Non-Perturbative Effects in Complex Gravitationally Bound Systems Final Report
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Primordial Black Hole Evaporation and Spontaneous Dimensional Reduction
Physics Faculty Works Seaver College of Science and Engineering 9-17-2012 Primordial Black Hole Evaporation And Spontaneous Dimensional Reduction Jonas R. Mureika Loyola Marymount University, [email protected] Follow this and additional works at: https://digitalcommons.lmu.edu/phys_fac Part of the Physics Commons Recommended Citation Mureika J. Primordial black hole evaporation and spontaneous dimensional reduction. Physics Letters B. 2012;716:171-175. This Article is brought to you for free and open access by the Seaver College of Science and Engineering at Digital Commons @ Loyola Marymount University and Loyola Law School. It has been accepted for inclusion in Physics Faculty Works by an authorized administrator of Digital Commons@Loyola Marymount University and Loyola Law School. For more information, please contact [email protected]. Physics Letters B 716 (2012) 171–175 Contents lists available at SciVerse ScienceDirect Physics Letters B www.elsevier.com/locate/physletb Primordial black hole evaporation and spontaneous dimensional reduction J.R. Mureika Department of Physics, Loyola Marymount University, Los Angeles, CA 90045, United States article info abstract Article history: Several different approaches to quantum gravity suggest the effective dimension of spacetime reduces Received 15 May 2012 from four to two near the Planck scale. In light of such evidence, this Letter re-examines the Received in revised form 6 August 2012 thermodynamics of primordial black holes (PBHs) in specific lower-dimensional gravitational models. Accepted 15 August 2012 Unlike in four dimensions, (1 + 1)-D black holes radiate with power P ∼ M2 , while it is known no Available online 17 August 2012 BH (2 + 1)-D (BTZ) black holes can exist in a non-anti-de Sitter universe. -
A Unifying Theory of Dark Energy and Dark Matter: Negative Masses and Matter Creation Within a Modified ΛCDM Framework J
Astronomy & Astrophysics manuscript no. theory_dark_universe_arxiv c ESO 2018 November 5, 2018 A unifying theory of dark energy and dark matter: Negative masses and matter creation within a modified ΛCDM framework J. S. Farnes1; 2 1 Oxford e-Research Centre (OeRC), Department of Engineering Science, University of Oxford, Oxford, OX1 3QG, UK. e-mail: [email protected]? 2 Department of Astrophysics/IMAPP, Radboud University, PO Box 9010, NL-6500 GL Nijmegen, the Netherlands. Received February 23, 2018 ABSTRACT Dark energy and dark matter constitute 95% of the observable Universe. Yet the physical nature of these two phenomena remains a mystery. Einstein suggested a long-forgotten solution: gravitationally repulsive negative masses, which drive cosmic expansion and cannot coalesce into light-emitting structures. However, contemporary cosmological results are derived upon the reasonable assumption that the Universe only contains positive masses. By reconsidering this assumption, I have constructed a toy model which suggests that both dark phenomena can be unified into a single negative mass fluid. The model is a modified ΛCDM cosmology, and indicates that continuously-created negative masses can resemble the cosmological constant and can flatten the rotation curves of galaxies. The model leads to a cyclic universe with a time-variable Hubble parameter, potentially providing compatibility with the current tension that is emerging in cosmological measurements. In the first three-dimensional N-body simulations of negative mass matter in the scientific literature, this exotic material naturally forms haloes around galaxies that extend to several galactic radii. These haloes are not cuspy. The proposed cosmological model is therefore able to predict the observed distribution of dark matter in galaxies from first principles. -
The Gravitational Lens Effect of Galaxies and Black Holes
.f .(-L THE GRAVITATIONAL LENS EFFECT of GALAXIES and BLACK HOLES by Igor Bray, B.Sc. (Hons.) A thesis submitted in accordance with the requirements of the Degree of Doctor of Philosophy. Department of lr{athematical Physics The University of Adelaide South Australia January 1986 Awo.c(sd rt,zb to rny wife Ann CONTENTS STATEMENT ACKNOWLEDGEMENTS lt ABSTRACT lll PART I Spheroidal Gravitational Lenses I Introduction 1.1 Spherical gravitational lenses I 1.2 Spheroidal gravitational lenses 12 2 Derivationof I("o). ......16 3 Numerical Investigation 3.1 Evaluations oI l(zs) 27 3.2 Numericaltechniques 38 3.3 Numerical results 4L PART II Kerr Black llole As A Gravitational Lens 4 Introduction 4.1 Geodesics in the Kerr space-time 60 4.2 The equations of motion 64 5 Solving the Equations of Motion 5.1 Solution for 0 in the case m - a'= 0 68 5.2 Solution for / in the case m: a = O 76 5.3 Relating À and 7 to the position of the ìmage .. .. .82 5.4 Solution for 0 ... 89 5.5 Solution for / 104 5.6 Solution for ú. .. ..109 5.7 Quality of the approximations 115 6 Numerical investigation . .. ... tt7 References 122 STATEMENT This thesis contains no material which has been accepted for the award of any degree, and to the best of my knowledge and belief, contains no material previously published or written by another person except where due reference is made in the text. The author consents to the thesis being made available for photocopying and loan if applicable if accepted for the award of the degree. -
No Sign of Gravitational Lensing in the Cosmic Microwave Background
Perspectives No sign of gravitational lensing in the ., WFPC2, HST, NASA ., WFPC2, HST, cosmic microwave et al background Ron Samec ravitational lensing is a Ggravitational-optical effect whereby a background object like a distant quasar is magnified, distorted Andrew Fruchter (STScI) Image by and brightened by a foreground galaxy. It is alleged that the cluster of galaxies Abell 2218, distorts and magnifies It is one of the consequences of general light from galaxies behind it. relativity and is so well understood that fectly smooth black body spectrum of sioned by Hoyle and Wickramasinghe it now appears in standard optics text 5,6 books. Objects that are too far to be 2.725 K with very tiny fluctuations in and by Hartnett. They showed that seen are ‘focused’ by an intervening the pattern on the 70 μK level. These a homogeneous cloud mixture of car- concentration of matter and bought ‘bumps’ or patterns in the CMB are bon/silicate dust and iron or carbon into view to the earth based astronomer. supposedly the ‘seeds’ from which whiskers could produce such a back- One of the most interesting photos of the galaxies formed. Why is it so ground radiation. If the CMB is not the effects of gravitational lensing smooth? Alan Guth ‘solved’ this puz- of cosmological origin, all the ad hoc ideas that have been added to support is shown in the HST image of Abell zle by postulating that the universe was the big bang theory (like inflation) 2218 by Andrew Fruchter1 (Space originally a very tiny entity in thermal fall apart. -
Can Mass Be Negative?
Can Mass Be Negative? Vladik Kreinovich1 and Sergei Soloviev2 1Department of Computer Science University of Texas at El Paso El Paso, TX 7996058, USA [email protected] 2Institut de Recherche en Informatique de Toulouse (IRIT) IRIT, porte 426 118 route de Narbonne 31062 Toulouse cedex 4, France [email protected] Abstract Overcoming the force of gravity is an important part of space travel and a significant obstacle preventing many seemingly reasonable space travel schemes to become practical. Science fiction writers like to imagine materials that may help to make space travel easier. Negative mass { supposedly causing anti-gravity { is one of the popular ideas in this regard. But can mass be negative? In this paper, we show that negative masses are not possible { their existence would enable us to create energy out of nothing, which contradicts to the energy conservation law. 1 Formulation of the Problem Overcoming the force of gravity is an important part of space travel and a significant obstacle preventing many seemingly reasonable space travel schemes to become practical. Science fiction writers like to imagine materials that may help to make space travel easier. Negative mass { supposedly causing anti- gravity { is one of the popular ideas in this regard. But can mass be negative? 2 Reminder: There Are Different Types of Masses To properly answer the question of whether negative masses are possible, it is important to take into account that there are, in principle, three types of masses: 1 • inertial mass mI that describes how an object reacts to a force F : the object's acceleration a is determined by Newton's law mI · a = F ; and • active and passive gravitational mass mA and mP : gravitation force ex- erted by Object 1 with active mass m on Object 2 with passive mass m · m A1 m is equal to F = G · A1 P 2 ; where r is the distance between the P 2 r2 two objects; see, e.g., [1, 3]. -
Negative Matter, Repulsion Force, Dark Matter, Phantom And
Negative Matter, Repulsion Force, Dark Matter, Phantom and Theoretical Test Their Relations with Inflation Cosmos and Higgs Mechanism Yi-Fang Chang Department of Physics, Yunnan University, Kunming, 650091, China (e-mail: [email protected]) Abstract: First, dark matter is introduced. Next, the Dirac negative energy state is rediscussed. It is a negative matter with some new characteristics, which are mainly the gravitation each other, but the repulsion with all positive matter. Such the positive and negative matters are two regions of topological separation in general case, and the negative matter is invisible. It is the simplest candidate of dark matter, and can explain some characteristics of the dark matter and dark energy. Recent phantom on dark energy is namely a negative matter. We propose that in quantum fluctuations the positive matter and negative matter are created at the same time, and derive an inflation cosmos, which is created from nothing. The Higgs mechanism is possibly a product of positive and negative matter. Based on a basic axiom and the two foundational principles of the negative matter, we research its predictions and possible theoretical tests, in particular, the season effect. The negative matter should be a necessary development of Dirac theory. Finally, we propose the three basic laws of the negative matter. The existence of four matters on positive, opposite, and negative, negative-opposite particles will form the most perfect symmetrical world. Key words: dark matter, negative matter, dark energy, phantom, repulsive force, test, Dirac sea, inflation cosmos, Higgs mechanism. 1. Introduction The speed of an object surrounded a galaxy is measured, which can estimate mass of the galaxy. -
Gravitational Lensing in a Black-Bounce Traversable Wormhole
Gravitational lensing in black-bounce spacetimes J. R. Nascimento,1, ∗ A. Yu. Petrov,1, y P. J. Porf´ırio,1, z and A. R. Soares1, x 1Departamento de F´ısica, Universidade Federal da Para´ıba, Caixa Postal 5008, 58051-970, Jo~aoPessoa, Para´ıba, Brazil In this work, we calculate the deflection angle of light in a spacetime that interpolates between regular black holes and traversable wormholes, depending on the free parameter of the metric. Afterwards, this angular deflection is substituted into the lens equations which allows to obtain physically measurable results, such as the position of the relativistic images and the magnifications. I. INTRODUCTION The angular deflection of light when passing through a gravitational field was one of the first predictions of the General Relativity (GR). Its confirmation played a role of a milestone for GR being one of the most important tests for it [1,2]. Then, gravitational lenses have become an important research tool in astrophysics and cosmology [3,4], allowing studies of the distribution of structures [5,6], dark matter [7] and some other topics [8{15]. Like as in the works cited earlier, the prediction made by Einstein was developed in the weak field approximation, that is, when the light ray passes at very large distance from the source which generates the gravitational lens. Under the phenomenological point of view, the recent discovery of gravitational waves by the LIGO-Virgo collaboration [16{18] opened up a new route of research, that is, to explore new cosmological observations by probing the Universe with gravitational waves, in particular, studying effects of gravitational lensing in the weak field approximation (see e.g. -
Polarizable-Vacuum (PV) Representation of General Relativity
Polarizable-Vacuum (PV) representation of general relativity H. E. Puthoff Institute for Advanced Studies at Austin 4030 W. Braker Lane, Suite 300, Austin, Texas 78759 [email protected] ABSTRACT Standard pedagogy treats topics in general relativity (GR) in terms of tensor formulations in curved space-time. Although mathematically straightforward, the curved space-time approach can seem abstruse to beginning students due to the degree of mathematical sophistication required. As a heuristic tool to provide insight into what is meant by a curved metric, we present a polarizable-vacuum (PV) representation of GR derived from a model by Dicke and related to the "THεµ" formalism used in comparative studies of gravitational theories. I. INTRODUCTION Textbook presentations treat General Relativity (GR) in terms of tensor formulations in curved space-time. Such an approach captures in a concise and elegant way the interaction between masses, and their consequent motion. "Matter tells space how to curve, and space tells matter how to move [1]." Although conceptually straightforward, the curved space-time approach can seem rather abstract to beginning students, and often lacking in intuitive appeal. During the course of development of GR over the years, however, alternative approaches have emerged that provide convenient methodologies for investigating metric changes in less abstract formalisms, and which yield heuristic insight into what is meant by a curved metric. One approach that has a long history in GR studies, and that does have intuitive appeal, is what can be called the polarizable-vacuum (PV) representation of GR. Introduced by Wilson [2] and developed further by Dicke [3], the PV approach treats metric changes in terms of equivalent changes in the permittivity and permeability constants of the vacuum, εo and µo, essentially along the lines of the so-called "THεµ" methodology used in comparative studies of gravitational theories [4-6]. -
Gravitational Lensing and Optical Geometry • Marcus C
Gravitational Lensing and OpticalGravitational Geometry • Marcus C. Werner Gravitational Lensing and Optical Geometry A Centennial Perspective Edited by Marcus C. Werner Printed Edition of the Special Issue Published in Universe www.mdpi.com/journal/universe Gravitational Lensing and Optical Geometry Gravitational Lensing and Optical Geometry: A Centennial Perspective Editor Marcus C. Werner MDPI • Basel • Beijing • Wuhan • Barcelona • Belgrade • Manchester • Tokyo • Cluj • Tianjin Editor Marcus C. Werner Duke Kunshan University China Editorial Office MDPI St. Alban-Anlage 66 4052 Basel, Switzerland This is a reprint of articles from the Special Issue published online in the open access journal Universe (ISSN 2218-1997) (available at: https://www.mdpi.com/journal/universe/special issues/ gravitational lensing optical geometry). For citation purposes, cite each article independently as indicated on the article page online and as indicated below: LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Article Number, Page Range. ISBN 978-3-03943-286-8 (Hbk) ISBN 978-3-03943-287-5 (PDF) c 2020 by the authors. Articles in this book are Open Access and distributed under the Creative Commons Attribution (CC BY) license, which allows users to download, copy and build upon published articles, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. The book as a whole is distributed by MDPI under the terms and conditions of the Creative Commons license CC BY-NC-ND. Contents About the Editor .............................................. vii Preface to ”Gravitational Lensing and Optical Geometry: A Centennial Perspective” ..... ix Amir B. -
The Newtonian Limit of Spacetimes Describing Uniformly Accelerated
The Newtonian limit of spacetimes describing uniformly accelerated particles Ruth Lazkoz ∗ Fisika Teorikoaren eta Zientziaren Historiaren Saila Euskal Herriko Unibertsitatea 644 Posta Kutxatila 48080 Bilbao, Spain Juan Antonio Valiente Kroon †‡ Max-Planck Institut f¨ur Gravitationsphysik, Albert Einstein Institut, Am M¨uhlenberg 1, 14476 Golm, Germany. October 30, 2018 Abstract We discuss the Newtonian limit of boost-rotation symmetric spacetimes by means of the Ehlers’ frame theory. Conditions for the existence of such a limit are given and, in particular, we show that asymptotic flatness is an essential requirement. Consequently, generalized boost-rotation symmetric spacetimes describing particles moving in uniform fields will not possess such a limit. In the cases where the boost-rotation symmetric spacetime is asymptotically flat and its Newtonian limit exists, then the (Newtonian) gravitational potential agrees with the potential suggested by the weak field approximation. We illustrate our discussion through some examples: the Curzon-Chazy particle solution, the generalized Bonnor-Swaminarayan solution, and the C metric. arXiv:gr-qc/0208074v2 28 May 2003 PACS: 04.20.Jb, 04.25.Nx, 04.20.Cv 1 Introduction Boost-rotation symmetric spacetimes can be thought of as describing uniformly accelerated parti- cles. The uniform acceleration can in some cases be interpreted as due to an external field, and in other cases as the outcome of self-accelerations produced by the presence of positive an negative masses, or even as the effect of a strut connecting pairs of particles. Precisely these last two types of models comprise the only known classes of exact solutions to the Einstein field equations which are locally asymptotically flat, in the sense that they possess sections of null infinity which are spherical, but null infinity is not complete because some of its generators are not complete. -
Isometric Embeddings in Cosmology and Astrophysics
PRAMANA c Indian Academy of Sciences Vol. 77, No. 3 — journal of September 2011 physics pp. 415–428 Isometric embeddings in cosmology and astrophysics GARETH AMERY∗, JOTHI MOODLEY and JAMES PAUL LONDAL Astrophysics and Cosmology Research Unit, School of Mathematical Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa ∗Corresponding author. E-mail: [email protected] Abstract. Recent interest in higher-dimensional cosmological models has prompted some signifi- cant work on the mathematical technicalities of how one goes about embedding spacetimes into some higher-dimensional space. We survey results in the literature (existence theorems and simple explicit embeddings); briefly outline our work on global embeddings as well as explicit results for more com- plex geometries; and provide some examples. These results are contextualized physically, so as to provide a foundation for a detailed commentary on several key issues in the field such as: the mean- ing of ‘Ricci equivalent’ embeddings; the uniqueness of local (or global) embeddings; symmetry inheritance properties; and astrophysical constraints. Keywords. Embedding theory; cosmology; astrophysics. PACS Nos 04.20.Jb, 04.20.Ex, 04.50.−h 1. Introduction Extensions to general relativity often involve extra dimensions. Inspired by string theory [1], D-brane theory [2] and Horava–Witten theory [3], there has been a great deal of inter- est in extra-dimensional effective theories, evidenced by phenomenological models such as the Randall–Sundrum [4], Arkani–Hamed–Dimopoulos–Dvali [5] and Dvali–Gabadadze– Porrati [6] scenarios, which attempt to tackle problems such as the mass-hierarchy problem, the origins of the primordial spectrum, the inflationary field and dark energy. -
The Newtonian Limit of General Relativity
The Newtonian Limit of General Relativity Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften an der Fakult¨atMathematik und Physik der Eberhard-Karls-Universit¨atT¨ubingen vorgelegt von Maren Reimold aus N¨ordlingen Unterst¨utztdurch das Evangelische Studienwerk Villigst e.V. T¨ubingen,September 3, 2010 Contents Deutsche Zusammenfassung 3 Introduction 5 0.1 Transitions from tangent and cotangent space and induced connections 8 0.2 Concepts of curvature . 9 0.3 Newton's theory of gravitation and Einstein's theory of relativity . 13 1 Frame theory 19 1.1 The structure of the frame theory . 19 1.2 Linear Algebra . 23 1.3 Transfer to the frame theory . 30 1.4 The case λ =0 ............................. 34 2 The Newtonian limit: definition and existence 63 2.1 Definition of the Newtonian limit . 63 2.2 Extension of spacetimes . 66 2.3 Examples . 66 2.4 Existence of a limit . 75 2.5 Static and spherically symmetric spacetimes . 82 3 Existence of genuine Newtonian limits 95 3.1 Transformation of coordinates . 96 3.2 Conditions for the curvature tensor . 103 3.3 Asymptotically flat spacetimes . 106 A Appendix 121 A.1 The Schwarzschild spacetime . 121 A.2 The Kerr spacetime . 128 Index 151 Bibliography 153 1 Deutsche Zusammenfassung So lange es die Allgemeine Relativit¨atstheoriegibt, so lange gibt es auch die zugeh¨origeFrage, inwieweit man die Newtonsche Gravitationstheorie als einen Spezialfall oder doch wenigstens als eine Grenzlage der Allgemeinen Relativit¨ats- theorie auffassen kann. Schon am 18. November 1915, eine Woche bevor