Iasthe Institute Letter

Total Page:16

File Type:pdf, Size:1020Kb

Iasthe Institute Letter f M E A P H V S E P J J T N P P D S F A J f S C P J Y N f A E N P R H A r r r o o u e v c t t e i e a e h a l o n r d r h n a v v a i i o o e o e a e a e a a a a n o e m c a n i i i t t t t c b i r w g t i o r l m m n m I p n s c t e e r e t d l n n o - h t n n m a o u o W i e i l e m h i t i a A r h r r i c H i a a l i t c a r S l e l r s l l m a p B W a h J J J M u i o T d e r l s i t i o i S G G t n . a l l A u n a u u u c g a y i d a l o a n t s a D i A s r M M Z e B t a J r e h i o o a l l l d e r M s n u S H n r y y y C k . W . l C d l l i L o S a e m e n A a r a d W V d l v L L a G o r a a I p d l m 1 1 1 C r h B g . i s c a a l o o i s r d o n e a b f r s c e , , , e a t l k a A r a P a o o e r k e c n e a e t g b n o i i h i e v i n r 2 2 2 a i i e n l b n i i s h e d - r v f r n a n i n n e d i r k c s 0 0 0 H f e c m S n e i n l r n l S e e o g l i A h , e o e e 0 0 1 e l i t i r t c r a a d e a t a o h r r D t r 9 9 0 i r s o m i s g d s B o s i t k a e r t n e y y e n d n T c u t o m r h S e Th e Insti tute Letter I n R D P M P V P M D N B J C J C R V S M F C C M P M I R C A O G F P G F s r a e p e e e e i l r i a o i o l a o h u h h h a l i l a a v e o c a a a o i c b m f e e l e t t t r i t c g b c a n a a i f v v r a r t e t r r e e e e h r r r r r e t e g n n r u o h t e i e i i r r o r a i t i t i i c t e s r r r r Spring 2 009 s a e i r m d d r r o a i i o g d l r e r r l a s y n i s G t t W n n e r y m m t C L G R P J i t n n i e y W A K a d a D L C O D s a . D S o r t a G . P . o . P l A L o a a n a L . n W . L a . f a r . r E B . S e B K n G B . d W . r . n n b H a e P v a M u l a L i l B H T F J e . s W m . H a d o C L h l a m . i a g t i n t . a a t o E a g g e B e r n B n w a i l a s i e L r a a h h g l D r e n u i o l n t r o n z o i m r j n c l z i s b l b e s i o i e s e l g o r a o t b d i r s g n e y M e o f c l i n i o r n e u r i c t e s o e l c s t y r n h a s e k r a l g k i s i s n e o h w i IAS j o n i e l m n l c e o i n t l s t u c a s i a u h r n d o t a k n n n s z e s , h n d i Lett J n d r t . e r Figure 3 R H I H L M M T T B A M S P R S I W J D E N E A P M D w J m n a a h i e r o a a r n d h r i a a e a a r w d i a a a s i m m n i i i t e l n d c v S u d m n m l e l v v n a t c n e r r r p s e f w l h i a i a i i o r s t i t c r e e c n r b e t h t s d d n a n i i i E e n i t l e . u e y d p e s s n n s l y y i e d e S n e a w a F l c . i a E h o t t F M e d H J B o n v o e . u u W D e E R r s S L r s L . v . e . n M W J . d . e e s c G e H M . D . f . e S H . n E h N . i P , o l R S h e S V D v d c L a u K S . n r r n W i a e a m r N i . K u m s e o h t u u x i t m a S t . r a n r i r e v W u h b g e o n i l i b w i e c e q e C p i g s l s e r l o d w a e h d l h l l t r e u m o o l h e r H a l e s n l n y a t i n s m o n a l i t m u J s n s o a L l t i s r 2 Figure 4 e m d L t i n f d s a e t Figure 1 E f r z n m t n i a N 0 s n e N n a y O 0 n C ’ 0 n O 8 9 L 5 A 4 N 0 O D D N A P H S o E P D e r l u E i a e n n M b e v a s A d l e m s t H i - e c e I c y a i N h o A n n i A l a u K f o D f a R n t a m A v i g r i f a A r i y e o v s t M s I v h e u , Figure 2 N e Figure 5 t , e I s o n d r P o : @ ? s r f t i i i n y a t u c o s e t u . Feynman Diagrams and Beyond e e t r o d f c n u o Physicists have used Feynman diagrams as a tool for calculating scattering amplitudes that describe particle h , r a N A n interactions for more than six decades (see article, page 4). Their broad utility was due initially in large part J d g v 0 e a 8 to the seminal work of Freeman Dyson, Professor Emeritus in the School of Natural Sciences.
Recommended publications
  • 2021 V. 55 № 1/1 Special Issue the Organizers
    ISSN 0233-528X Aerospace and Environmental Medicine 2021 V. 55 № 1/1 special issue The Organizers: INTERNATIONAL ACADEMY OF ASTRONAUTICS (IAA) STATE SPACE CORPORATION “ROSCOSMOS” MINISTRY OF SCIENCE AND HIGHER EDUCATION OF THE RUSSIAN FEDERATION RUSSIAN ACADEMY OF SCIENCES (RAS) STATE RESEARCH CENTER OF THE RUSSIAN FEDERATION – INSTITUTE OF BIOMEDICAL PROBLEMS RAS Aerospace and Environmental Medicine AVIAKOSMICHESKAYA I EKOLOGICHESKAYA MEDITSINA SCIENTIFIC JOURNAL EDITOR-IN-CHIEF Orlov O.I., M.D., Academician of RAS EDITORIAL BOARD The Organizers: Ardashev V.N., M.D., professor Baranov V.M., M.D., professor, Academician of RAS Buravkova L.B., M.D., professor, Corresponding Member of RAS Bukhtiyarov I.V., M.D., professor Vinogradova O.L., Sci.D., professor – Deputy Editor D’yachenko A.I., Tech. D., professor Ivanov I.V., M.D., professor Ilyin E.A., M.D., professor Kotov O.V., Ph.D. Krasavin E.A., Ph.D., Sci.D., professor, Corresponding Member of RAS Medenkov A.A., Ph.D. in Psychology, M.D., professor Sinyak YU.E., M.D., Tech.D., professor Sorokin O.G., Ph.D. Suvorov A.V., M.D., professor Usov V.M., M.D., professor Homenko M.N., M.D., professor Mukai Ch., M.D., Ph.D. (Japan) Sutton J., M.D., Ph.D. (USA) Suchet L.G., Ph.D. (France) ADVISORY BOARD Grigoriev A.I., M.D., professor, Academician of RAS, Сhairman Blaginin A.A., M.D., Doctor of Psychology, professor Gal’chenko V.F., Sci.D., professor, Corresponding Member of RAS Zhdan’ko I.M., M.D. Ostrovskij M.A., Sci.D., professor, Academician of RAS Rozanov A.YU., D.Geol.Mineral.S., professor, Academician of RAS Rubin A.B., Sci.D., professor, Corresponding Member of RAS Zaluckij I.V., Sci.D., professor, Corresponding Member of NASB (Belarus) Kryshtal’ O.A., Sci.D., professor, Academician of NASU (Ukraine) Makashev E.K., D.Biol.Sci., professor, Corresponding Member of ASRK (Kazakhstan) Gerzer R., M.D., Ph.D., professor (Germany) Gharib C., Ph.D., professor (France) Yinghui Li, M.D., Ph.D., professor (China) 2021 V.
    [Show full text]
  • I. Overview of Activities, April, 2005-March, 2006 …
    MATHEMATICAL SCIENCES RESEARCH INSTITUTE ANNUAL REPORT FOR 2005-2006 I. Overview of Activities, April, 2005-March, 2006 …......……………………. 2 Innovations ………………………………………………………..... 2 Scientific Highlights …..…………………………………………… 4 MSRI Experiences ….……………………………………………… 6 II. Programs …………………………………………………………………….. 13 III. Workshops ……………………………………………………………………. 17 IV. Postdoctoral Fellows …………………………………………………………. 19 Papers by Postdoctoral Fellows …………………………………… 21 V. Mathematics Education and Awareness …...………………………………. 23 VI. Industrial Participation ...…………………………………………………… 26 VII. Future Programs …………………………………………………………….. 28 VIII. Collaborations ………………………………………………………………… 30 IX. Papers Reported by Members ………………………………………………. 35 X. Appendix - Final Reports ……………………………………………………. 45 Programs Workshops Summer Graduate Workshops MSRI Network Conferences MATHEMATICAL SCIENCES RESEARCH INSTITUTE ANNUAL REPORT FOR 2005-2006 I. Overview of Activities, April, 2005-March, 2006 This annual report covers MSRI projects and activities that have been concluded since the submission of the last report in May, 2005. This includes the Spring, 2005 semester programs, the 2005 summer graduate workshops, the Fall, 2005 programs and the January and February workshops of Spring, 2006. This report does not contain fiscal or demographic data. Those data will be submitted in the Fall, 2006 final report covering the completed fiscal 2006 year, based on audited financial reports. This report begins with a discussion of MSRI innovations undertaken this year, followed by highlights
    [Show full text]
  • Physics Nobel Prize 1975
    Physics Nobel Prize 1975 Nobel prize winners, left to right, A. Bohr, B. Mottelson and J. Rainwater. 0. Kofoed-Hansen (Photos Keystone Press, Photopress) Before 1949 every physicist knew that mooted, it was a major breakthrough from 1943-45. From December 1943 the atomic nucleus does not rotate. in thinking about the nucleus and he was actually in the USA. Back in The reasoning behind this erroneous opened a whole new field of research Denmark after the war, he obtained belief came from the following argu• in nuclear physics. This work has for his Ph. D. in 1954 for work on rota• ments. A quantum-mechanical rotator years been guided by the inspiration tional states in atomic nuclei. His with the moment of inertia J can take of Bohr and Mottelson. thesis was thus based on the work for up various energy levels with rota• An entire industry of nuclear which he has now been recognized at tional energies equal to h2(l + 1)| research thus began with Rainwater's the very highest level. He is Professor /8TC2J, where h is Planck's constant brief contribution to Physical Review at the Niels Bohr Institute of the ^nd I is the spin. As an example, I may in 1950 entitled 'Nuclear energy level University of Copenhagen and a nave values 0, 2, 4, ... etc. If the argument for a spheroidal nuclear member of the CERN Scientific Policy nucleus is considered as a rigid body, model'. Today a fair-sized library is Committee. then the moment of inertia J is very needed in order to contain all the Ben Mottelson was born in the USA large and the rotational energies papers written on deformed nuclei and in 1926 and has, for many years, become correspondingly very small.
    [Show full text]
  • Program of the Sessions San Diego, California, January 9–12, 2013
    Program of the Sessions San Diego, California, January 9–12, 2013 AMS Short Course on Random Matrices, Part Monday, January 7 I MAA Short Course on Conceptual Climate Models, Part I 9:00 AM –3:45PM Room 4, Upper Level, San Diego Convention Center 8:30 AM –5:30PM Room 5B, Upper Level, San Diego Convention Center Organizer: Van Vu,YaleUniversity Organizers: Esther Widiasih,University of Arizona 8:00AM Registration outside Room 5A, SDCC Mary Lou Zeeman,Bowdoin upper level. College 9:00AM Random Matrices: The Universality James Walsh, Oberlin (5) phenomenon for Wigner ensemble. College Preliminary report. 7:30AM Registration outside Room 5A, SDCC Terence Tao, University of California Los upper level. Angles 8:30AM Zero-dimensional energy balance models. 10:45AM Universality of random matrices and (1) Hans Kaper, Georgetown University (6) Dyson Brownian Motion. Preliminary 10:30AM Hands-on Session: Dynamics of energy report. (2) balance models, I. Laszlo Erdos, LMU, Munich Anna Barry*, Institute for Math and Its Applications, and Samantha 2:30PM Free probability and Random matrices. Oestreicher*, University of Minnesota (7) Preliminary report. Alice Guionnet, Massachusetts Institute 2:00PM One-dimensional energy balance models. of Technology (3) Hans Kaper, Georgetown University 4:00PM Hands-on Session: Dynamics of energy NSF-EHR Grant Proposal Writing Workshop (4) balance models, II. Anna Barry*, Institute for Math and Its Applications, and Samantha 3:00 PM –6:00PM Marina Ballroom Oestreicher*, University of Minnesota F, 3rd Floor, Marriott The time limit for each AMS contributed paper in the sessions meeting will be found in Volume 34, Issue 1 of Abstracts is ten minutes.
    [Show full text]
  • Appendix E Nobel Prizes in Nuclear Science
    Nuclear Science—A Guide to the Nuclear Science Wall Chart ©2018 Contemporary Physics Education Project (CPEP) Appendix E Nobel Prizes in Nuclear Science Many Nobel Prizes have been awarded for nuclear research and instrumentation. The field has spun off: particle physics, nuclear astrophysics, nuclear power reactors, nuclear medicine, and nuclear weapons. Understanding how the nucleus works and applying that knowledge to technology has been one of the most significant accomplishments of twentieth century scientific research. Each prize was awarded for physics unless otherwise noted. Name(s) Discovery Year Henri Becquerel, Pierre Discovered spontaneous radioactivity 1903 Curie, and Marie Curie Ernest Rutherford Work on the disintegration of the elements and 1908 chemistry of radioactive elements (chem) Marie Curie Discovery of radium and polonium 1911 (chem) Frederick Soddy Work on chemistry of radioactive substances 1921 including the origin and nature of radioactive (chem) isotopes Francis Aston Discovery of isotopes in many non-radioactive 1922 elements, also enunciated the whole-number rule of (chem) atomic masses Charles Wilson Development of the cloud chamber for detecting 1927 charged particles Harold Urey Discovery of heavy hydrogen (deuterium) 1934 (chem) Frederic Joliot and Synthesis of several new radioactive elements 1935 Irene Joliot-Curie (chem) James Chadwick Discovery of the neutron 1935 Carl David Anderson Discovery of the positron 1936 Enrico Fermi New radioactive elements produced by neutron 1938 irradiation Ernest Lawrence
    [Show full text]
  • % ^JJV^/W^K Sar^Fcsj^
    % ^JJV^/W^K Sar^fcsj^ sm il 1 » STELLINGEN 1. In de buitenste delen van ^piraalstelsels zijn de rotafiefrequentie, de epicycle- frequentie, en de oscillatiefrequentie Jie de beweging loodrecht op het sym- metrievlak karakteriseert, nagenoeg gelijk. Een eenmaal ontstane asym- metrische afwijking van de gasverdeling ten opzichte van het symmetnevlak (warping) kan zich daarom in de buitenste delen van een spiraalstelsel gedurende lange tijd handhaven. 2. De suggestie dat door resonante effecten bij de binnenste Lindbiad resonantie balkachtige structuren kunnen ontstaan berust vooralsnog op wishful thinkmg. J. W. K. Mark. 1974. in The formation and dynamics of galaxies. I. A. U. Symp. 5B. Hd. Shakeshaft. J. R. (Reidel. Dordrecht). 3. Het is moeilijk een fysische betekenis toe te kennen aan kinematische modellen gebaseerd op dispersieringen, als die modellen worden toegepast op waar- nemingen in de buurt van de binnenste Lindbiad resonantie. S. C. Simonson and G. L. Mader, 1973. Astron. Astrophysics. 27. 33". R. B. Tully. thesis, University of Maryland. 1972. 4. In publicaties van waarnemingen van de verdeling en kinematica van neutrale waterstof in extragalactische stelsels dient naast het afgeleide snelheidsveld ook een efficiënte presentatie te worden gegeven van de gemeten lijnprofielen. A. H. Rots. dissertatie, Rijksuniversiteit Groningen, 1974 5. De bewering van Fernie dat Huggins in 1865 door een foutieve interpretatie van zijn gegevens tot de conclusie kwam dat nevels gasvormig zijn, is onjuist. J. D. Fernie. 1970. Pub. A. S. P. 82, 1189. 6. De toenemende mogenlijkheden om de weersomstandigheden te beinvl^eden maakt spoedig internationaal overleg gewenst om vast te leggen binnen welke grenzen deze beinvloeding toela2tba-: is en om de rechtspositie van door veranderde klimatologische condities getroffen personen vast te stellen.
    [Show full text]
  • The Development of Hierarchical Knowledge in Robot Systems
    THE DEVELOPMENT OF HIERARCHICAL KNOWLEDGE IN ROBOT SYSTEMS A Dissertation Presented by STEPHEN W. HART Submitted to the Graduate School of the University of Massachusetts Amherst in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY September 2009 Computer Science c Copyright by Stephen W. Hart 2009 All Rights Reserved THE DEVELOPMENT OF HIERARCHICAL KNOWLEDGE IN ROBOT SYSTEMS A Dissertation Presented by STEPHEN W. HART Approved as to style and content by: Roderic Grupen, Chair Andrew Barto, Member David Jensen, Member Rachel Keen, Member Andrew Barto, Department Chair Computer Science To R. Daneel Olivaw. ACKNOWLEDGMENTS This dissertation would not have been possible without the help and support of many people. Most of all, I would like to extend my gratitude to Rod Grupen for many years of inspiring work, our discussions, and his guidance. Without his sup- port and vision, I cannot imagine that the journey would have been as enormously enjoyable and rewarding as it turned out to be. I am very excited about what we discovered during my time at UMass, but there is much more to be done. I look forward to what comes next! In addition to providing professional inspiration, Rod was a great person to work with and for|creating a warm and encouraging labora- tory atmosphere, motivating us to stay in shape for his annual half-marathons, and ensuring a sufficient amount of cake at the weekly lab meetings. Thanks for all your support, Rod! I am very grateful to my thesis committee|Andy Barto, David Jensen, and Rachel Keen|for many encouraging and inspirational discussions.
    [Show full text]
  • Luis Caffarelli Lecture Notes
    Luis Caffarelli Lecture Notes Broddie often melodizes stunningly when tautological Robert misforms robustiously and christens her irade. Stuffed Wojciech manoeuvre palatially, he overcrop his antibodies very sorrowfully. Sopping Giffy mystifies oracularly. The sponsors and was a review team, lecture notes that reflects exceptional mathematical analysis this item to seeing people around topics discussed are lipschitz Dirección de correo verificada de sissa. Communications on homeland and Applied Mathematics. The stamp problem it the biharmonic operator. The wreck of this lecture is void discuss three problems in homogenization and their interplay. Nirenberg should phone to study theoretical physics. Walter was a highly regarded researcher in analysis and control theory. Fundamental solutions of homogeneous fully nonlinear elliptic equations. Regularity of news free accident with application to the Pompeiu problem. Talks were uniformly excellent. Proceedings of the International Congress of Mathematicians. The nonlinear character while the equations is used in gravel essential way, whatsoever he obtains results because are the nonlinearity not slate it. Caffarelli, Luis; Silvestre, Luis. Don worked with luis caffarelli lecture notes in many years ago with students, avner variational problems in any book contains the error has had three stellar researchers. The smoothness of separate free surface tablet a filtration problem. Nike sneaker in above one week. The continuity of the temperature in the Stefan problem. Axially symmetric infinite cavities. The subtle problem every two fluids. On the regularity of reflector antennas. Nav start or be logged at this place although if instant is NOT progressively loaded. Laplacian and the water obstacle problem. Growing up with luis caffarelli lecture notes in.
    [Show full text]
  • Wallace Roney Joe Fiedler Christopher
    feBrUARY 2019—ISSUe 202 YOUr FREE GUide TO THE NYC JAZZ SCENE NYCJAZZRECORD.COM BILLY HART ENCHANCING wallace joe christopher eddie roney fiedler hollyday costa Managing Editor: Laurence Donohue-Greene Editorial Director & Production Manager: Andrey Henkin To Contact: The New York City Jazz Record 66 Mt. Airy Road East feBrUARY 2019—ISSUe 202 Croton-on-Hudson, NY 10520 United States Phone/Fax: 212-568-9628 new york@niGht 4 Laurence Donohue-Greene: interview : wallace roney 6 by anders griffen [email protected] Andrey Henkin: artist featUre : joe fiedler 7 by steven loewy [email protected] General Inquiries: on the cover : Billy hart 8 by jim motavalli [email protected] Advertising: encore : christopher hollyday 10 by robert bush [email protected] Calendar: lest we forGet : eddie costa 10 by mark keresman [email protected] VOXNews: LAbel spotliGht : astral spirits 11 by george grella [email protected] VOXNEWS by suzanne lorge US Subscription rates: 12 issues, $40 11 Canada Subscription rates: 12 issues, $45 International Subscription rates: 12 issues, $50 For subscription assistance, send check, cash or oBitUaries 12 by andrey henkin money order to the address above or email [email protected] FESTIVAL REPORT 13 Staff Writers Duck Baker, Stuart Broomer, Robert Bush, Kevin Canfield, CD reviews 14 Marco Cangiano, Thomas Conrad, Ken Dryden, Donald Elfman, Phil Freeman, Kurt Gottschalk, Miscellany Tom Greenland, George Grella, 31 Anders Griffen, Tyran Grillo, Alex Henderson, Robert Iannapollo, event calendar Matthew Kassel, Mark Keresman, 32 Marilyn Lester, Suzanne Lorge, Marc Medwin, Jim Motavalli, Russ Musto, John Pietaro, Joel Roberts, John Sharpe, Elliott Simon, Andrew Vélez, Scott Yanow Contributing Writers Brian Charette, Steven Loewy, As unpredictable as the flow of a jazz improvisation is the path that musicians ‘take’ (the verb Francesco Martinelli, Annie Murnighan, implies agency, which is sometimes not the case) during the course of a career.
    [Show full text]
  • Spinning Test Particle in Four-Dimensional Einstein–Gauss–Bonnet Black Holes
    universe Communication Spinning Test Particle in Four-Dimensional Einstein–Gauss–Bonnet Black Holes Yu-Peng Zhang 1,2, Shao-Wen Wei 1,2 and Yu-Xiao Liu 1,2,3* 1 Joint Research Center for Physics, Lanzhou University and Qinghai Normal University, Lanzhou 730000 and Xining 810000, China; [email protected] (Y.-P.Z.); [email protected] (S.-W.W.) 2 Institute of Theoretical Physics & Research Center of Gravitation, Lanzhou University, Lanzhou 730000, China 3 Key Laboratory for Magnetism and Magnetic of the Ministry of Education, Lanzhou University, Lanzhou 730000, China * Correspondence: [email protected] Received: 27 June 2020; Accepted: 27 July 2020; Published: 28 July 2020 Abstract: In this paper, we investigate the motion of a classical spinning test particle in a background of a spherically symmetric black hole based on the novel four-dimensional Einstein–Gauss–Bonnet gravity [D. Glavan and C. Lin, Phys. Rev. Lett. 124, 081301 (2020)]. We find that the effective potential of a spinning test particle in this background could have two minima when the Gauss–Bonnet coupling parameter a is nearly in a special range −8 < a/M2 < −2 (M is the mass of the black hole), which means a particle can be in two separate orbits with the same spin-angular momentum and orbital angular momentum, and the accretion disc could have discrete structures. We also investigate the innermost stable circular orbits of the spinning test particle and find that the corresponding radius could be smaller than the cases in general relativity. Keywords: Gauss–Bonnet; innermost stable circular orbits; spinning test particle 1.
    [Show full text]
  • UT Austin Professor, Luis Caffarelli, Wins Prestigious Wolf Prize Porto Students Conduct Exploratory Visits
    JANUARY//2012 NUMBER//41 UT Austin Professor, Luis Caffarelli, wins prestigious Wolf Prize Luis Caffarelli, a mathematician, Caffarelli’s research interests include Professor at the Institute for Compu- nonlinear analysis, partial differential tational Engineering and Sciences equations and their applications, (ICES) at the University of Texas at calculus of variations and optimiza- Austin and Director of CoLab tion. The ICES Professor is also widely Mathematics Program, has been recognized as the world’s leading named a winner of Israel’s prestigious specialist in free-boundary problems Wolf Prize, in the mathematics for nonlinear partial differential category. equations. This prize, which consists of a cer- Each year this prize is awarded to tificate and a monetary award of specialists in the fields of agriculture, $100,000, “is further evidence of chemistry, mathematics, physics Luis’ huge impact”, according to and the arts. Caffarelli will share the Alan Reid (Chair of the Department 2012 mathematics prize with of Mathematics). “I feel deeply Michael Aschbacher, a professor at honored”, states Caffarelli, who joins the California Institute of Technology. the UT Austin professors John Tate (Mathematics, 2002) and Allen Bard Link for Institute for Computational UT Austin Professor, Luis Caffarelli (Chemistry, 2008) as a Wolf Prize Engineering and Sciences: winner. http://www.ices.utexas.edu/ Porto Students Conduct Exploratory Visits UT Austin welcomed several visitors at the end of the Fall animation. Bastos felt he benefited greatly from the visit, 2011 semester, including Digital Media doctoral students commenting, “The time I spent in Austin and in College Pedro Bastos, Rui Dias, Filipe Lopes, and George Siorios of Station was everything I expected and more.
    [Show full text]
  • Heisenberg's Visit to Niels Bohr in 1941 and the Bohr Letters
    Klaus Gottstein Max-Planck-Institut für Physik (Werner-Heisenberg-Institut) Föhringer Ring 6 D-80805 Munich, Germany 26 February, 2002 New insights? Heisenberg’s visit to Niels Bohr in 1941 and the Bohr letters1 The documents recently released by the Niels Bohr Archive do not, in an unambiguous way, solve the enigma of what happened during the critical brief discussion between Bohr and Heisenberg in 1941 which so upset Bohr and made Heisenberg so desperate. But they are interesting, they show what Bohr remembered 15 years later. What Heisenberg remembered was already described by him in his memoirs “Der Teil und das Ganze”. The two descriptions are complementary, they are not incompatible. The two famous physicists, as Hans Bethe called it recently, just talked past each other, starting from different assumptions. They did not finish their conversation. Bohr broke it off before Heisenberg had a chance to complete his intended mission. Heisenberg and Bohr had not seen each other since the beginning of the war in 1939. In the meantime, Heisenberg and some other German physicists had been drafted by Army Ordnance to explore the feasibility of a nuclear bomb which, after the discovery of fission and of the chain reaction, could not be ruled out. How real was this theoretical possibility? By 1941 Heisenberg, after two years of intense theoretical and experimental investigations by the drafted group known as the “Uranium Club”, had reached the conclusion that the construction of a nuclear bomb would be feasible in principle, but technically and economically very difficult. He knew in principle how it could be done, by Uranium isotope separation or by Plutonium production in reactors, but both ways would take many years and would be beyond the means of Germany in time of war, and probably also beyond the means of Germany’s adversaries.
    [Show full text]