The 2010 Chemistry Nobel Prize: Pd(0)-Catalyzed Organic Synthesis
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
EI-ICHI NEGISHI Herbert C
MAGICAL POWER OF TRANSITION METALS: PAST, PRESENT, AND FUTURE Nobel Lecture, December 8, 2010 by EI-ICHI NEGISHI Herbert C. Brown Laboratories of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907-2084, U.S.A. Not long ago, the primary goal of the synthesis of complex natural products and related compounds of biological and medicinal interest was to be able to synthesize them, preferably before anyone else. While this still remains a very important goal, a number of today’s top-notch synthetic chemists must feel and even think that, given ample resources and time, they are capable of synthesizing virtually all natural products and many analogues thereof. Accepting this notion, what would then be the major goals of organic synthesis in the twenty-first century? One thing appears to be unmistakably certain. Namely, we will always need, perhaps increasingly so with time, the uniquely creative field of synthetic organic and organometallic chemistry to prepare both new and existing organic compounds for the benefit and well-being of mankind. It then seems reasonably clear that, in addition to the question of what compounds to synthesize, that of how best to synthesize them will become increasingly important. As some may have said, the primary goal would then shift from aiming to be the first to synthesize a given compound to seeking its ultimately satisfactory or “last synthesis”. If one carefully goes over various aspects of organic synthetic methodology, one would soon note how primitive and limited it had been until rather recently, or perhaps even today. For the sake of argument, we may propose here that the ultimate goal of organic synthesis is “to be able to synthesize any desired and fundamentally synthesizable organic compounds (a) in high yields, (b) efficiently (in as few steps as possible, for example), (c) selectively, preferably all in t98–99% selectivity, (d) economically, and (e) safely, abbreviated hereafter as the y(es)2 manner.” with or without catalyst R1M + R2X R1R2 + MX R1, R2: carbon groups. -
Palladium-Catalysed Coupling Chemistry Palladium-Catalysed Coupling Chemistry
Palladium-Catalysed Coupling Chemistry Palladium-Catalysed Coupling Chemistry Palladium catalysis has gained widespread use in industrial and academic synthetic chemistry laboratories as a powerful methodology for the formation of C-C and C-Heteroatom bonds. Several coupling reactions have been developed with different substrates: 1. SUZUKI-MIYAURA 2. STILLE 3. NEGISHI 4. KUMADA 5. HIYAMA 6. SONOGASHIRA 7. HECK 8. BUCHWALD-HARTWIG 9. CYANATION 10. CARBONYLATION 2 Understanding the catalytic cycle Most palladium catalysed reactions are believed to follow a similar catalytic cycle. The catalytic species can be formed in situ using a palladium source, such as Pd2(dba)3 or Pd(OAc)2 and the necessary ligand, or introduced as a preformed catalyst such as t Pd(PPh3)4 or Pd(P Bu3)2. Careful choice of ligand can facilitate two steps of the catalytic cycle. The use of strong σ-donating ligands, such as trialkylphosphines, increases electron density around the metal, accelerating the oxidative addition of the catalyst to the substrate. This is most commonly believed to be the rate determining step. Choice of ligand also determines the mechanism by which oxidative addition occurs.1 The elimination step is accelerated by the use of bulky ligands, in particular phosphine ligands exhibiting a large cone angle (also known as Tolman angle).2 Ligand Cone Angle (deg) Cat. No. dppm 121 29361 dppe 125 14791 dppp 127 31005 dcpe 142 36385 PPh3 145 14042 P(c-hex)3 170 42161 t P( Bu)3 182 36089 P(C6F5)3 184 31316 P(2,4,6-Me3C6H2)3 212 32113 3 Phosphine ligands have recently been replaced in a number of palladium cataly sed reactions with N-heterocyclic carbenes (NHCs).3 These ligands offer similar electronic properties to phosphines, being strongly σ-donating and weakly π-acidic. -
Recent Progress in the Use of Pd-Catalyzed C-C Cross-Coupling Reactions in the Synthesis of Pharmaceutical Compounds
http://dx.doi.org/10.5935/0103-5053.20140255 J. Braz. Chem. Soc., Vol. 25, No. 12, 2186-2214, 2014. Printed in Brazil - ©2014 Sociedade Brasileira de Química 0103 - 5053 $6.00+0.00 Review Recent Progress in the Use of Pd-Catalyzed C-C Cross-Coupling Reactions in the Synthesis of Pharmaceutical Compounds André F. P. Biajoli, Cristiane S. Schwalm, Jones Limberger, Thiago S. Claudino and Adriano L. Monteiro* Laboratory of Molecular Catalysis, Institute of Chemistry, UFRGS, Av. Bento Gonçalves, 9500, 91501-970 Porto Alegre-RS, Brazil A grande capacidade do paládio de formar ligações carbono-carbono entre substratos apropriadamente funcionalizados permitiu que os químicos orgânicos efetuassem transformações antes impossíveis ou alcançáveis somente através de rotas muito longas. Neste contexto, uma das mais elegantes e importantes aplicações das reações de acoplamento cruzado catalisadas por paládio é a síntese de compostos de interesse farmacêutico. A presente revisão tem por objetivo apresentar uma visão geral do uso de acoplamentos cruzados na síntese de componentes de medicamentos (ou de candidatos a medicamentos), independentemente da escala, compreendendo o período de 2011 até o final de julho de 2014. The impressive ability of palladium to assemble C-C bonds between appropriately functionalized substrates has allowed synthetic organic chemists to perform transformations that were previously impossible or only possible using multi-step approaches. In this context, one of the most important and elegant applications of the Pd-catalyzed C-C coupling reactions currently is the synthesis of pharmaceuticals. This review is intended to give a picture of the applications of Pd-catalyzed C-C cross-coupling reactions for the synthesis of drug components or drug candidates regardless of the scale from 2011 through to the end of July, 2014. -
Palladium-Catalyzed Cross-Couplings in Organic Synthesis
Palladium-Catalyzed Cross-Couplings in Organic Synthesis 2010 Nobel Prize in Chemistry Professor Sambasivarao Kotha Department of Chemistry IIT-Bombay 400 076 http/www.chem.iitb.ac.in/~srk 12/28/10 1 "palladium-catalyzed cross couplings in organic synthesis” Richard F. Heck Ei-ichi Negishi Akira Suzuki University of Delaware Purdue University Hokkaido University USA West Lafayette Sapporo, Japan IN, USA B 1931 B 1935 B 1930 12/28/10 2 Heck, Negishi and Suzuki coupling in synthesis of fine chemicals Heck reaction O Si Si DVS-bis-BCM (electronic resin monomer) N O N Negishi Cl coupling N Cl HN O HN Suzuki coupling Serotonin agonist Boscalid 12/28/10 (fungiside) 3 Facts on the Nobel Prize in Chemistry On 27 November 1895, Alfred Nobel signed his last will and testament, giving the largest share of his fortune to a series of prizes, the Nobel Prizes. As described in Nobel's will one part was dedicated to “ the person who shall have made the most important chemical discovery or improvement”. http://nobelprize.org/nobel_prizes/chemistry/ 4 Number of Nobel Prizes in Chemistry 102 Nobel Prizes in Chemistry have been awarded since 1901. It was not awarded on eight occasions: in 1916, 1917, 1919, 1924, 1933, 1940, 1941 and 1942. Why were the Chemistry Prizes not awarded in those years? In the statutes of the Nobel Foundation it says: "If none of the works under consideration is found to be of the importance indicated in the first paragraph, the prize money shall be reserved until the following year. If, even then, the prize cannot be awarded, the amount shall be added to the Foundation's restricted funds." During World War I and II, fewer Nobel Prizes were awarded. -
MICROREVIEW Reactivity of Polar Organometallic Compounds In
MICROREVIEW Reactivity of Polar Organometallic Compounds in Unconventional Reaction Media: Challenges and Opportunities Joaquin García-Álvarez,*[a] Eva Hevia,*[b] and Vito Capriati*[c] This paper is gratefully dedicated to the memory of Dr. Guy Lavigne Abstract: Developing new green solvents in designing chemical chemicals in chemical transformations is, indeed, solvents used products and processes or successfully employing the already as reaction media, which account for 80–90% of mass utilization existing ones is one of the key subjects in Green Chemistry and is in a typical pharmaceutical/fine chemical operational process. especially important in Organometallic Chemistry, which is an Thus, the solvent itself is often a critical parameter especially in interdisciplinary field. Can we advantageously use unconventional drug product manufacturing and is as well responsible for most reaction media in place of current harsh organic solvents also for waste generated in the chemical industries and laboratories.[3] polar organometallic compounds? This Microreview critically Following these considerations, some of the most critical analyses the state-of-the-art on this topic and showcases recent and intriguing questions that arise are: Can we get traditional developments and breakthroughs which are becoming new research organic solvents out of organometallic reactions?[4] Can we use directions in this field. Because metals cover a vast swath of the protic, recyclable, biodegradable, and cheap unconventional periodic table, the content is organised into three Sections solvents also for highly reactive organometallic compounds? discussing the reactivity of organometallic compounds of s-, p- and Answering these questions would not only mean to break new d-block elements in unconventional solvents. -
New Preparations and Reactions of Salt Stabilized Organozinc Reagents For
Dissertation zur Erlangung des Doktorgrades der Fakultät für Chemie und Pharmazie der Ludwig-Maximilians-Universität München NEW PREPARATIONS AND REACTIONS OF SALT STABILIZED ORGANOZINC REAGENTS FOR THE FUNCTIONALIZATION OF AROMATICS, HETEROAROMATICS, AND ALLYLIC COMPOUNDS von Mario Ferdinand Ellwart aus München 2016 ERKLÄRUNG Diese Dissertation wurde im Sinne von § 7 der Promotionsordnung vom 28. November 2011 von Herrn Prof. Dr. Paul Knochel betreut. EIDESSTATTLICHE VERSICHERUNG Diese Dissertation wurde eigenständig und ohne unerlaubte Hilfe erarbeitet. München, ………………………. ………….……………………………… (Mario F. Ellwart) Dissertation eingereicht am: 07.10.2016 1. Gutachter: Prof. Dr. Paul Knochel 2. Gutachter: Prof. Dr. Oliver Trapp Mündliche Prüfung am: 06.12.2016 This work was carried out from January 2014 to October 2016 under the guidance of Prof. Dr. Paul Knochel at the Department of Chemistry of the Ludwig-Maximilians-Universität, Munich. Firstly, I would like to express my appreciation to Prof. Dr. Paul Knochel for giving me the great opportunity to do my Ph.D. in his group and for his guidance in the course of my scientific research. I am also very grateful to Prof. Dr. Oliver Trapp for agreeing to be the second reviewer of this thesis, as well as Prof. Dr. Manfred Heuschmann, Prof. Dr. Klaus T. Wanner, Prof. Dr. Konstantin Karaghiosoff, and Prof. Dr. Regina de Vivie-Riedle for their interest shown in this manuscript by accepting to be referees. I also would like to thank Michael Eisold, Marthe Ketels, Meike Simon, and Dr. Benedikt S. Soller for the careful correction of this manuscript. I thank all past and present co-workers I have met in the Knochel group for their kindness and their help. -
1 CHEM 344 Organometallic Chemistry Practice Problems
CHEM 344 Organometallic Chemistry Practice Problems (not for credit) Name (print): TA name (print): _____________ 1) Careful choice of solvent is essential for the successful generation and reaction of a Grignard reagent. a) Explain why anhydrous diethyl ether and tetrahydrofuran (THF) are common solvents for the generation of Grignard reagents. b) Show the major product(s) of the reaction of 4-methylphenylmagnesium bromide (prepared in anhydrous diethyl ether) with benzophenone (dissolved in either ethanol, acetone, or diethyl ether). Assume acidic workup in each case. 1 2) The reaction of PhMgBr with cyclohexanone (C6H10O) followed by addition of sulfuric acid produces 1-phenylcyclohexene (C12H14) as shown below. The crude reaction mixture was analyzed by GC-mass spectrometry. Use the GC-MS data on the next page to identify the components of the crude product mixture and assess its purity. Draw a plausible electron-pushing mechanism for the formation of the major and minor products starting from bromobenzene. 2 3 3) 3) Show the product and justify the chemoselectivity of each of the following oxidative addition reactions. Show the oxidation state of the metal in the product. The table of C-X bond dissociation enthalpies of halobenzenes may be useful. a) b) c) C–X Bond Dissociation Enthalpies ° Ph–X H C–X (kcal/mol) 127 97 84 67 113 4 4) Transmetallation follows oxidative addition in a typical Pd-catalyzed coupling cycle. The process of transmetallation can be described by the following equilibrium: The process is thermodynamically favorable for the production of M-R if XM > XM' (X = Pauling electronegativity, M/M' = metal, R = organic group, X= halide). -
The Synthesis of Molecular Switches
! ! " ! # $% & ' ()) *&& +,-+./(-, *& /0./+.0-10-.--.) % 23 33 ' 4 5' &6 Abstract According to the famous axiom known as Moore’s Law the number of transistors that can be etched on a given piece of silicon, and therefore the computing power, will double every 18 to 24 months. For the last 40 years Moore’s prediction has held true as computers have grown more and more powerful. However, around 2020 hardware manufac- turers will have reached the physical limits of silicon. A proposed so- lution to this dilemma is molecular electronics. Within this field re- searchers are attempting to develop individual organic molecules and metal complexes that can act as molecular equivalents of electronic components such as diodes, transistors and capacitors. By utilizing molecular electronics to construct the next generation of computers processors with 100,000 times as many components on the same sur- face area could potentially be created. We have synthesized a range of new pyridyl thienopyridine ligands and compared the electrochemical and photophysical properties of their corresponding Ru(II) complexes with that with the Ru(II) com- plexes of a variety of ligands based on 6-thiophen-2-yl-2,2´-bipyridine and 4-thiophen-2-yl-2,2´-bipyridine. While the electrochemistry of the 2+ Ru(II) complexes were similar to that of unsubstituted [Ru(bpy)3] , substantial differences in luminescence lifetimes were found. Our findings show that, due to steric interactions with the auxiliary bipy- ridyl ligands, luminescence is quenched in Ru(II) complexes that in- corporate the 6-thiophen-2-yl-2,2´-bipyridine motif, while it is on par 2+ with the luminescence of [Ru(bpy)3] in the Ru(II) complexes of the pyridyl thienopyridine ligands. -
(12) United States Patent (10) Patent No.: US 6,933,353 B2 Wan 45) Date of Patent: Aug
USOO6933353B2 (12) United States Patent (10) Patent No.: US 6,933,353 B2 Wan 45) Date of Patent: Aug. 23,9 2005 (54) OLEFIN POLYMERIZATION PROCESS 6,489,408 B2 12/2002 Mawson et al. .............. 526/68 6,524.986 B2 2/2003 Costa et al. .......... ... 502/109 (75) Inventor: Shaotian Wang, Mason, OH (US) 6,541,583 B2 4/2003 Meverden et al. .......... 526/127 6,559,251 B1 * 5/2003 Wang et al. .......... ... 526/127 (73) Assignee: Equistar Chemicals, LP, Houston, TX 6,765,074 B2 7/2004 Sartain ....................... 526/153 (US) FOREIGN PATENT DOCUMENTS (*) Notice: Subject to any disclaimer, the term of this WO WO O1/53360 5/1999 patent is extended or adjusted under 35 WO WO 99/24446 7/2001 U.S.C. 154(b) by 92 days. OTHER PUBLICATIONS (21) Appl. No.: 10/614,615 Soga et al., Macromolecules 27 (1994) 7938–7940. Buu-Hoi and Xuong, J. Chem. Soc. (1952) 2225. (22) Filed: Jul. 7, 2003 Jingling et al., J. Organometal. Chem. 460 (1993) 191. (65) Prior Publication Data Noh, et al., J. Organometal. Chem, 518 (1996) 1. Noh, et al., J. Organometal. Chem, 580 (1999) 90. US 2005/0010004 A1 Jan. 13, 2005 * cited by examiner (51) Int. Cl. ............................... C08F 4/44; CO8F 4/52 (52) U.S. Cl. ....................... 526/114; 526/116; 526/161; Primary Examiner-David W. Wu 526/172; 526/148; 526/151; 526/130; 526/129; ASSistant Examiner-Rip A. Lee 526/348.5; 526/348.4; 526/348.6; 526/351; (74) Attorney, Agent, or Firm- John Tyrell; Jonathan L. -
Palladium-Catalysed Coupling Chemistry Palladium-Catalysed Coupling Chemistry
Palladium-Catalysed Coupling Chemistry Palladium-Catalysed Coupling Chemistry Palladium catalysis has gained widespread use in industrial and academic synthetic chemistry laboratories as a powerful methodology for the formation of C-C and C-Heteroatom bonds. Several coupling reactions have been developed with different substrates: 1. SUZUKI-MIYAURA 2. STILLE 3. NEGISHI 4. KUMADA 5. HIYAMA 6. SONOGASHIRA 7. HECK 8. BUCHWALD-HARTWIG 9. CYANATION 10. CARBONYLATION 2 Understanding the catalytic cycle Most palladium catalysed reactions are believed to follow a similar catalytic cycle. The catalytic species can be formed in situ using a palladium source, such as Pd2(dba)3 or Pd(OAc)2 and the necessary ligand, or introduced as a preformed catalyst such as t Pd(PPh3)4 or Pd(P Bu3)2. Careful choice of ligand can facilitate two steps of the catalytic cycle. The use of strong σ-donating ligands, such as trialkylphosphines, increases electron density around the metal, accelerating the oxidative addition of the catalyst to the substrate. This is most commonly believed to be the rate determining step. Choice of ligand also determines the mechanism by which oxidative addition occurs.1 The elimination step is accelerated by the use of bulky ligands, in particular phosphine ligands exhibiting a large cone angle (also known as Tolman angle).2 Ligand Cone Angle (deg) Cat. No. dppm 121 29361 dppe 125 14791 dppp 127 31005 dcpe 142 36385 PPh3 145 14042 P(c-hex)3 170 42161 t P( Bu)3 182 36089 P(C6F5)3 184 31316 P(2,4,6-Me3C6H2)3 212 32113 3 Phosphine ligands have recently been replaced in a number of palladium cataly sed reactions with N-heterocyclic carbenes (NHCs).3 These ligands offer similar electronic properties to phosphines, being strongly σ-donating and weakly π-acidic. -
Signature of Author
NEW METHODS FOR THE FORMATION OF CARBON-CARBON BONDS VIA ORGANOMETALLIC COMPOUNDS by BRIAN SCOTT BRONK B.A. (High Honors), Colgate University (1989) SUBMITTED TO THE DEPARTMENT OF CHEMISTRY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY February 1995 © Massachusetts Institute of Technology, 1995 Signature of Author.. ........................................................... Department of Chemistry September 19, 1994 /' I . N 'N Certified by....................... ......... .. ........................................ Certifiedby Rick L. Danheiser Thesis Supervisor Certified by ......... ... ...................................... Stephen J. Lippard A Thesis Supervisor // . Accepted by.................. .................... /../.!.............................................. Dietmar Seyferth Departmental Committee on Graduate Studies I:;. .i., . : .1'_I_ , This doctoral thesis has been examined by a committee of the Department of Chemistry as follows: n An Professor Stephen L. Buchw ald ....... ............................. m L. BcChairman Professor Rick L. Danheiser . ................... Thesis Supervisor Professor Stephen J. Lippard ........... ........ .................... Thesis Supervisor Professor Dietmar Seyferth ............ .......... -.... 2 ACKNOWLEDGMENTS After writing a thesis totaling over 300 pages, the task of writing one final page would seem quite simple. Unfortunately, I am left with a single page to express my gratitude to :l who have made -
United States Patent Office Patented Sept
3,528,957 United States Patent Office Patented Sept. 15, 1970 2 ing and forming machinery. In spite of its relatively high 3,528,957 cis-1,4 content, the polybutadiene produced by this proc METHOD OF PRODUCING POLYBUTADENE ess is, on the average, no better or no worse in processing MorfordAkron, C.Ohio, Throckmorton, assignors to Theand GoodyearWilliam M.Tire Saltman, & Rub. properties than polybutadiene made with the alkyl-lithium ber Company, Akron, Ohio, a corporation of Ohio catalyst System which produces a polybutadiene with No Drawing. Filed July 10, 1967, Ser. No. 651,991 about a 40% cis-1,4 structure. Polybutadiene made with Int, C. C08d, 3/06 the two component catalyst system comprising alkyl U.S. CI. 260-94.3 10 Cains aluminum halides and cobalt salts results in molecular Structures very high in cis-1,4 configuration (in the neigh borhood of 98%), yet these polymers do not show ap ABSTRACT OF THE DESCLOSURE 10 preciable processing advantage over the polybutadiene A method and a catalyst system for the solution po type polymers made by either of the other two processes lymerization of butadiene or butadiene in mixture with previously mentioned. other diolefins to form polymers containing a high con Based on the most practical test of what indicates good tent of cis-1,4 addition is described. The solution polym 5 polymer processability, that is, manifestations during ac erization is carried out under conventional polymeriza tual factory processing, polybutadiene produced by a tion conditions. The catalyst employed is a mixture