Correlation of Torridon and Morar groups 1 2 A fluvial origin for the Neoproterozoic Morar Group, NW Scotland; implications 3 for Torridon - Morar group correlation and the Grenville Orogen Foreland Basin 4 5 Maarten Krabbendam (1), Tony Prave (2), David Cheer (2, 3), 6 (1) British Geological Survey, Murchison House, West Mains Road, Edinburgh EH9 7 3 LA, UK. Email:
[email protected] Corresponding author. 8 (2) School of Geography & Geoscience, Irvine Building, University of St Andrews, 9 St Andrews KY16 9AL, UK 10 (3) Present address: Scotland TranServ, Broxden Business Park, Perth, PH1 1RA 11 12 Running title: Correlation of Torridon and Morar groups 13 14 Abstract 15 Precambrian sedimentary successions are difficult to date and correlate. In the 16 Scottish Highlands, potential correlations between the thick, undeformed siliciclastic 17 ‘Torridonian’ successions in the foreland of the Caledonian Orogen and the highly 18 deformed and metamorphosed siliciclastic Moine succession within the Caledonian 19 Orogen have long intrigued geologists. New and detailed mapping of the 20 Neoproterozoic A ‘Mhoine Formation (Morar Group, lowest Moine Supergroup) in 21 Sutherland has discovered low strain zones exhibiting well-preserved sedimentary 22 features. The formation comprises 3-5 kilometres of coarse, thick-bedded psammite 23 with abundant nested trough and planar cross-bedding bedforms, defining metre-scale 24 channels. Palaeocurrent directions are broadly unimodal to the NNE-ENE. We 25 interpret the A ‘Mhoine Formation as high-energy, braided fluvial deposits. The A 26 ‘Mhoine Formation and the unmetamorphosed, Neoproterozoic Applecross-Aultbea 27 formations (Torridon Group), are similar in terms of lithology, stratigraphical 28 thickness, sedimentology, geochemistry, detrital zircon ages and stratigraphical 29 position on Archaean basement.