Expression of Myeloid-Specific Genes in Childhood Acute Lymphoblastic

Total Page:16

File Type:pdf, Size:1020Kb

Expression of Myeloid-Specific Genes in Childhood Acute Lymphoblastic Leukemia (2002) 16, 2213–2221 2002 Nature Publishing Group All rights reserved 0887-6924/02 $25.00 www.nature.com/leu Expression of myeloid-specific genes in childhood acute lymphoblastic leukemia – a cDNA array study T Niini1, K Vettenranta2, J Hollme´n3, ML Larramendy1, Y Aalto1, H Wikman1, B Nagy1, JK Seppa¨nen3, A Ferrer Salvador1, H Mannila3, UM Saarinen-Pihkala2 and S Knuutila1 1Departments of Pathology and Medical Genetics, Haartman Institute and Helsinki University Central Hospital, University of Helsinki, Finland; 2Division of Hematology-Oncology and Stem Cell Transplantation, Hospital for Children and Adolescents, Helsinki University Central Hospital, Helsinki, Finland; and 3Laboratory of Computer and Information Science, Helsinki University of Technology, Espoo, Finland Several specific cytogenetic changes are known to be associa- of hundreds to thousands of genes to be evaluated in a single ted with childhood acute lymphoblastic leukemia (ALL), and experiment, and the screening of genes with over- or under- many of them are important prognostic factors for the disease. Little is known, however, about the changes in gene expression expression. The method can be used to search for novel mol- in ALL. Recently, the development of cDNA array technology ecular changes that are associated with the development has enabled the study of expression of hundreds to thousands and/or prognosis of leukemia. In this study we used cDNA of genes in a single experiment. We used the cDNA array arrays to study gene expression profiles in the leukemic blast method to study the gene expression profiles of 17 children cells of 17 children with precursor-B ALL. with precursor-B ALL. Normal B cells from adenoids were used as reference material. We discuss the 25 genes that were most over-expressed compared to the reference. These included four genes that are normally expressed only in the myeloid lin- Materials and methods eages of the hematopoietic cells: RNASE2, GCSFR, PRTN3 and CLC. We also detected over-expression of S100A12, expressed Patients in nerve cells but also in myeloid cells. In addition to the myeloid-specific genes, other over-expressed genes included A total of 17 patients (6/11, M/F) with ALL were included in AML1, LCP2 and FGF6. In conclusion, our study revealed novel information about gene expression in childhood ALL. The data the study. Fourteen patients were analyzed at diagnosis and obtained may contribute to further studies of the pathogenesis three at relapse. Table 1 shows the key clinical data and the and prognosis of childhood ALL. karyotypes of the patients. The mean age of the children was Leukemia (2002) 16, 2213–2221. doi:10.1038/sj.leu.2402685 5.0 years (range 1.2–12.7 years) and the mean WBC was 38.6 Keywords: acute lymphoblastic leukemia; gene expression; × 109/l (range 1.2–272.4 × 109/l). All patients had an early myeloid-specific genes; cDNA array precursor-B phenotype, except patient 8, who had a precur- sor-B disease. In 16 of the 17 cases the blast population expressed the CD34 antigen, in 10 cases in conjunction with Introduction the expression of the myeloid antigens CD13 and CD33. Only in patient 8 was the blast cell population devoid of the Cytogenetic changes are important prognostic markers in expression of both CD34 and CD13/33. The patients were div- childhood acute lymphoblastic leukemia (ALL). For example, ided into standard, intermediate, and high-risk categories and the translocation t(12;21)/ETV6-AML1 is a marker of favorable treated according to the protocols of the Nordic Society of prognosis and most patients with this abnormality are best Pediatric Hematology and Oncology (NOPHO).3 Two of the treated with conventional chemotherapy. In contrast, patients patients analyzed at primary diagnosis have relapsed, but 12 with t(4;11)/MLL-MLLT2 and t(9;22)/BCR-ABL have a poor continue in first remission, one after allogeneic bone marrow prognosis, and high-dose chemotherapy with bone marrow transplantation from an unrelated donor. All three patients transplantation is advocated (for review see Ma et al1). Despite studied at relapse have received a bone marrow transplant, the extensive knowledge about chromosomal abnormalities in two from an unrelated donor and one from a matched sibling. ALL, little is known about the changes in gene expression in One of the three has died following a post-transplant relapse, the disease. but two remain in second complete remission. In addition to genetic markers, the prognostic tools in child- hood ALL include white blood cell count (WBC) at diagnosis, age, gender, CNS/testicular involvement, response to primary Samples therapy and the phenotype of the blasts (mature B cell vs T cell vs precursor-B cell ALL). Groups of patients stratified using the Whole bone marrow specimens were diluted 1:10 in existing criteria remain, however, heterogeneous and result in RNA/DNA stabilization reagent for blood/bone marrow patients remaining in first complete remission and those (Boehringer Mannheim, Mannheim, Germany) for simul- relapsing either on or off therapy.2 A more comprehensive taneous cell lysis and stabilization of nucleic acids. The analysis of blast cell gene expression could provide us with samples were stored at −70°C until RNA isolation. novel prognostic tools as well as new insight into the patho- genesis of childhood ALL. The cDNA array methodology allows the expression levels Reference material Two separate pools of CD19-positive B cells from human Correspondence: S Knuutila, Department of Medical Genetics, Haart- man Institute, PO Box 21, FIN-00014 University of Helsinki, Helsinki, adenoid samples from healthy children were used as reference Finland; Fax: +358–9–191 26788 material. One pool was from six individuals and the other Received 19 February 2002; accepted 31 May 2002 from five. The B cells were purified using microbeads conju- Myeloid-specific genes in childhood ALL J Niini et al 2214 Table 1 Clinical characteristics and karyotype data of 17 children with ALL Patient Lab. code Sampling Sex Age Risk WBC Myeloid Myeloid Karyotype time dg (rel)b group dg (rel)c markers cells (%) 1 991506 Relapse F 1.8 (6.2) HR 99.4 (25.2) no 4 49,XX,+10,t(12;21)(p13;q22),+14,+21d 2 990663 Diagnosis F 4.2 HR 1.2 yes 5 64–66,XX,+X,+2,+3,+4,+5,+6,+8,+10,+11, +12,+14,+14,+16,+17,+18,+21,+21, +22,+2mar 3 981894 Diagnosis M 5.8 HR 4.0 yes 15 46,XY,t(12;21)(p13;q22)d 4 991170 Diagnosis M 3 IR 16.4 yes 10 46,XY,t(12;21)(p13;q22)d 5 GA99–17 Diagnosis F 8.9 SR 3.9 no 1 45–46,XX,-2,?t(2;14)(q?;q?),-12,-14,- 15,+mar,inc 6a 991477 Diagnosis F 4.7 HR 272.4 yes 2 47,XX,+21 7 GA00–10422 Diagnosis F 3.1 SR 4.9 no 15 46,XX 8 991843 Diagnosis M 12.7 IR 7.2 no 5 46,XY,del(9)(p11) 9 GA00–10526 Diagnosis F 3.2 IR 19.0 yes 5 55–57,XX,+X,+4,+6,+8,+8,+10,+14,+17, +18,+21,+21 10 981693 Diagnosis F 5.6 IR 26.3 no 10 48,XX,-20,+der21,+2mar 11a GA00–9977 Diagnosis F 3.8 HR 145.8 yes 2 44–45,X,-X,-9,-9,-11,-13,+3–4mar 12 GA00–9648 Relapse F 1.2 (3.5) IR 4.0 (14) no 15 46,XX,t(X;9)(q?;q11) 13 990710 Relapse M 4.7 (13.1) SR 7.6 (3.9) yes 10 55,XY,+X,1q+,+4,+6,+8,+14,+17,+18, +21,+21 14 GA00–9884 Diagnosis F 6.9 IR 10.6 yes 6 54–57,XX,+?X,+4,+6,+?14,+16,+21,+22 15 GA00–10058 Diagnosis F 3.1 SR 3.4 no 1 46,XX,-1,-1,+3mar,inc 16 GA00–10648 Diagnosis M 6.6 HR 7.0 no 3 54–55,XY,+X,+4,+6,+10,+14,+17,der(19) t(1;19)(q23;p13),+21,+21 17 GA00–10387 Diagnosis M 4.9 IR 22.5 yes 2 54,XY,+X,+Y,+6,+10,+14,+17,+21,+21 aThe patient has since relapsed. bAge at diagnosis (at relapse) in years. cWBC at diagnosis (at relapse) (×109/l). dThe t(12;21) was confirmed by fluoresence in situ hybridization. F, female; M, male; HR, high risk; IR, intermediate risk; SR, standard risk. gated to a monoclonal CD19 antibody (Miltenyi Biotec, cDNA array hybridization Bergisch Gladbach, Germany). CD19 is expressed from earl- iest recognizable B-lineage cells to activated B cell blasts, but Total RNA (3–4 ␮g) was converted into cDNA and labeled expression is lost on maturation to plasma cells. The pro- with 33P-dATP using the Atlas pure total RNA labeling system portion of T lymphocytes was analyzed in one of the pools, (Clontech) according to the manufacturer’s instructions. and it was less than 5%, indicating that 95% of the isolated Probes were purified and hybridized to the arrays according cells were B lymphocytes. to the manufacturer’s instructions. The arrays were exposed to an imaging plate (BAS-MP 2040S; Fuji, Kanagawa, Japan) for 3–7 days followed by scanning of the plate with a phos- Total RNA extraction phorimager (Bio-Imaging Analyzer, BAS-2500; Fuji). Two sep- arate reference hybridizations were performed from the two distinct pools of B cells. Nucleic acids were extracted using an mRNA isolation kit (Boehringer Mannheim) and following steps 1–6 in the manu- facturer’s instructions. The DNA was removed according to Quantitative real-time reverse transcriptase polymerase Clontech’s (Palo Alto, CA, USA) protocol for DNase treatment chain reaction (RT-PCR) of total RNA, with the exception that RNA precipitation was carried out overnight at −70°C.
Recommended publications
  • ARTICLES Fibroblast Growth Factors 1, 2, 17, and 19 Are The
    0031-3998/07/6103-0267 PEDIATRIC RESEARCH Vol. 61, No. 3, 2007 Copyright © 2007 International Pediatric Research Foundation, Inc. Printed in U.S.A. ARTICLES Fibroblast Growth Factors 1, 2, 17, and 19 Are the Predominant FGF Ligands Expressed in Human Fetal Growth Plate Cartilage PAVEL KREJCI, DEBORAH KRAKOW, PERTCHOUI B. MEKIKIAN, AND WILLIAM R. WILCOX Medical Genetics Institute [P.K., D.K., P.B.M., W.R.W.], Cedars-Sinai Medical Center, Los Angeles, California 90048; Department of Obstetrics and Gynecology [D.K.] and Department of Pediatrics [W.R.W.], UCLA School of Medicine, Los Angeles, California 90095 ABSTRACT: Fibroblast growth factors (FGF) regulate bone growth, (G380R) or TD (K650E) mutations (4–6). When expressed at but their expression in human cartilage is unclear. Here, we deter- physiologic levels, FGFR3-G380R required, like its wild-type mined the expression of entire FGF family in human fetal growth counterpart, ligand for activation (7). Similarly, in vitro cul- plate cartilage. Using reverse transcriptase PCR, the transcripts for tivated human TD chondrocytes as well as chondrocytes FGF1, 2, 5, 8–14, 16–19, and 21 were found. However, only FGF1, isolated from Fgfr3-K644M mice had an identical time course 2, 17, and 19 were detectable at the protein level. By immunohisto- of Fgfr3 activation compared with wild-type chondrocytes and chemistry, FGF17 and 19 were uniformly expressed within the showed no receptor activation in the absence of ligand (8,9). growth plate. In contrast, FGF1 was found only in proliferating and hypertrophic chondrocytes whereas FGF2 localized predominantly to Despite the importance of the FGF ligand for activation of the resting and proliferating cartilage.
    [Show full text]
  • Disruption of Fibroblast Growth Factor Signal
    Cancer Therapy: Preclinical Disruption of Fibroblast Growth Factor Signal Pathway Inhibits the Growth of Synovial Sarcomas: Potential Application of Signal Inhibitors to MolecularTarget Therapy Ta t s u y a I s hi b e , 1, 2 Tomitaka Nakayama,2 Ta k e s h i O k a m o t o, 1, 2 Tomoki Aoyama,1Koichi Nishijo,1, 2 Kotaro Roberts Shibata,1, 2 Ya s u ko Shim a ,1, 2 Satoshi Nagayama,3 Toyomasa Katagiri,4 Yusuke Nakamura, 4 Takashi Nakamura,2 andJunya Toguchida 1 Abstract Purpose: Synovial sarcoma is a soft tissue sarcoma, the growth regulatory mechanisms of which are unknown.We investigatedthe involvement of fibroblast growth factor (FGF) signals in synovial sarcoma andevaluatedthe therapeutic effect of inhibiting the FGF signal. Experimental Design:The expression of 22 FGF and4 FGF receptor (FGFR) genes in18prima- ry tumors andfive cell lines of synovial sarcoma were analyzedby reverse transcription-PCR. Effects of recombinant FGF2, FGF8, andFGF18 for the activation of mitogen-activatedprotein kinase (MAPK) andthe growth of synovial sarcoma cell lines were analyzed.Growth inhibitory effects of FGFR inhibitors on synovial sarcoma cell lines were investigated in vitro and in vivo. Results: Synovial sarcoma cell lines expressedmultiple FGF genes especially those expressed in neural tissues, among which FGF8 showedgrowth stimulatory effects in all synovial sarcoma cell lines. FGF signals in synovial sarcoma induced the phosphorylation of extracellular signal ^ regulatedkinase (ERK1/2) andp38MAPK but not c-Jun NH 2-terminal kinase. Disruption of the FGF signaling pathway in synovial sarcoma by specific inhibitors of FGFR causedcell cycle ar- rest leading to significant growth inhibition both in vitro and in vivo.Growthinhibitionbythe FGFR inhibitor was associatedwith a down-regulation of phosphorylatedERK1/2 but not p38MAPK, andan ERK kinase inhibitor also showedgrowth inhibitory effects for synovial sar- coma, indicating that the growth stimulatory effect of FGF was transmitted through the ERK1/2.
    [Show full text]
  • Apparent Normal Phenotype of Fgf6-J- Mice
    Int. J. D lIiol. ~1: 639-6-\2 (1997) 639 Short Contribution Apparent normal phenotype of Fgf6-j- mice FREDERIC FIORE'. JACQUELINE PLANCHE', PATRICK GIBlER', ALAIN SEBILLE', ODILE deLAPEYRIERE3 and DANIEL BIRNBAUM" 'Laboratoire d'Oncologie Moleculaire, U119INSERM, Marseille, 2Laboraroire de Physiologie, Faculte de Medecine Saint-Antoine, Paris and 3U 382 INSERM, 180M Luminy, Marseille, France ABSTRACT To study the role o!the sixth member of the FGF(fibroblast growth factor) family whose expression is restricted to skeletal muscle. we have derived mouse mutants with a homozygous disruption of the Fgf6gene. The animals are viable, fertile and apparently normal, indicating that FGF6 is not required for vital functions in the laboratory mouse. KEY WORDS: dt'I-'t'loJ}}!/('fII,Jibmblasl ~mwth fO(I()/", I//USe/f, llOllIO{OgOlisINolI/bina/ion In mammals, the FGF (fibroblast growth factor) family com- probes. Three clones (3, 4 and 26) were selected for further prises more than a dozen peptide regulatory factors (Smallwood ef experiments, and injected into 3.5-day-old blastocysts. Injected al., 1996; Coulier et al., 1997; Verdier et al., 1997). They are blastocysts were transferred to pseudopregnant foster mothers. involved in various biological processes during development and Chimeric animals were obtained with clone 26, and the males were adult life, including formation of mesoderm during gastrulation, bred with C57BU6 females. As checked by Southern blot hybridi- integration of growth and patterning during early post-implantation, zation of genomic DNA from 3-week.old mice, Fgf6+/- hetero- and formation of tissues and organs, such as brain, ear, limb, hair zygous mice were oblained (Fig.
    [Show full text]
  • ERG Dependence Distinguishes Developmental Control of Hematopoietic Stem Cell Maintenance from Hematopoietic Specification
    Downloaded from genesdev.cshlp.org on September 28, 2021 - Published by Cold Spring Harbor Laboratory Press ERG dependence distinguishes developmental control of hematopoietic stem cell maintenance from hematopoietic specification Samir Taoudi,1,2,6 Thomas Bee,3 Adrienne Hilton,1 Kathy Knezevic,3 Julie Scott,4 Tracy A. Willson,1,2 Caitlin Collin,1 Tim Thomas,1,2 Anne K. Voss,1,2 Benjamin T. Kile,1,2 Warren S. Alexander,2,5 John E. Pimanda,3 and Douglas J. Hilton1,2 1Molecular Medicine Division, The Walter and Eliza Institute of Medical Research, Melbourne, Parkville, Victoria 3052, Australia; 2Department of Medical Biology, The University of Melbourne, Melbourne, Parkville, Victoria 3010, Australia; 3Lowy Cancer Research Centre, The Prince of Wales Clinical School, University of New South Wales, Sydney 2052, Australia; 4Microinjection Services, The Walter and Eliza Institute of Medical Research, Melbourne, Parkville, Victoria 3052, Australia; 5Cancer and Haematology Division, The Walter and Eliza Institute of Medical Research, Melbourne, Parkville, Victoria 3052, Australia Although many genes are known to be critical for early hematopoiesis in the embryo, it remains unclear whether distinct regulatory pathways exist to control hematopoietic specification versus hematopoietic stem cell (HSC) emergence and function. Due to their interaction with key regulators of hematopoietic commitment, particular interest has focused on the role of the ETS family of transcription factors; of these, ERG is predicted to play an important role in the initiation of hematopoiesis, yet we do not know if or when ERG is required. Using in vitro and in vivo models of hematopoiesis and HSC development, we provide strong evidence that ERG is at the center of a distinct regulatory program that is not required for hematopoietic specification or differentiation but is critical for HSC maintenance during embryonic development.
    [Show full text]
  • FGF6 in Myogenesis ⁎ Anne-Sophie Armand A, Iman Laziz B, Christophe Chanoine B
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Biochimica et Biophysica Acta 1763 (2006) 773–778 www.elsevier.com/locate/bbamcr Review FGF6 in myogenesis ⁎ Anne-Sophie Armand a, Iman Laziz b, Christophe Chanoine b, a Hubrecht Laboratory and Interuniversity Cardiology Institute Netherlands, Royal Netherlands Academy of Sciences, Utrecht, The Netherlands b UMR 7060 CNRS, Equipe Biologie du Développement et de la Différenciation Neuromusculaire, Centre Universitaire des Saints-Pères, Université René Descartes, F-75270 Paris Cedex 06, France Received 27 April 2006; received in revised form 14 June 2006; accepted 15 June 2006 Available online 22 June 2006 Abstract Important functions in myogenesis have been proposed for FGF6, a member of the fibroblast growth factor family accumulating almost exclusively in the myogenic lineage. However, the analyses of Fgf6 (−/−) mutant mice gave contradictory results and the role of FGF6 during myogenesis remained largely unclear. Recent reports support the concept that FGF6 has a dual function in muscle regeneration, stimulating myoblast proliferation/migration and muscle differentiation/hypertrophy in a dose-dependent manner. The alternative use of distinct signaling pathways recruiting either FGFR1 or FGFR4 might explain the dual role of FGF6 in myogenesis. A role for FGF6 in the maintenance of a reserve pool of progenitor cells in the skeletal muscle has been also strongly suggested. The aim of this review is to summarize our knowledge on the involvement of FGF6 in myogenesis. © 2006 Elsevier B.V. All rights reserved. Keywords: FGF6; Myogenesis; Growth factor; Muscle regeneration; Development 1. Introduction disruption of the FGF6 gene have been generated in two different laboratories and skeletal muscle regeneration has Fibroblast growth factors (FGFs) make up a large family of been studied in these FGF6 (−/−) mice, giving rise to polypeptide growth factors that have diverse roles, during contradictory results [7–9].
    [Show full text]
  • Ubiquitin-Mediated Control of ETS Transcription Factors: Roles in Cancer and Development
    International Journal of Molecular Sciences Review Ubiquitin-Mediated Control of ETS Transcription Factors: Roles in Cancer and Development Charles Ducker * and Peter E. Shaw * Queen’s Medical Centre, School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK * Correspondence: [email protected] (C.D.); [email protected] (P.E.S.) Abstract: Genome expansion, whole genome and gene duplication events during metazoan evolution produced an extensive family of ETS genes whose members express transcription factors with a conserved winged helix-turn-helix DNA-binding domain. Unravelling their biological roles has proved challenging with functional redundancy manifest in overlapping expression patterns, a common consensus DNA-binding motif and responsiveness to mitogen-activated protein kinase signalling. Key determinants of the cellular repertoire of ETS proteins are their stability and turnover, controlled largely by the actions of selective E3 ubiquitin ligases and deubiquitinases. Here we discuss the known relationships between ETS proteins and enzymes that determine their ubiquitin status, their integration with other developmental signal transduction pathways and how suppression of ETS protein ubiquitination contributes to the malignant cell phenotype in multiple cancers. Keywords: E3 ligase complex; deubiquitinase; gene fusions; mitogens; phosphorylation; DNA damage 1. Introduction Citation: Ducker, C.; Shaw, P.E. Cell growth, proliferation and differentiation are complex, concerted processes that Ubiquitin-Mediated Control of ETS Transcription Factors: Roles in Cancer rely on careful regulation of gene expression. Control over gene expression is maintained and Development. Int. J. Mol. Sci. through signalling pathways that respond to external cellular stimuli, such as growth 2021, 22, 5119. https://doi.org/ factors, cytokines and chemokines, that invoke expression profiles commensurate with 10.3390/ijms22105119 diverse cellular outcomes.
    [Show full text]
  • Inducible Transgene Expression in PDX Models
    Liu et al. Biomarker Research (2020) 8:46 https://doi.org/10.1186/s40364-020-00226-z RESEARCH Open Access Inducible transgene expression in PDX models in vivo identifies KLF4 as a therapeutic target for B-ALL Wen-Hsin Liu1, Paulina Mrozek-Gorska2, Anna-Katharina Wirth1, Tobias Herold1,3, Larissa Schwarzkopf1, Dagmar Pich2, Kerstin Völse1, M. Camila Melo-Narváez2, Michela Carlet1, Wolfgang Hammerschmidt2,4 and Irmela Jeremias1,5,6* Abstract Background: Clinically relevant methods are not available that prioritize and validate potential therapeutic targets for individual tumors, from the vast amount of tumor descriptive expression data. Methods: We established inducible transgene expression in clinically relevant patient-derived xenograft (PDX) models in vivo to fill this gap. Results: With this technique at hand, we analyzed the role of the transcription factor Krüppel-like factor 4 (KLF4) in B-cell acute lymphoblastic leukemia (B-ALL) PDX models at different disease stages. In competitive preclinical in vivo trials, we found that re-expression of wild type KLF4 reduced the leukemia load in PDX models of B-ALL, with the strongest effects being observed after conventional chemotherapy in minimal residual disease (MRD). A nonfunctional KLF4 mutant had no effect on this model. The re-expression of KLF4 sensitized tumor cells in the PDX model towards systemic chemotherapy in vivo. It is of major translational relevance that azacitidine upregulated KLF4 levels in the PDX model and a KLF4 knockout reduced azacitidine-induced cell death, suggesting that azacitidine can regulate KLF4 re-expression. These results support the application of azacitidine in patients with B-ALL as a therapeutic option to regulate KLF4.
    [Show full text]
  • Ten Commandments for a Good Scientist
    Unravelling the mechanism of differential biological responses induced by food-borne xeno- and phyto-estrogenic compounds Ana María Sotoca Covaleda Wageningen 2010 Thesis committee Thesis supervisors Prof. dr. ir. Ivonne M.C.M. Rietjens Professor of Toxicology Wageningen University Prof. dr. Albertinka J. Murk Personal chair at the sub-department of Toxicology Wageningen University Thesis co-supervisor Dr. ir. Jacques J.M. Vervoort Associate professor at the Laboratory of Biochemistry Wageningen University Other members Prof. dr. Michael R. Muller, Wageningen University Prof. dr. ir. Huub F.J. Savelkoul, Wageningen University Prof. dr. Everardus J. van Zoelen, Radboud University Nijmegen Dr. ir. Toine F.H. Bovee, RIKILT, Wageningen This research was conducted under the auspices of the Graduate School VLAG Unravelling the mechanism of differential biological responses induced by food-borne xeno- and phyto-estrogenic compounds Ana María Sotoca Covaleda Thesis submitted in fulfillment of the requirements for the degree of doctor at Wageningen University by the authority of the Rector Magnificus Prof. dr. M.J. Kropff, in the presence of the Thesis Committee appointed by the Academic Board to be defended in public on Tuesday 14 September 2010 at 4 p.m. in the Aula Unravelling the mechanism of differential biological responses induced by food-borne xeno- and phyto-estrogenic compounds. Ana María Sotoca Covaleda Thesis Wageningen University, Wageningen, The Netherlands, 2010, With references, and with summary in Dutch. ISBN: 978-90-8585-707-5 “Caminante no hay camino, se hace camino al andar. Al andar se hace camino, y al volver la vista atrás se ve la senda que nunca se ha de volver a pisar” - Antonio Machado – A mi madre.
    [Show full text]
  • FGF Signaling Network in the Gastrointestinal Tract (Review)
    163-168 1/6/06 16:12 Page 163 INTERNATIONAL JOURNAL OF ONCOLOGY 29: 163-168, 2006 163 FGF signaling network in the gastrointestinal tract (Review) MASUKO KATOH1 and MASARU KATOH2 1M&M Medical BioInformatics, Hongo 113-0033; 2Genetics and Cell Biology Section, National Cancer Center Research Institute, Tokyo 104-0045, Japan Received March 29, 2006; Accepted May 2, 2006 Abstract. Fibroblast growth factor (FGF) signals are trans- Contents duced through FGF receptors (FGFRs) and FRS2/FRS3- SHP2 (PTPN11)-GRB2 docking protein complex to SOS- 1. Introduction RAS-RAF-MAPKK-MAPK signaling cascade and GAB1/ 2. FGF family GAB2-PI3K-PDK-AKT/aPKC signaling cascade. The RAS~ 3. Regulation of FGF signaling by WNT MAPK signaling cascade is implicated in cell growth and 4. FGF signaling network in the stomach differentiation, the PI3K~AKT signaling cascade in cell 5. FGF signaling network in the colon survival and cell fate determination, and the PI3K~aPKC 6. Clinical application of FGF signaling cascade in cell polarity control. FGF18, FGF20 and 7. Clinical application of FGF signaling inhibitors SPRY4 are potent targets of the canonical WNT signaling 8. Perspectives pathway in the gastrointestinal tract. SPRY4 is the FGF signaling inhibitor functioning as negative feedback apparatus for the WNT/FGF-dependent epithelial proliferation. 1. Introduction Recombinant FGF7 and FGF20 proteins are applicable for treatment of chemotherapy/radiation-induced mucosal injury, Fibroblast growth factor (FGF) family proteins play key roles while recombinant FGF2 protein and FGF4 expression vector in growth and survival of stem cells during embryogenesis, are applicable for therapeutic angiogenesis. Helicobacter tissues regeneration, and carcinogenesis (1-4).
    [Show full text]
  • Type of the Paper (Article
    Table S1. Gene expression of pro-angiogenic factors in tumor lymph nodes of Ibtk+/+Eµ-myc and Ibtk+/-Eµ-myc mice. Fold p- Symbol Gene change value 0,007 Akt1 Thymoma viral proto-oncogene 1 1,8967 061 0,929 Ang Angiogenin, ribonuclease, RNase A family, 5 1,1159 481 0,000 Angpt1 Angiopoietin 1 4,3916 117 0,461 Angpt2 Angiopoietin 2 0,7478 625 0,258 Anpep Alanyl (membrane) aminopeptidase 1,1015 737 0,000 Bai1 Brain-specific angiogenesis inhibitor 1 4,0927 202 0,001 Ccl11 Chemokine (C-C motif) ligand 11 3,1381 149 0,000 Ccl2 Chemokine (C-C motif) ligand 2 2,8407 298 0,000 Cdh5 Cadherin 5 2,5849 744 0,000 Col18a1 Collagen, type XVIII, alpha 1 3,8568 388 0,003 Col4a3 Collagen, type IV, alpha 3 2,9031 327 0,000 Csf3 Colony stimulating factor 3 (granulocyte) 4,3332 258 0,693 Ctgf Connective tissue growth factor 1,0195 88 0,000 Cxcl1 Chemokine (C-X-C motif) ligand 1 2,67 21 0,067 Cxcl2 Chemokine (C-X-C motif) ligand 2 0,7507 631 0,000 Cxcl5 Chemokine (C-X-C motif) ligand 5 3,921 328 0,000 Edn1 Endothelin 1 3,9931 042 0,001 Efna1 Ephrin A1 1,6449 601 0,002 Efnb2 Ephrin B2 2,8858 042 0,000 Egf Epidermal growth factor 1,726 51 0,000 Eng Endoglin 0,2309 467 0,000 Epas1 Endothelial PAS domain protein 1 2,8421 764 0,000 Ephb4 Eph receptor B4 3,6334 035 V-erb-b2 erythroblastic leukemia viral oncogene homolog 2, 0,000 Erbb2 3,9377 neuro/glioblastoma derived oncogene homolog (avian) 024 0,000 F2 Coagulation factor II 3,8295 239 1 0,000 F3 Coagulation factor III 4,4195 293 0,002 Fgf1 Fibroblast growth factor 1 2,8198 748 0,000 Fgf2 Fibroblast growth factor
    [Show full text]
  • Ontogeny of Fibroblast Growth Factors in the Early Development of the Rat Endocrine Pancreas
    0031-3998/00/4803-0389 PEDIATRIC RESEARCH Vol. 48, No. 3, 2000 Copyright © 2000 International Pediatric Research Foundation, Inc. Printed in U.S.A. Ontogeny of Fibroblast Growth Factors in the Early Development of the Rat Endocrine Pancreas EDITH ARANY AND DAVID J. HILL Medical Research Council Group in Fetal and Neonatal Development, Lawson Research Institute, St. Joseph’s Health Centre, London, Ontario N6A 4V2, Canada [E.A., D.J.H.]; and Departments of Physiology [D.J.H.], Medicine [E.A., D.J.H.] and Pediatrics [D.J.H.], University of Western Ontario, London, Ontario N65 5A5, Canada [D.J.H.] ABSTRACT Pancreatic islet ontogeny involves endocrine cell neogenesis increased in pancreata. FGF-4 and -6 immunoreactivities were from ductal epithelium and islet expansion by cell replication, localized strongly within islets and ductal cells. In contrast, balanced by apoptotic deletion of endocrine cells which, in rat, is immunoreactive FGF-7 was associated with pancreatic mesen- pronounced in the neonate. Fibroblast growth factors (FGF) are chyme and intra-and extraislet endothelial cells, and mRNA involved in tissue morphogenesis, and we examined the distri- abundance was transiently increased between pnd 4 and 12, bution and ontogeny of several FGF within rat pancreas from late suggesting a role in the initiation of endocrine cell neogenesis. fetal life until weaning. Islet cell replication (immunohistochem- Exogenous FGF-7 was fivefold more potent than FGF-1 or -2 in istry for proliferating cell nuclear antigen) did not change, but a stimulating DNA synthesis within isolated rat islets. Multiple transient increase in ductal epithelial cell replication existed FGF are expressed within defined compartments of developing between postnatal days (pnd) 10 and 14.
    [Show full text]
  • RUNX1 Together with a Compendium of Hematopoietic Regulators, Chromatin Modifiers and Basal Transcr
    Leukemia (2014) 28, 770–778 OPEN & 2014 Macmillan Publishers Limited All rights reserved 0887-6924/14 www.nature.com/leu ORIGINAL ARTICLE CBFB–MYH11/RUNX1 together with a compendium of hematopoietic regulators, chromatin modifiers and basal transcription factors occupies self-renewal genes in inv(16) acute myeloid leukemia A Mandoli1, AA Singh1, PWTC Jansen2, ATJ Wierenga3,4, H Riahi1, G Franci5, K Prange1, S Saeed1, E Vellenga3, M Vermeulen2, HG Stunnenberg1 and JHA Martens1 Different mechanisms for CBFb–MYH11 function in acute myeloid leukemia with inv(16) have been proposed such as tethering of RUNX1 outside the nucleus, interference with transcription factor complex assembly and recruitment of histone deacetylases, all resulting in transcriptional repression of RUNX1 target genes. Here, through genome-wide CBFb–MYH11-binding site analysis and quantitative interaction proteomics, we found that CBFb–MYH11 localizes to RUNX1 occupied promoters, where it interacts with TAL1, FLI1 and TBP-associated factors (TAFs) in the context of the hematopoietic transcription factors ERG, GATA2 and PU.1/SPI1 and the coregulators EP300 and HDAC1. Transcriptional analysis revealed that upon fusion protein knockdown, a small subset of the CBFb–MYH11 target genes show increased expression, confirming a role in transcriptional repression. However, the majority of CBFb–MYH11 target genes, including genes implicated in hematopoietic stem cell self-renewal such as ID1, LMO1 and JAG1, are actively transcribed and repressed upon fusion protein knockdown. Together these results suggest an essential role for CBFb–MYH11 in regulating the expression of genes involved in maintaining a stem cell phenotype. Leukemia (2014) 28, 770–778; doi:10.1038/leu.2013.257 Keywords: CBFb–MYH11; RUNX1; histone acetylation; acute myeloid leukemia; inv(16) INTRODUCTION Heterozygous Cbfb-Myh11 knock-in mice are embryonic lethal, Core-binding transcription factors (CBFs) have roles in stem cell with definitive hematopoiesis blocked at the stem-cell level.
    [Show full text]