elementary were not elementary. Nothing could too. Today, in speaking of protons be pulled or knocked out of electrons, and neutrons, we often lump them so it seemed that electrons were el- together as nucleons. ementary. When atomic nuclei were This was just the beginning of a discovered in Ernest Rutherford’s lab- great increase in the roster of so- oratory in 1911, it was assumed that called elementary particles. Muons they were not elementary, partly be- were added to the list in 1937 (though cause it was known that some ra- their nature was not understood un- dioactive nuclei emit electrons and til later), and pions and strange par- other particles, and also because nu- ticles in the 1940s. Neutrinos had clear charges and masses could be ex- been proposed by Wolfgang Pauli in plained by assuming that nuclei are 1930, and made part of beta-decay composed of two types of elementary theory by Enrico Fermi in 1933, but James Chadwick who discovered the particles: light, negatively charged were not detected until the Reines- neutron in 1932. (Courtesy AIP Meggers electrons and heavy, positively Cowan experiment of 1955. Then in Gallery of Nobel Laureates) charged protons. the late 1950s the use of particle ac- Even without a definite idea of celerators and bubble chambers re- what is meant by an elementary par- vealed a great number of new parti- ticle, the idea that all matter consists cles, including mesons of spin higher of just two types of elementary par- than 0 and baryons of spin higher ticle was pervasive and resilient in a than 1/2, with various values for way that is difficult to understand to- charge and strangeness. day. For instance, when neutrons On the principle that—even if were discovered by James Chadwick there are more than two types of el- in 1932, it was generally assumed ementary particles—there really that they were bound states of pro- should not be a great number of tons and electrons. In his paper an- types, theorists speculated that most nouncing the discovery, Chadwick of these particles are composites of offered the opinion: “It is, of course, a few types of elementary particles. possible to suppose that the neutron But such bound states would have to is an elementary particle. This view be bound very deeply, quite unlike has little to recommend it at present, atoms or atomic nuclei. For instance, except the possibility of explaining pions are much lighter than nucle- the statistics of such nuclei as N14.” ons and antinucleons, so if the pion (One might have thought this was were a bound state of a nucleon and a pretty good reason: molecular spec- an antinucleon, as proposed by Fer- tra had revealed that the N14 nucle- mi and Chen-Ning Yang, then its us is a boson, which is not possible binding energy would have to be if it is a bound state of protons and large enough to cancel almost all of 18 SPRING 1997 the mass of its constituents. The composite nature of such a particle would be far from obvious. How could one tell which of these particles is elementary and which composite? As soon as this question was asked, it was clear that the old answer—that particles are elemen- tary if you can’t knock anything out of them—was inadequate. Mesons come out when protons collide with each other, and protons and antipro- tons come out when mesons collide with each other, so which is a com- posite of which? Geoffrey Chew and Jr. Ehrenfest, P. others in the 1950s turned this ONG BEFORE Heisenberg Werner Heisenberg, left, talking with dilemma into a point of principle, reached this rather exaggerat- Neils Bohr at the Copenhagen Conference, Bohr Institute, 1934. known as “nuclear democracy,” ed conclusion, a different sort L (Courtesy AIP Emilio Segrè Visual Archives) which held that every particle may of definition of elementary particle be considered to be a bound state of had become widespread. From the any other particles that have the ap- perspective of quantum field theory, propriate quantum numbers. This as developed by Heisenberg, Pauli, view was reflected decades later in a and others in the period 1926–34, the 1975 talk to the German Physical So- basic ingredients of Nature are not ciety by Werner Heisenberg, who particles but fields; particles such as reminisced that: the electron and photon are bundles of energy of the electron and the elec- In the experiments of the fifties and sixties . many new particles tromagnetic fields. It is natural to de- were discovered with long and fine an elementary particle as one short lives, and no unambiguous whose field appears in the funda- answer could be given any longer mental field equations—or, as the- to the question about what these orists usually formulate these the- particles consisted of, since this ories, in the Lagrangian of the theory. question no longer has a rational It doesn’t matter if the particle is meaning. A proton, for example, could be made up of neutron and heavy or light, stable or unstable—if pion, or Lambda-hyperon and kaon, its field appears in the Lagrangian, it or out of two nucleons and an anti- is elementary; if not, not. nucleon; it would be simplest of all This is a fine definition if one to say that a proton just consists of knows the field equations or the La- continuous matter, and all these grangian, but for a long while physi- statements are equally correct or cists didn’t. A fair amount of theo- equally false. The difference be- tween elementary and composite retical work in the 1950s and 1960s particles has thus basically disap- went into trying to find some objec- peared. And that is no doubt the tive way of telling whether a given most important experimental dis- particle type is elementary or com- covery of the last fifty years. posite when the underlying theory is BEAM LINE 19 We will not be able to say which particles are elementary until we have not known. This turned out to be composites of quarks and gluons, not a final theory possible in certain circumstances because we can knock quarks and in nonrelativistic quantum me- of force and matter. gluons out of them, which is believed chanics, where an elementary par- to be impossible, but because that is ticle might be defined as one whose the way they appear in the theory. coordinates appear in the Hamilton- The one uncertain aspect of the ian of the system. For instance, a becomes incorrect, and instead we Standard Model is the mechanism theorem due to the mathematician get a formula for the scattering length that breaks the electroweak gauge Norman Levinson shows how to in terms of the nucleon mass, the symmetry and gives the W and Z par- count the numbers of stable non- deuteron binding energy, and the ticles their masses, thereby adding elementary particles minus the num- fraction of the time that the deuteron an extra helicity state to what would ber of unstable elementary particles spends as an elementary particle (that have been the two helicities of a in terms of changes in phase shifts is, the absolute value squared of the massless W or Z particle of spin 1. as the kinetic energy rises from zero matrix element between the physi- Theories of electroweak symmetry to infinity. The trouble with using cal deuteron state and the elemen- breakdown fall into two categories, this theorem is that it involves the tary free-deuteron state).
Recommended publications
  • Unrestricted Immigration and the Foreign Dominance Of
    Unrestricted Immigration and the Foreign Dominance of United States Nobel Prize Winners in Science: Irrefutable Data and Exemplary Family Narratives—Backup Data and Information Andrew A. Beveridge, Queens and Graduate Center CUNY and Social Explorer, Inc. Lynn Caporale, Strategic Scientific Advisor and Author The following slides were presented at the recent meeting of the American Association for the Advancement of Science. This project and paper is an outgrowth of that session, and will combine qualitative data on Nobel Prize Winners family histories along with analyses of the pattern of Nobel Winners. The first set of slides show some of the patterns so far found, and will be augmented for the formal paper. The second set of slides shows some examples of the Nobel families. The authors a developing a systematic data base of Nobel Winners (mainly US), their careers and their family histories. This turned out to be much more challenging than expected, since many winners do not emphasize their family origins in their own biographies or autobiographies or other commentary. Dr. Caporale has reached out to some laureates or their families to elicit that information. We plan to systematically compare the laureates to the population in the US at large, including immigrants and non‐immigrants at various periods. Outline of Presentation • A preliminary examination of the 609 Nobel Prize Winners, 291 of whom were at an American Institution when they received the Nobel in physics, chemistry or physiology and medicine • Will look at patterns of
    [Show full text]
  • Steven Weinberg Cv Born
    STEVEN WEINBERG CV BORN: May 3, 1933, in New York, N.Y. EDUCATION: Cornell University, 1950–1954 (A.B., 1954) Copenhagen Institute for Theoretical Physics, 1954–1955 Princeton University, 1955–1957 (Ph.D.,1957). HONORARY DEGREES: Harvard University, A.M., 1973 Knox College, D.Sc., 1978 University of Chicago, Sc.D., 1978 University of Rochester, Sc.D., l979 Yale University, Sc.D., 1979 City University of New York,Sc.D., 1980 Clark University, Sc.D., 1982 Dartmouth College, Sc.D., 1984 Weizmann Institute, Ph.D. Hon.Caus., 1985 Washington College, D.Litt., 1985 Columbia University, Sc.D., 1990 University of Salamanca, Sc.D., 1992 University of Padua, Ph.D. Hon.Caus., 1992 University of Barcelona, Sc.D., 1996 Bates College, Sc. D., 2002 McGill University, Sc. D., 2003 University of Waterloo, Sc. D., 2004 Renssalear Polytechnic Institue, Sc. D., 2016 Rockefeller University, Sc. D., 2017 PRESENT POSITION: Josey Regental Professor of Science, University of Texas, 1982– PAST POSITIONS: Columbia University, 1957–1959 Lawrence Radiation Laboratory, 1959–1960 University of California, Berkeley, 1960–1969 On leave, Imperial College, London, 1961–1962 Steven Weinberg 2 Became full professor, 1964 On leave, Harvard University, 1966–1967 On leave, Massachusetts Institute of Technology, 1967–1969 Massachusetts Institute of Technology, 1969–1973, Professor of Physics Harvard University, 1973–1983, Higgins Professor of Physics On leave 1976–1977, as Visiting Professor of Physics, Stanford University Smithsonian Astrophysical Observatory, 1973-1983, Senior
    [Show full text]
  • SHELDON LEE GLASHOW Lyman Laboratory of Physics Harvard University Cambridge, Mass., USA
    TOWARDS A UNIFIED THEORY - THREADS IN A TAPESTRY Nobel Lecture, 8 December, 1979 by SHELDON LEE GLASHOW Lyman Laboratory of Physics Harvard University Cambridge, Mass., USA INTRODUCTION In 1956, when I began doing theoretical physics, the study of elementary particles was like a patchwork quilt. Electrodynamics, weak interactions, and strong interactions were clearly separate disciplines, separately taught and separately studied. There was no coherent theory that described them all. Developments such as the observation of parity violation, the successes of quantum electrodynamics, the discovery of hadron resonances and the appearance of strangeness were well-defined parts of the picture, but they could not be easily fitted together. Things have changed. Today we have what has been called a “standard theory” of elementary particle physics in which strong, weak, and electro- magnetic interactions all arise from a local symmetry principle. It is, in a sense, a complete and apparently correct theory, offering a qualitative description of all particle phenomena and precise quantitative predictions in many instances. There is no experimental data that contradicts the theory. In principle, if not yet in practice, all experimental data can be expressed in terms of a small number of “fundamental” masses and cou- pling constants. The theory we now have is an integral work of art: the patchwork quilt has become a tapestry. Tapestries are made by many artisans working together. The contribu- tions of separate workers cannot be discerned in the completed work, and the loose and false threads have been covered over. So it is in our picture of particle physics. Part of the picture is the unification of weak and electromagnetic interactions and the prediction of neutral currents, now being celebrated by the award of the Nobel Prize.
    [Show full text]
  • Introduction to Elementary Particle Physics
    Introduction to Elementary Particle Physics Joachim Meyer DESY Lectures DESY Summer Student Program 2009 Preface ● This lecture is not a powerpoint show ● This lecture does not substitute an university course ● I know that your knowledge about the topic varies a lot ● So we have to make compromises in simplicity and depth ● Still I hope that all of you may profit somehow ● The viewgraphs shown are only for illustrations ● We will develop things together in discussion and at blackboard ● I hope there are lots of questions. I shall ask you a lot 2 Structures at different sizes Elementary Particle Physics 3 3 Fermion Generations Interactions through Gauge Boson Exchange This lecture is going to tell you something about HOW we arrived at this picture 4 Content of this lectures . Its only a sketch : Depending on your preknowledge we will go more or less in detail in the different subjects 5 6 WHY High Energies ? 7 The very basic minimum you have to know about Relativistic Kinematics 8 Which CM-energy do we reach at HERA ? 9 HEP 100 Years ago : Radioactive Decay Energy region : MeV =He−nucleus....=electron...= photon 10 Today : Some more particles : 11 The Particle Zoo I can't spare you this chapter. Quarks are nice to EXPLAIN observed phenomena. But, what we OBSERVE are particles like protons, muons, pions,.......... 12 'Artificial' Production of New Particles (Resonances): − p scattering 13 Particle classification Hadrons : strongly interacting Leptons : not Strongly interacting 14 All these particles are listed in the Particle Data Booklet
    [Show full text]
  • Nobel Prize for Physics, 1979
    Nobel Prize for Physics, 1979 Abdus Sal am Physics' most prestigious accolade forces is a significant milestone in goes this year to Sheldon Glashow, the constant quest to describe as Abdus Salam and Steven Weinberg much as possible of the world for their work in elucidating the inter­ around us from a minimal set of actions of elementary particles, and initial ideas. in particular for the development of 'At first sight there may be little or the theory which unifies the electro­ no similarity between electromag­ magnetic and weak forces. netic effects and the phenomena This synthesis of two of the basic associated with weak interactions', forces of nature must be reckoned as wrote Sheldon Glashow in 1960. one of the crowning achievements 'Yet remarkable parallels emerge...' of a century which has already seen Both kinds of interactions affect the birth of both quantum mechanics leptons and hadrons; both appear to and relativity. be 'vector' interactions brought Electromagnetism and the weak about by the exchange of particles force might appear to have little to carrying unit spin and negative pari­ do with each other. Electromagne­ ty; both have their own universal tism is our everyday world — it holds coupling constant which governs the atoms together and produces light, strength of the interactions. while the weak force was for a long These vital clues led Glashow to time known only for the relatively propose an ambitious theory which obscure phenomenon of beta-decay attempted to unify the two forces. radioactivity. However there was one big difficul­ The successful unification of these ty, which Glashow admitted had to two apparently highly dissimilar be put to one side.
    [Show full text]
  • MIT at the Large Hadron Collider—Illuminating the High-Energy Frontier
    Mit at the large hadron collider—Illuminating the high-energy frontier 40 ) roland | klute mit physics annual 2010 gunther roland and Markus Klute ver the last few decades, teams of physicists and engineers O all over the globe have worked on the components for one of the most complex machines ever built: the Large Hadron Collider (LHC) at the CERN laboratory in Geneva, Switzerland. Collaborations of thousands of scientists have assembled the giant particle detectors used to examine collisions of protons and nuclei at energies never before achieved in a labo- ratory. After initial tests proved successful in late 2009, the LHC physics program was launched in March 2010. Now the race is on to fulfill the LHC’s paradoxical mission: to complete the Stan- dard Model of particle physics by detecting its last missing piece, the Higgs boson, and to discover the building blocks of a more complete theory of nature to finally replace the Standard Model. The MIT team working on the Compact Muon Solenoid (CMS) experiment at the LHC stands at the forefront of this new era of particle and nuclear physics. The High Energy Frontier Our current understanding of the fundamental interactions of nature is encap- sulated in the Standard Model of particle physics. In this theory, the multitude of subatomic particles is explained in terms of just two kinds of basic building blocks: quarks, which form protons and neutrons, and leptons, including the electron and its heavier cousins. From the three basic interactions described by the Standard Model—the strong, electroweak and gravitational forces—arise much of our understanding of the world around us, from the formation of matter in the early universe, to the energy production in the Sun, and the stability of atoms and mit physics annual 2010 roland | klute ( 41 figure 1 A photograph of the interior, central molecules.
    [Show full text]
  • Elementary Particle Physics from Theory to Experiment
    Elementary Particle Physics From Theory to Experiment Carlos Wagner Physics Department, EFI and KICP, Univ. of Chicago HEP Division, Argonne National Laboratory Society of Physics Students, Univ. of Chicago, Nov. 10, 2014 Particle Physics studies the smallest pieces of matter, 1 1/10.000 1/100.000 1/100.000.000 and their interactions. Friday, November 2, 2012 Forces and Particles in Nature Gravitational Force Electromagnetic Force Attractive force between 2 massive objects: Attracts particles of opposite charge k e e F = 1 2 d2 1 G = 2 MPl Forces within atoms and between atoms Proportional to product of masses + and - charges bind together Strong Force and screen each other Assumes interaction over a distance d ==> comes from properties of spaceAtoms and timeare made fromElectrons protons, interact with protons via quantum neutrons and electrons. Strong nuclear forceof binds e.m. energy together : the photons protons and neutrons to form atoms nuclei Strong nuclear force binds! togethers! =1 m! = 0 protons and neutrons to form nuclei protonD. I. S. of uuelectronsd formedwith Modeled protons by threeor by neutrons a theoryquarks, based bound on together Is very weak unless one ofneutron theat masses high energies is huge,udd shows by thatthe U(1)gluons gauge of thesymmetry strong interactions like the earth protons and neutrons SU (3) c are not fundamental Friday,p November! u u d 2, 2012 formed by three quarks, bound together by n ! u d d the gluons of the strong interactions Modeled by a theory based on SU ( 3 ) C gauge symmetry we see no free quarks Very strong at large distances confinement " in nature ! Weak Force Force Mediating particle transformations Observation of Beta decay demands a novel interaction Weak Force Short range forces exist only inside the protons 2 and neutrons, with massive force carriers: gauge bosons ! W and Z " MW d FW ! e / d Similar transformations explain the non-observation of heavier elementary particles in our everyday experience.
    [Show full text]
  • The Higgs Boson in the Periodic System of Elementary Particles
    Southern Adventist University KnowledgeExchange@Southern Faculty Works Physics and Engineering Department 3-2013 The iH ggs Boson in the Periodic System of Elementary Particles Ding-Yu Chung Ray Hefferlin Follow this and additional works at: https://knowledge.e.southern.edu/facworks_physics Part of the Elementary Particles and Fields and String Theory Commons Recommended Citation Chung, Ding-Yu and Hefferlin, Ray, "The iH ggs Boson in the Periodic System of Elementary Particles" (2013). Faculty Works. 12. https://knowledge.e.southern.edu/facworks_physics/12 This Article is brought to you for free and open access by the Physics and Engineering Department at KnowledgeExchange@Southern. It has been accepted for inclusion in Faculty Works by an authorized administrator of KnowledgeExchange@Southern. For more information, please contact [email protected]. Journal of Modern Physics, 2013, 4, 21-26 doi:10.4236/jmp.2013.44A004 Published Online April 2013 (http://www.scirp.org/journal/jmp) The Higgs Boson in the Periodic System of Elementary Particles Ding-Yu Chung1, Ray Hefferlin2 1Utica, Michigan, USA 2Department of Physics, Southern Adventist University, Collegedale, USA Email: [email protected], [email protected] Received February 12, 2013; revised March 15, 2013; accepted March 27, 2013 Copyright © 2013 Ding-Yu Chung, Ray Hefferlin. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. ABSTRACT It is proposed that the observed Higgs Boson at the LHC is the Standard Model Higgs boson that adopts the existence of the hidden lepton condensate. The hidden lepton is in the forbidden lepton family, outside of the three lepton families of the Standard Model.
    [Show full text]
  • New Elementary Particle Evidence Found, 'Sterile Neutrino' Long
    New elementary particle evidence found, ‘sterile neutrino’ long suspected June 6, 2018 Los Alamos experiment at Fermilab explores potential ‘dark matter’ link, confirms earlier experiment LOS ALAMOS, N.M., June 6, 2018—New research results have potentially identified a fourth type of neutrino, a “sterile neutrino” particle. This particle provides challenges for the Standard Model of particle physics, if found to be a valid result in future experiments. The work, conducted by a multi-institutional team at Fermi National Accelerator Laboratory (Fermilab) near Chicago, confirms results found in the 1990s in the Los Alamos Liquid Scintillator Neutrino Detector (LSND). “This is a fascinating step forward for particle physics,” said Los Alamos National Laboratory Director Terry Wallace. “Of course, this needs to be tempered by #the fact that future observations are required to really clinch this beyond any shadow of doubt. Modifications to the Standard Model, including dark matter, new particles and other interpretations of this result are still speculative. What stands with high confidence is that two experiments with completely different approaches observe the same effect.” 1:22 The Sterile Neutrino Discovery Neutrinos, traditionally understood to come in three “flavors,” electron, muon and tau, have been measured by the Mini Booster Neutrino Experiment (MiniBooNE) for some 15 years. The key to the current result is the existence of more electron-flavored neutrinos than expected. Neutrinos normally oscillate between the three types, but the overpopulation of the electron-flavored ones leads to a theory that some of the muon neutrinos became sterile neutrinos for a time during the regular oscillations. The sterile neutrinos could reasonably be assumed to have transitioned into electron neutrinos in their next oscillation phase, thus explaining the higher electron numbers.
    [Show full text]
  • Supersymmetry: What? Why? When?
    Contemporary Physics, 2000, volume41, number6, pages359± 367 Supersymmetry:what? why? when? GORDON L. KANE This article is acolloquium-level review of the idea of supersymmetry and why so many physicists expect it to soon be amajor discovery in particle physics. Supersymmetry is the hypothesis, for which there is indirect evidence, that the underlying laws of nature are symmetric between matter particles (fermions) such as electrons and quarks, and force particles (bosons) such as photons and gluons. 1. Introduction (B) In addition, there are anumber of questions we The Standard Model of particle physics [1] is aremarkably hope will be answered: successful description of the basic constituents of matter (i) Can the forces of nature be uni® ed and (quarks and leptons), and of the interactions (weak, simpli® ed so wedo not have four indepen- electromagnetic, and strong) that lead to the structure dent ones? and complexity of our world (when combined with gravity). (ii) Why is the symmetry group of the Standard It is afull relativistic quantum ®eld theory. It is now very Model SU(3) ´SU(2) ´U(1)? well tested and established. Many experiments con® rmits (iii) Why are there three families of quarks and predictions and none disagree with them. leptons? Nevertheless, weexpect the Standard Model to be (iv) Why do the quarks and leptons have the extendedÐ not wrong, but extended, much as Maxwell’s masses they do? equation are extended to be apart of the Standard Model. (v) Can wehave aquantum theory of gravity? There are two sorts of reasons why weexpect the Standard (vi) Why is the cosmological constant much Model to be extended.
    [Show full text]
  • NEW ENTITIES, OLD PARADIGMS: ELEMENTARY PARTICLES in the 1930S1
    LUE,, vol. 27,2004,435-464 NEW ENTITIES, OLD PARADIGMS: ELEMENTARY PARTICLES IN THE 1930s1 JAUME NAVARRO Cambridge University RESUMEN Al3STRACT En este artículo pretendo analizar los The aim of this paper is to analyse the procesos por los cuales se descubrieron y processes by which a number of new ele- aceptaron nuevas partículas elementales mentary particles were discovered and en los años anteriores a la segunda guerra accepted by the scientific community in the mundiaL Muchos libros de divulgación de years before World War 11. Many popular física de partículas elementales suelen accounts of particle physics depict a linear narrar una historia lineal sobre la bŭsque- history of the search for the ultimate con- da de las ŭltimas partículas constitutivas stituents of matter, which would start in de la materia. Ésta empezaría en 1897, 1897, with the discovery of the electron, con el descubrimiento del electrón, y and move on to an increasing number of avanzaría linealmente añadiendo nuevas new particles: photon, proton, neutron, partículas: fotones, protones, neutrones, positron, neutrino... Nevertheless, the positrones, neutrinos, etc. Sin embargo, el question about the building-blocks of the problema de los elementos constitutivos material world seems to have been a sec- de la materia no era un tema central de la ondary concern for physidsts who were fisica en la década de 1930. En sentido involved in the discovery of the new ele- estricto, se puede asegurar que antes de la mentary particles in the 1930s. In the segunda guerra mundial no existz'a una strong sense, one can argue that there was nueva disciplina de partículas elementales no such thing as a new discipline of particle en física.
    [Show full text]
  • B Meson Decays Marina Artuso1, Elisabetta Barberio2 and Sheldon Stone*1
    Review Open Access B meson decays Marina Artuso1, Elisabetta Barberio2 and Sheldon Stone*1 Address: 1Department of Physics, Syracuse University, Syracuse, NY 13244, USA and 2School of Physics, University of Melbourne, Victoria 3010, Australia Email: Marina Artuso - [email protected]; Elisabetta Barberio - [email protected]; Sheldon Stone* - [email protected] * Corresponding author Published: 20 February 2009 Received: 20 February 2009 Accepted: 20 February 2009 PMC Physics A 2009, 3:3 doi:10.1186/1754-0410-3-3 This article is available from: http://www.physmathcentral.com/1754-0410/3/3 © 2009 Stone et al This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/ licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract We discuss the most important Physics thus far extracted from studies of B meson decays. Measurements of the four CP violating angles accessible in B decay are reviewed as well as direct CP violation. A detailed discussion of the measurements of the CKM elements Vcb and Vub from semileptonic decays is given, and the differences between resulting values using inclusive decays versus exclusive decays is discussed. Measurements of "rare" decays are also reviewed. We point out where CP violating and rare decays could lead to observations of physics beyond that of the Standard Model in future experiments. If such physics is found by directly observation of new particles, e.g. in LHC experiments, B decays can play a decisive role in interpreting the nature of these particles.
    [Show full text]