Simulation of Dynamic Pressure- Swing Gas Sorption in Polymers
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Membrane Seperation Processes, Supp. A
I PROCESS ECONOMICS PROGRAM SRI INTERNATIONAL Menlo Park, California 94025 Abstract Process Economics Program Report No. 190A MEMBRANE GAS SEPARATION PROCESSES (January 1990) Advances in membrane technology in areas such as reverse osmosis and ultrafiltration have led to the development and commercial introduction of membranes for large-scale in- dustrial gas separations. This report studies four major applications--nitrogen production from air, oxygen-enriched air, hydrogen recovery from ammonia purge gas, and carbon dioxide separation from methane. Process economics for each application is presented, based on a preliminary process design. Competing separation operations are reviewed and competitive economics are evaluated for air separation by pressure swing adsorption. A technical review presents the essential criteria for designing on-site systems and membrane system attributes that affect economic competitiveness. Process design features required for the different industrial gas separations are also summarized, and the types of procedures employed to determine membrane area requirements are briefly described. a Finally, gas membrane system development activity by major world regions is presented, along with a review of the main market segments and a listing of current and potential applica- tions for gas membrane separation technology. Also, a look at the major supplier’s technology and market position is presented along with an SRI estimate of the number of currently installed units. Report No. 190A MEMBRANE GAS SEPARATION PROCESSES SUPPLEMENT A by RONALD SMITH - I I February 1990 cl a - A private report by the PROCESS ECONOMICS PROGRAM m a- Menlo Park, California 94025 a For detailed marketing data and information, the reader is referred to one of the SRI programs specializing in marketing research. -
Evolution of Water Diffusion in a Sorption-Enhanced Methanation Catalyst
catalysts Article Evolution of Water Diffusion in a Sorption-Enhanced Methanation Catalyst Renaud Delmelle 1,* ID , Jasmin Terreni 2, Arndt Remhof 3 ID , Andre Heel 1, Joris Proost 4 and Andreas Borgschulte 2 ID 1 Institute of Materials and Process Engineering (IMPE), Zurich University of Applied Sciences (ZHAW), Technikumstrasse 9, CH-8401 Winterthur, Switzerland; [email protected] 2 Laboratory for Advanced Analytical Technologies, Swiss Federal Laboratories for Materials Science and Technology (Empa), Überlandstrasse 129, CH-8600 Dübendorf, Switzerland; [email protected] (J.T.); [email protected] (A.B.) 3 Materials for Energy Conversion, Swiss Federal Laboratories for Materials Science and Technology (Empa), Überlandstrasse 129, CH-8600 Dübendorf, Switzerland; [email protected] 4 Institute of Mechanics, Materials and Civil Engineering (iMMC), Université catholique de Louvain, Place Sainte-Barbe 2, B-1348 Louvain-la-Neuve, Belgium; [email protected] * Correspondence: [email protected] or [email protected]; Tel.: +41-58-934-47-72; Fax: +41-58-935-71-83 Received: 28 May 2018; Accepted: 18 August 2018; Published: 21 August 2018 Abstract: Sorption-enhanced methanation has consequent advantages compared to conventional methanation approaches; namely, the production of pure methane and enhanced kinetics thanks to the application of Le Châtelier’s principle. In this paper, we address the question of the long-term stability of a sorption-enhanced methanation catalyst-support couple: Ni nanoparticles on zeolite 5A. Compared to most conventional methanation processes the operational conditions of sorption-enhanced methanation are relatively mild, which allow for stable catalyst activity on the long term. Indeed, we show here that neither coking nor thermal degradation come into play under such conditions. -
Membrane Technologies for CO2 Separation A
Journal of Membrane Science 359 (2010) 115–125 Contents lists available at ScienceDirect Journal of Membrane Science journal homepage: www.elsevier.com/locate/memsci Membrane technologies for CO2 separation A. Brunetti a, F. Scura a, G. Barbieri a,∗, E. Drioli a,b a National Research Council, Institute for Membrane Technology (ITM–CNR), Via Pietro BUCCI, c/o The University of Calabria, Cubo 17C, 87030 Rende CS, Italy1 b The University of Calabria, Department of Chemical Engineering and Materials, Cubo 44A, Via Pietro BUCCI, 87030 Rende CS, Italy article info abstract Article history: Today, all the existing coal-fired power plants present over the world emit about 2 billion tons of CO2 per Received 21 July 2009 year. The identification of a capture process which would fit the needs of target separation performances, Received in revised form 6 October 2009 together with a minimal energy penalty, is a key issue. Because of their fundamental engineering and Accepted 17 November 2009 economic advantages over competing separation technologies, membrane operations are, now, being Available online 26 November 2009 explored for CO2 capture from power plant emissions.The aim of this work is to provide people interested in the use of membranes in CO2 capture a general overview of the actual situation both in terms of Keywords: materials studies and global strategy to follow in the choice of the membrane gas separation with respect Membrane systems to the other separation technologies. Firstly, an overview on the polymeric membranes currently studied CO2 separation Flue gas for their use in CO2 capture and of their transport properties is proposed. -
Characterizing Adsorbents for Gas Separations
Reprinted with permission from Chemical Engineering Progress (CEP), March 2018. Copyright © 2018 American Institute of Chemical Engineers (AIChE). Reactions and Separations Characterizing Adsorbents for Gas Separations Darren Broom Pressure-swing adsorption (PSA) and Hiden Isochema Ltd. temperature-swing adsorption (TSA) separate a specific gas species from a mixture of gases. This article explains how to evaluate the performance of an adsorbent for a given separation. eparations account for a significant proportion of required for gas separations and the laboratory techniques worldwide energy consumption (1). Energy-intensive used to obtain this information. The article also discusses Sdistillation dominates the chemical process industries methods for assessing multicomponent adsorption and iden- (CPI), but more-efficient alternatives, such as membrane tifies future challenges in the field. technology and adsorption by porous materials, are also in widespread use. Pressure-swing adsorption (PSA) and Working capacity and isotherm shape temperature-swing adsorption (TSA) are two common The performance of an adsorbent for a particular separa- gas separation processes. In a PSA process, adsorbents are tion depends on several factors. One of the most important regenerated by reducing pressure; in a TSA process, they are is its working capacity. For PSA, it is the difference between regenerated by applying heat (2–4). the uptake at the feed pressure and the uptake at the regen- Adsorbent performance as a function of temperature, eration pressure. For TSA, it is the difference between the pressure, and gas composition is a crucial aspect of PSA and uptakes at the feed temperature and the regeneration tem- TSA. To determine whether an adsorbent will be appropri- perature at the working pressure (Figure 1). -
Diverse Crystal Size Effects in Covalent Organic Frameworks
ARTICLE https://doi.org/10.1038/s41467-020-19858-8 OPEN Diverse crystal size effects in covalent organic frameworks Tianqiong Ma 1,2, Lei Wei3, Lin Liang2, Shawn Yin4,LeXu1, Jing Niu2, Huadong Xue2, Xiaoge Wang1, ✉ ✉ ✉ Junliang Sun 1 , Yue-Biao Zhang 3 & Wei Wang 2 Crystal size effect is of vital importance in materials science by exerting significant influence on various properties of materials and furthermore their functions. Crystal size effect of 1234567890():,; covalent organic frameworks (COFs) has never been reported because their controllable synthesis is difficult, despite their promising properties have been exhibited in many aspects. Here, we report the diverse crystal size effects of two representative COFs based on the successful realization of crystal-size-controlled synthesis. For LZU-111 with rigid spiral channels, size effect reflects in pore surface area by influencing the pore integrity, while for flexible COF-300 with straight channels, crystal size controls structural flexibility by altering the number of repeating units, which eventually changes sorption selectivity. With the understanding and insight of the structure-property correlation not only at microscale but also at mesoscale for COFs, this research will push the COF field step forward to a significant advancement in practical applications. 1 College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences (BNLMS), Peking University, 100871 Beijing, P.R. China. 2 State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 730000 Lanzhou, Gansu, P.R. China. 3 School of Physical Science and Technology, ShanghaiTech University, 201210 Shanghai, P.R. China. 4 Drug Product Development Bristol-Myers ✉ Squibb Co., One Squibb Drive, New Brunswick, NJ 08903, USA. -
30 Years of Membrane Technology for Gas Separation Paola Bernardo, Gabriele Clarizia*
1999 A publication of CHEMICAL ENGINEERING TRANSACTIONS The Italian Association VOL. 32, 2013 of Chemical Engineering Online at: www.aidic.it/cet Chief Editors: Sauro Pierucci, Jiří J. Klemeš Copyright © 2013, AIDIC Servizi S.r.l., ISBN 978-88-95608-23-5; ISSN 1974-9791 30 Years of Membrane Technology for Gas Separation Paola Bernardo, Gabriele Clarizia* Istituto di Ricerca per la Tecnologia delle Membrane, ITM-CNR, Via P. Bucci, cubo 17/C, 87030 Arcavacata di Rende, CS, Italy [email protected] Membrane technology applied to the separation of gaseous mixtures competes with conventional unit operations (e.g., distillation, absorption, adsorption) on the basis of overall economics, safety, environmental and technical aspects. Since the first industrial installations for hydrogen separation in the early eighties, significant improvements in membrane quality have been achieved in air separation as well as in CO2 separation. However, beside the improvement in the materials as well as in membrane module design, an important point is represented by a correct engineering of these separation processes. The recovery of high value co-products from different industrial streams (e.g. organic vapours from off-gas streams, helium from natural gas) is an interesting application, which created a new market for gas separation membranes, coupling environmental and economic benefits. The opportunity to integrate membrane operations in ongoing production cycles for taking advantage from their peculiar characteristics has been proved as a viable approach. In this ambit, membrane systems in appropriate ranges of operating conditions meet the main requirements such as purity, productivity, energy demand of specific industrial processes. -
Engineered Transport in Microporous Materials and Membranes for Clean Energy Technologies
Lawrence Berkeley National Laboratory Recent Work Title Engineered Transport in Microporous Materials and Membranes for Clean Energy Technologies. Permalink https://escholarship.org/uc/item/1nb0c4hb Journal Advanced materials (Deerfield Beach, Fla.), 30(8) ISSN 0935-9648 Authors Li, Changyi Meckler, Stephen M Smith, Zachary P et al. Publication Date 2018-02-01 DOI 10.1002/adma.201704953 License https://creativecommons.org/licenses/by-nc-nd/4.0/ 4.0 Peer reviewed eScholarship.org Powered by the California Digital Library University of California REVIEW Microporous Materials www.advmat.de Engineered Transport in Microporous Materials and Membranes for Clean Energy Technologies Changyi Li, Stephen M. Meckler, Zachary P. Smith, Jonathan E. Bachman, Lorenzo Maserati, Jeffrey R. Long, and Brett A. Helms* 1. Introduction Many forward-looking clean-energy technologies hinge on the development of scalable and efficient membrane-based separations. Ongoing investment Improving the efficiency of membrane- in the basic research of microporous materials is beginning to pay dividends based separations is critical to the advance- in membrane technology maturation. Specifically, improvements in mem- ment of many clean-energy technologies, including gas and chemical separations, brane selectivity, permeability, and durability are being leveraged for more carbon capture and sequestration (CCS), efficient carbon capture, desalination, and energy storage, and the market water desalination, dehumidification, adoption of membranes in those areas appears to be on the horizon. Herein, fuel-cell technology, and electrochemical an overview of the microporous materials chemistry driving advanced energy storage (EES). Schemes to engineer membrane development, the clean-energy separations employing them, and highly selective species transport across microporous membranes have progressed the theoretical underpinnings tying membrane performance to membrane considerably in the past decade due to the structure across multiple length scales is provided. -
Membrane Separations
MEMBRANE SEPARATIONS RATE CONTROLLED SEPARATION PROCESSES ETH ZURICH — HS 2016 Department of Mechanical and Process Engineering Prof. Dr. Marco Mazzotti Dr. Matteo Gazzani Federico Milella Paolo Gabrielli October 7, 2016 Note for students — HS 2016 For the preparation of the exam the following parts of the script are of less impor- tance: section 1.3; eqs. (1.11), (1.12) and (1.16); chapter 2. The analysis of section 3.3 and 3.4 should be limited to what has been done during the lecture. Contents 1 Membranes theory 1 1.1 Introduction 2 1.2 Mass Balances Over A Membrane Module 3 1.3 Description of mass transfer across selectively permeable membranes 5 1.4 Models For Mass Transfer Through Membranes 10 1.4.1 Pore-flow (hydrodynamic) Model 11 1.4.2 Solution-Diffusion Model 11 1.5 Reverse Osmosis 16 1.5.1 An Application: Water Desalination 21 1.6 Gas Separation 26 1.7 Pervaporation 29 1.8 Unified View Of The Solution Diffusion Model 32 References 33 2 From ideal to real: losses mechanisms in membranes 35 2.1 Concentration Polarization In Liquid Separation Processes 37 iii iv CONTENTS 2.1.1 Osmotic Effect 38 2.2 Concentration Polarization In Gas Separation Processes 39 References 39 3 Design of Gas Separation Modules 41 3.1 Introduction 41 3.2 Gas Separation Module with Perfect Mixing 44 3.3 Gas Separation Module with Cross-plug flow 47 3.4 Gas Separation Module with Counter-current Flow 53 3.5 Design Considerations 56 3.5.1 Membrane Technology 56 3.5.2 Operating Variables 59 References 63 4 Membrane Modules and Processes 65 4.1 Membrane Modules -
The Viable Fabrication of Gas Separation Membrane Used by Reclaimed Rubber from Waste Tires
polymers Article The Viable Fabrication of Gas Separation Membrane Used by Reclaimed Rubber from Waste Tires Yu-Ting Lin 1, Guo-Liang Zhuang 1, Ming-Yen Wey 1,* and Hui-Hsin Tseng 2,3,* 1 Department of Environmental Engineering, National Chung Hsing University, Taichung 402, Taiwan; [email protected] (Y.-T.L.); [email protected] (G.-L.Z.) 2 Department of Occupational Safety and Health, Chung Shan Medical University, Taichung 402, Taiwan 3 Department of Occupational Medicine, Chung Shan Medical University Hospital, Taichung 402, Taiwan * Correspondence: [email protected] (M.-Y.W.); [email protected] (H.-H.T.); Tel.: +886-4-22840441 (ext. 533) (M.-Y.W.); +886-4-24730022 (ext. 12115) (H.-H.T.) Received: 14 September 2020; Accepted: 28 October 2020; Published: 30 October 2020 Abstract: Improper disposal and storage of waste tires poses a serious threat to the environment and human health. In light of the drawbacks of the current disposal methods for waste tires, the transformation of waste material into valuable membranes has received significant attention from industries and the academic field. This study proposes an efficient and sustainable method to utilize reclaimed rubber from waste tires after devulcanization, as a precursor for thermally rearranged (TR) membranes. The reclaimed rubber collected from local markets was characterized by thermogravimetric analyzer (TGA) and Fourier transfer infrared spectroscopy (FT-IR) analysis. The results revealed that the useable rubber in the as-received sample amounted to 57% and was classified as styrene–butadiene rubber, a type of synthetic rubber. Moreover, the gas separation measurements showed that the C7-P2.8-T250 membrane with the highest H2/CO2 selectivity of 4.0 and sufficient hydrogen permeance of 1124.61 GPU exhibited the Knudsen diffusion mechanism and crossed the Robeson trade-off limit. -
Carbon Dioxide Capture for the Oxidative Coupling of Methane Process – a Case Study in Mini-Plant Scale In: Chemical Engineering Research and Design (2011) Elsevier
Final Draft of the original manuscript: Stuenkel, S.; Drescher, A.; Wind, J.; Brinkmann, T.; Repke, J.-U.; Wozny, G.: Carbon dioxide capture for the oxidative coupling of methane process – A case study in mini-plant scale In: Chemical Engineering Research and Design (2011) Elsevier DOI: 10.1016/j.cherd.2011.02.024 Carbon Dioxide Capture for the Oxidative Coupling of Methane Process – A case study in mini-plant scale S. Stünkela, A. Dreschera, J. Windb, T. Brinkmannb, J.-U. Repkea, and G. Woznya a Berlin Centre of Technology, Department of Process Engineering, Straße des 17. Juni 135, 10623 Berlin, Germany b Helmholtz-Zentrum Geesthacht Centre for Materials and Coastal Research, Institute of Polymer Research, Max-Planck-Straße 1, 21502 Geesthacht, Germany E-mail: [email protected] Phone: +49 30 314 79817 Fax: +49 30 314 26915 Abstract The Oxidative Coupling of Methane (OCM) to ethylene is a promising alternative for the oil based industry. In this process, beside the valuable product ethylene, unwanted by-products like CO2 are produced. Hence, the gas stream has to be refined further. The process is not applied in the industry yet, because of high separation costs. This article focuses particular on the CO2 purification of the OCM product stream. Therefore a case study was done for a design task of 90% CO2 capture from 25 mol% in the OCM product gas with an operation pressure of 32*105 Pa. Within the article is shown, how to resolve the lack of high separation cost for the purification and the development of an integrated, energy efficient CO2 capture process for the OCM refinery is described. -
Sorption of Biologically-Active Substances at a Phase Interface. Ion Exchange
МІНІСТЕРСТВО ОХОРОНИ ЗДОРОВ’Я УКРАЇНИ ХАРКІВСЬКИЙ НАЦІОНАЛЬНИЙ МЕДИЧНИЙ УНІВЕРСИТЕТ SORPTION OF BIOLOGICALLY-ACTIVE SUBSTANCES AT A PHASE INTERFACE. ION EXCHANGE. CHROMATOGRAPHY Methodical instructions for 1st year students’ self-work in Medical Chemistry СОРБЦІЯ БІОЛОГІЧНО-АКТИВНИХ РЕЧОВИН НА МЕЖІ РОЗПОДІЛУ ФАЗ. ІОННИЙ ОБМІН. ХРОМАТОГРАФІЯ Методичні вказівки для самостійної роботи студентів 1-го курсу з медичної хімії Затверджено Вченою радою ХНМУ. Протокол № 9 від 21.09.2017 Харків 2017 Sorption of biologically-active substances at a phase interface. Ion exchange. Chromatography: methodical instructions for 1st year students’ self-work in Medical Chemistry / compiled by A.O. Syrovaya, S.V. Andreeva, O.S. Kalinenko, V.N. Petyunina, V.O. Makarov S.N. Kozub, L.V. Lukianova, T.S. Tishakova, O.L. Levashova, O.O. Zavada, E.V. Savelieva, N.N. Kopoteva, N.N. Chalenko, M.O. Vodolazhenko. – Kharkiv: KhNMU, 2017. – 16 p. Compiled by: A.O. Syrovaya, S.V. Andreeva, O.S. Kalinenko, V.N. Petyunina, V.O. Makarov, S.N. Kozub, L.V. Lukianova, T.S. Tishakova, O.L. Levashova, O.O. Zavada, E.V. Savelieva, N.N. Kopoteva, N.N. Chalenko, M.O. Vodolazhenko. Сорбція біологічно-активних речовин на межі розподілу фаз. Іонний обмін. Хроматографія: метод. вказ. для самостійної роботи студентів 1-го курсу з мед. хімії /уклад. Г.О. Сирова, С.В. Андрєєва, О.С. Каліненко, В.М. Петюніна, В.О. Макаров, Л.В. Лук’янова, С.М. Козуб, Т.С.Тішакова, О.Л. Левашова, О.О. Завада, О.В. Савельєва, Н.В. Копотєва, Н.М. Чаленко, М.О. Водолаженко. – Харків: ХНМУ, 2017. – 16 с. Укладачі: Г.О. Сирова, С.В. -
A Review on the Production and Purification of Biomass-Derived
catalysts Review A Review on the Production and Purification of Biomass-Derived Hydrogen Using Emerging Membrane Technologies Hang Yin 1,2 and Alex C. K. Yip 1,* ID 1 Department of Chemical and Process Engineering, The University of Canterbury, 8041 Christchurch, New Zealand; [email protected] 2 Jiangsu Kaimi Membrane Technology, Co., Ltd, Nanjing 210049, China * Correspondence: [email protected]; Tel.: +64-3-369-4086 Received: 28 August 2017; Accepted: 27 September 2017; Published: 6 October 2017 Abstract: Hydrogen energy systems are recognized as a promising solution for the energy shortage and environmental pollution crises. To meet the increasing demand for hydrogen, various possible systems have been investigated for the production of hydrogen by efficient and economical processes. Because of its advantages of being renewable and environmentally friendly, biomass processing has the potential to become the major hydrogen production route in the future. Membrane technology provides an efficient and cost-effective solution for hydrogen separation and greenhouse gas capture in biomass processing. In this review, the future prospects of using gas separation membranes for hydrogen production in biomass processing are extensively addressed from two perspectives: (1) the current development status of hydrogen separation membranes made of different materials and (2) the feasibility of using these membranes for practical applications in biomass-derived hydrogen production. Different types of hydrogen separation membranes, including polymeric membranes, dense metal membranes, microporous membranes (zeolite, metal-organic frameworks (MOFs), silica, etc.) are systematically discussed in terms of their fabrication methods, gas permeation performance, structure stability properties, etc. In addition, the application feasibility of these membranes in biomass processing is assessed from both practical and economic perspectives.