Perennials Perennials
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Astilbe Chinensis 'Visions'
cultureconnection perennial solutions Astilbe chinensis ‘Visions’ This deer-resistant variety also attracts hummingbirds and can be utilized in your marketing programs. stilbes are very erect to arching, plume-like flower during the spring or fall. For By Paul Pilon popular shade panicles that rise above the foliage quart production, a crown con- and woodland on slender upright stems. Astilbe sisting of 1-2 eyes, or shoots, is garden perenni- chinensis ‘Visions’ is a showy culti- commonly used. For larger con- als. They form var that forms compact foliage tainers, such as a 1-gal., divisions beautiful mounds of fern-like mounds with green to bronze- containing 2-3 eyes are commonly foliage bearing tiny flowers on green glossy leaves reaching 9-12 used. In most cases, container inches high. Flowering occurs in growers do not propagate astilbe early summer, forming pyramidal- cultivars; rather, they purchase A shaped 14- to 16-inch-tall plumes bareroot divisions or large plug full of small, fragrant, raspberry- liners from growers who special- red flowers. Astilbes are often ize in astilbe propagation. used for cut flowers, as container ‘Visions’ is not a patented culti- items, in mass plantings or small var and can be propagated by any groups, as border plants and as grower. There are two fairly new groundcovers in shade gardens. introductions with the Visions ‘Visions’ can be easily produced name, ‘Vision in Pink’ and ‘Vision in average, medium-wet, well- in Red’; these are patented culti- drained soils across USDA vars. Growers should note that Hardiness Zones 4-9 and AHS unlicensed propagation of these Heat Zones 8-2. -
THESE Organisation Du Génome Et Étude Palynologique De Quelques
REPUBLIQUE ALGERIENNE DEMOCRATIQUE ΔϳΑόѧѧѧѧѧѧѧѧѧѧѧѧѧηϟ ΔѧѧѧѧѧѧѧѧѧѧѧϳρέϗϭϣϳΩϟ ΔѧѧѧѧѧѧѧѧѧϳέίΟϟ ΔѧѧѧѧϳέϭϬϣΟϟ ET POPULAIRE ϲѧѧѧѧѧѧѧϣϠόϟ ΙѧѧѧѧѧѧѧΣΑϟ ϭ ϲϟΎѧѧѧѧѧѧѧόϟ ϡѧѧѧѧѧѧѧѧѧѧѧѧѧѧϳϠόΗϟ Γέίϭ MINISTERE DE L’ENSEIGNEMENT SUPÉRIEUR 1 ΔϧϳρϧѧѧѧѧѧѧѧѧѧѧѧѧγϗΔόϣΎΟ ET DE LA RECHERCHE SCIENTIFIQUE UNIVERSITE CONSTANTINE 1 Faculté des Sciences de la Nature et de la Vie Département de Biologie et Ecologie Végétale THESE Présentée en vue de l’obtention du diplôme de DOCTORAT EN SCIENCES Option: Biotechnologies végétales Par KARIM BAZIZ Thème Organisation du génome et étude palynologique de quelques espèces algériennes du genre Astragalus L Soutenue le 12 Février 2015 Devant le jury: Président : Mr D. KHELIFI Professeur à l’université de Constantine 1 Encadrant : Mme N. KHALFALLAH Professeur à l’université de Constantine 1 Co- Encadrant : Mme S. SILJAK-YAKOVLEV Professeur à l’université de Paris Sud Examinateurs : Mme D. SATTA Professeur à l’université de Constantine 1 Mr R. AMIROUCHE Professeur à l’USTHB, FSB Mr M. KAABECHE Professeur à l’université de Sétif 1 ANNEE UNIVERSITAIRE 2014 – 2015 Dédicace Cette thèse représente l’aboutissement du soutien et des encouragements que mes parents m’ont prodigués tout au long de ma scolarité. La patience et l’encouragement de mon épouse qui m’ont aidé à surmonter toutes les difficultés rencontrées au cours de cette thèse. A mon petit garçon ADEM A mon frère MOUNIR et mes deux sœurs NADJET et NASSIMA REMERCIEMENTS A Madame la Professeur NADRA KHALFALLAH, mon encadrant et directeur de thèse. Je vous serai toujours reconnaissant pour vos avis indispensables, vos conseils éclairés et pour votre disponibilité. Vous m'avez fait bénéficier de vos connaissances, de votre immense expérience scientifique et de votre rigueur dans le travail. -
The Importance of Geographic and Biological Variables in Predicting
Horticulture Publications Horticulture 6-2013 The mpI ortance of Geographic and Biological Variables in Predicting the Naturalization of Non- Native Woody Plants in the Upper Midwest Mark P. Widrlechner Iowa State University, [email protected] Emily J. Kapler Iowa State University, [email protected] Philip M. Dixon Iowa State University, [email protected] Janette R. Thompson Iowa State University, [email protected] Follow this and additional works at: https://lib.dr.iastate.edu/hort_pubs Part of the Ecology and Evolutionary Biology Commons, Forest Management Commons, Horticulture Commons, and the Statistical Models Commons The ompc lete bibliographic information for this item can be found at https://lib.dr.iastate.edu/ hort_pubs/33. For information on how to cite this item, please visit http://lib.dr.iastate.edu/ howtocite.html. This Article is brought to you for free and open access by the Horticulture at Iowa State University Digital Repository. It has been accepted for inclusion in Horticulture Publications by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. The mpI ortance of Geographic and Biological Variables in Predicting the Naturalization of Non-Native Woody Plants in the Upper Midwest Abstract The es lection, introduction, and cultivation of non-native woody plants beyond their native ranges can have great benefits, but also unintended consequences. Among these consequences is the tendency for some species to naturalize and become invasive pests in new environments to which they were introduced. In lieu of lengthy and costly field trials, risk-assessment models can be used to predict the likelihood of naturalization. -
Plant Breading
SNA Research Conference Vol. 52 2007 Plant Breeding and Evaluation Tom Ranney Section Editor and Moderator Plant Breeding and Evaluation Section 326 SNA Research Conference Vol. 52 2007 New Callicarpa Species with Breeding Potential Ryan N. Contreras and John M. Ruter University of Georgia, Dept. of Horticulture, Tifton, GA 31793 [email protected] Index Words: beautyberry, species evaluation, ornamental plant breeding Significance to Industry: There is a great deal of available Callicarpa L. germplasm that has yet to be utilized by the nursery industry in the U.S. Taxa currently being evaluated are likely to have potential as breeding material or direct commercial marketability. With new breeding material and selections for introduction the number of beautyberry cultivars for use in southeastern gardens has the potential to expand greatly. Nature of Work: Callicarpa L. is a genus of ~150 species of shrubs and trees distributed throughout the world including warm-temperate and tropical America, SE Asia, Malaysia, Pacific Islands, and Australia (5) with the greatest concentration of species found in SE Asia, specifically the Philippine Islands (1). Of the New World species the highest concentration occurs in Cuba, with ~20 native species (1). There are currently four species commonly found in cultivation in the U.S.: C. americana L., C. bodinieri Lév., C. dichotoma (Lour.)K.Koch, and C. japonica Thunb. with a limited number of varieties or cultivars of each to choose from (3). Beautyberries, desired primarily for their handsome berries produced in fall, have been selected for white-fruiting varieties, finer textured varieties, increased berry production, and variegated foliage. -
Pages 121-166
Cost Analysis Figure 21. Estimated Unit Costs for Installation and Maintenance Procedures (2004) Costs are based on average conditions calculated from research plot applications. Costs can vary considerably depending on specific site conditions. These examples are intended for comparison purposes and should not be used as bid prices. Note: Estimated costs do not include bark mulch applied as a continuous bed. If that is the desired treatment, an additional mulch materials and application cost would apply. Estimated costs do not include plant or installation warranties. Enhancing Delaware Highways Cost Analysis 122 Figure 21. Estimated Costs for Installation and Maintenance, for comparison (2004) Drilling holes prior to planting quart containers. Note: Estimated costs do not include bark mulch applied as a continuous bed. If that is the desired treatment, an additional mulch materials and application cost would apply. Estimated costs do not include plant or installation warranties. Enhancing Delaware Highways Cost Analysis 124 Appendix A: Checklists–Inventory of Site Conditions 2. Roadway Limitations Checklist Check the roadside zone(s) included in the location to be landscaped: J Back slope or cut slope J Swale or ditch zone 1. Climate and Growth Conditions Checklist J Approach or shoulder zone J Edge or border zone J Front or fill slope Check the appropriate clear zone requirement: Check the appropriate cold hardiness zone: J Standard 30 feet J Other ( feet) J Zone 6 or J Zone 7 Presence of guard rail and/or barrier curb: Guard rail -
Integrating Palaeontological and Molecular Data Uncovers Multiple
Integrating palaeontological and molecular data uncovers multiple ancient and recent dispersals in the pantropical Hamamelidaceae Xiaoguo Xiang, Kunli Xiang, Rosa del C. Ortiz, Florian Jabbour, Wei Wang To cite this version: Xiaoguo Xiang, Kunli Xiang, Rosa del C. Ortiz, Florian Jabbour, Wei Wang. Integrating palaeontolog- ical and molecular data uncovers multiple ancient and recent dispersals in the pantropical Hamamel- idaceae. Journal of Biogeography, Wiley, 2019, 46 (11), pp.2622-2631. 10.1111/jbi.13690. hal- 02612865 HAL Id: hal-02612865 https://hal.archives-ouvertes.fr/hal-02612865 Submitted on 19 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Integrating palaeontological and molecular data uncovers multiple ancient and recent dispersals in the pantropical Hamamelidaceae Xiaoguo Xiang1,2, Kunli Xiang1,3, Rosa Del C. Ortiz4, Florian Jabbour5, Wei Wang1,3 1State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China 2Jiangxi Province Key Laboratory of Watershed Ecosystem -
Chaenomeles Spp. - Flowering Quince (Rosaceae) ------Chaenomeles Is a Functional Flowering Hedge, Border, Twigs Or Specimen Shrub That Can Be Used Near Buildings
Chaenomeles spp. - Flowering Quince (Rosaceae) ----------------------------------------------------------------------------------- Chaenomeles is a functional flowering hedge, border, Twigs or specimen shrub that can be used near buildings. -buds small and reddish in color The major appeal of Flowering Quince is its showy -lightly armed (terminal and axillary spines) but brief flowering period. The rest of the year it’s a -young bark is reddish and cherry-like utilitarian thorny shrub with limited aesthetic Trunk attributes. -gray brown -many small diameter stems closely crowded, arising FEATURES from the ground Form -large shrubs USAGE 2-6' tall Function -vased shaped -sun tolerant, long-lived shrub habit with -useful as a hedge or barrier many small Texture diameter -medium in foliage and when bare stems Assets -1:1 height to -urban tolerant width ratio -withstand severe pruning -rapid growth -drought tolerant Culture -early spring flowers -full sun -dense growth and long-lived -adaptable to a wide range of soil conditions -lightly armed for effective "crowd control" -thrives under stressful conditions Liabilities -moderate availability -poor autumn color Foliage -trash can accumulate among its many small diameter -alternate, lanceolate stems (maintenance headache) -serrate margins -prone to cosmetic damage by insects -somewhat leathery -sheds foliage in summer in response to drought or -to 4" long disease pressure -leafy, kidney-shaped stipules (an ID feature) Habitat -summer color is dense medium green and attractive, -Zones 4 to 8, depending on species new growth often bronze -Native to the Orient (China, Japan) -autumn color yellowish green SELECTIONS Alternates -urban tolerant shrub with vase-shaped winter form (e.g. Berberis thunbergii, Berberis x mentorensis, Spiraea nipponica 'Snowmound' etc.) -early spring flowering shrubs (e.g. -
Botanical Name Common Name
Approved Approved & as a eligible to Not eligible to Approved as Frontage fulfill other fulfill other Type of plant a Street Tree Tree standards standards Heritage Tree Tree Heritage Species Botanical Name Common name Native Abelia x grandiflora Glossy Abelia Shrub, Deciduous No No No Yes White Forsytha; Korean Abeliophyllum distichum Shrub, Deciduous No No No Yes Abelialeaf Acanthropanax Fiveleaf Aralia Shrub, Deciduous No No No Yes sieboldianus Acer ginnala Amur Maple Shrub, Deciduous No No No Yes Aesculus parviflora Bottlebrush Buckeye Shrub, Deciduous No No No Yes Aesculus pavia Red Buckeye Shrub, Deciduous No No Yes Yes Alnus incana ssp. rugosa Speckled Alder Shrub, Deciduous Yes No No Yes Alnus serrulata Hazel Alder Shrub, Deciduous Yes No No Yes Amelanchier humilis Low Serviceberry Shrub, Deciduous Yes No No Yes Amelanchier stolonifera Running Serviceberry Shrub, Deciduous Yes No No Yes False Indigo Bush; Amorpha fruticosa Desert False Indigo; Shrub, Deciduous Yes No No No Not eligible Bastard Indigo Aronia arbutifolia Red Chokeberry Shrub, Deciduous Yes No No Yes Aronia melanocarpa Black Chokeberry Shrub, Deciduous Yes No No Yes Aronia prunifolia Purple Chokeberry Shrub, Deciduous Yes No No Yes Groundsel-Bush; Eastern Baccharis halimifolia Shrub, Deciduous No No Yes Yes Baccharis Summer Cypress; Bassia scoparia Shrub, Deciduous No No No Yes Burning-Bush Berberis canadensis American Barberry Shrub, Deciduous Yes No No Yes Common Barberry; Berberis vulgaris Shrub, Deciduous No No No No Not eligible European Barberry Betula pumila -
Astilbe Thunbergii Reduces Postprandial Hyperglycemia in a Type 2 Diabetes Rat
1 Author’s pre-print manuscript of the following article 2 3 Astilbe thunbergii reduces postprandial hyperglycemia in a type 2 diabetes rat 4 model via pancreatic alpha-amylase inhibition by highly condensed 5 procyanidins. 6 7 Bioscience, Biotechnology, and Biochemistry, 2017, accepted. 8 Check the published version from the bellow link. 9 10 Taylers & Francis Online 11 DOI:10.1080/09168451.2017.1353403 12 http://www.tandfonline.com/doi/full/10.1080/09168451.2017.1353403 13 14 15 1 16 E. Kato et al. 17 Anti-diabetic effect of Astilbe thunbergii 18 19 Research Article 20 Astilbe thunbergii reduces postprandial hyperglycemia in a type 2 diabetes 21 rat model via pancreatic alpha-amylase inhibition by highly condensed 22 procyanidins. 23 Eisuke Kato1*, Natsuka Kushibiki1, Yosuke Inagaki2, Mihoko Kurokawa2, Jun 24 Kawabata1 25 1Laboratory of Food Biochemistry, Division of Applied Bioscience, Graduate School 26 of Agriculture, Hokkaido University, Kita-ku, Sapporo, Hokkaido 060-8589, Japan 27 2Q'sai Co., Ltd., Kusagae, Fukuoka, Fukuoka 810-8606, Japan 28 29 *Corresponding author 30 Tel/Fax: +81 11 706 2496; 31 E-mail address: [email protected] (E. Kato) 32 2 33 Abstract 34 Type 2 diabetes mellitus (T2DM) is a common global health problem. Prevention 35 of this disease is an important task, and functional food supplements are 36 considered an effective method. Astilbe thunbergii extract (AT) was found to be a 37 potent pancreatic α-amylase inhibitor. AT treatment in a T2DM rat model 38 reduced post-starch administration blood glucose levels. Activity-guided 39 isolation revealed procyanidin as the active component with IC50 = 1.7 µg/mL 40 against porcine pancreatic α-amylase. -
A Gap Analysis of the Morris Arboretum Hydrangea Collection: Sections Asperae and Chinensis
University of Pennsylvania ScholarlyCommons Internship Program Reports Education and Visitor Experience 1-2020 A Gap Analysis of the Morris Arboretum Hydrangea Collection: Sections Asperae and Chinensis Emily Conn Follow this and additional works at: https://repository.upenn.edu/morrisarboretum_internreports Recommended Citation Conn, Emily, "A Gap Analysis of the Morris Arboretum Hydrangea Collection: Sections Asperae and Chinensis" (2020). Internship Program Reports. 68. https://repository.upenn.edu/morrisarboretum_internreports/68 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/morrisarboretum_internreports/68 For more information, please contact [email protected]. A Gap Analysis of the Morris Arboretum Hydrangea Collection: Sections Asperae and Chinensis This report is available at ScholarlyCommons: https://repository.upenn.edu/morrisarboretum_internreports/68 Title: A Gap Analysis of the Morris Arboretum Hydrangea Collection: Sections Asperae and Chinensis Author: Emily Conn The Martha J. Wallace Endowed Plant Propagation Intern Date: January 2020 Abstract: In this gap analysis of the Morris Arboretum’s Hydrangea collection, I will assess the hydrangea collection with a focus on the “fuzzy leaf” varieties that fall under two classifications: Section Asperae and Section Chinenses. Within these fuzzy leaf groupings, this project will include an analysis of the collection at the species and cultivar level and will outline which hydrangeas are missing from or underrepresented in our collection, as well as recommendations for suitable additions. These recommendations favor wild collected species and species available from the collections at regional arboreta. Discussion of the controversy over nomenclature verification methods, phylogenic treatments, and theories of biological classification systems are explored in the body of this paper. This project also entails seed propagation of target species growing at the Arboretum, and cutting propagation of desired species from local institutions to diversify this growing collection. -
Providing for Pollinators: Conserving and Integrating Natural Habitats to Support Pollinator Conservation Efforts
Providing for pollinators: conserving and integrating natural habitats to support pollinator conservation efforts by Jessica Nicole Butters B.A., Central College, 2017 A THESIS submitted in partial fulfillment of the requirements for the degree MASTER OF SCIENCE Department of Entomology College of Agriculture KANSAS STATE UNIVERSITY Manhattan, Kansas 2021 Approved by: Major Professor Tania Kim Copyright © Jessica Nicole Butters 2021. Abstract Pollinators have been in decline for at least the past four decades due to habitat loss from agricultural intensification. Natural pollinator habitat, such as tallgrass prairies, have shrunk to less than 10% of their original extent. Because over one-third of food crops are completely pollinator-dependent, we are under the threat of food instability if pollinator decline is not stabilized and improved. Additionally, little work has been done in terms of understanding how different land management strategies, such as fire rotations or native flower plantings, impact different groups of pollinators, such as bees and butterflies. In an effort to address these issues, I implemented a two-year study on the impact of conservation and ecological intensification strategies on pollinators. My objectives were to 1) understand how fire and grazing management on a prairie reserve impacts the pollinator community and 2) examine how land managers can attract and provide for pollinators in an agricultural setting through the implementation of perennial border crops. For my first objective, I found that bison grazing had positive effects on nearly all pollinators, from lepidopterans to ground-nesting bees, while different fire rotations had both positive and negative effects on pollinators through different pathways. -
Ecological Sustainability Will Probably Always Be Limited by Its Small Size and Fragmented Condition (See Section 3.5)
United States Department of Agriculture Forest Service May 2011 Terrestrial Species Viability Evaluation for The Uwharrie National Forest Land and Resource Management Plan Environmental Impact Statement Contents 1.0 Introduction ................................................................................................................... 1 2.0 Purpose .......................................................................................................................... 1 2.1 Requirements in the National Forest Management Act (NFMA) ............................. 1 3.0 Ecosystem Diversity ..................................................................................................... 2 3.1 Spatial Scales for Ecosystem Diversity ................................................................... 4 3.2 Characteristics of Ecosystem Diversity ................................................................... 7 3.3 Range of Variation .................................................................................................... 9 3.4 Current Condition and Trend of Ecosystem Characteristics and Status of Ecosystem Diversity ..................................................................................................... 15 3.5 – Risks to Selected Characteristics of Ecosystem Diversity ................................... 20 3.6 Recommended Forest Plan Components ............................................................... 21 3.7 Assessing effects of Forest Plan alternatives on viability ....................................